1
|
Dong XM, Chen L, Wu P, Cheng LH, Wang Y, Yang Y, Zhang Y, Tang WY, Xie T, Zhou JL. Targeted metabolomics reveals PFKFB3 as a key target for elemene-mediated inhibition of glycolysis in prostate cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155185. [PMID: 38134863 DOI: 10.1016/j.phymed.2023.155185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Elemene, an active anticancer extract derived from Curcuma wenyujin, has well-documented anticarcinogenic properties. Nevertheless, the role of elemene in prostate cancer (PCa) and its underlying molecular mechanism remain elusive. PURPOSE This study focuses on investigating the anti-PCa effects of elemene and its underlying mechanisms. METHODS Cell-based assays, including CCK-8, scratch, colony formation, cell cycle, and apoptosis experiments, to comprehensively assess the impact of elemene on PCa cells (LNCaP and PC3) in vitro. Additionally, we used a xenograft model with PC3 cells in nude mice to evaluate elemene in vivo efficacy. Targeted metabolomics analysis via HILIC-MS/MS was performed to investigate elemene potential target pathways, validated through molecular biology experiments, including western blotting and gene manipulation studies. RESULTS In this study, we discovered that elemene has remarkable anti-PCa activity in both in vitro and in vivo settings, comparable to clinical chemotherapeutic drugs but with fewer side effects. Using our established targeted metabolomics approach, we demonstrated that β-elemene, elemene's primary component, effectively inhibits glycolysis in PCa cells by downregulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression. Furthermore, we found that β-elemene accomplishes this downregulation by upregulating p53 and FZR1. Knockdown and overexpression experiments conclusively confirmed the pivotal role of PFKFB3 in mediating β-elemene's anti-PCa activity. CONCLUSION This finding presents compelling evidence that elemene exerts its anti-PCa effect by suppressing glycolysis through the downregulation of PFKFB3. This study not only improves our understanding of elemene in PCa treatment but also provides valuable insights for developing more effective and safer therapies for PCa.
Collapse
Affiliation(s)
- Xue-Man Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China; Xiangya School of Pharmaceutical Sciences, Central South University. Changsha, Hunan 410013, China
| | - Long-Hui Cheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu Wang
- Dalian HolleyKingkong Pharmaceutical Co., Ltd., Dalian 116199, China
| | - Youjian Yang
- Dalian HolleyKingkong Pharmaceutical Co., Ltd., Dalian 116199, China
| | - Yongwei Zhang
- Dalian HolleyKingkong Pharmaceutical Co., Ltd., Dalian 116199, China
| | - Wei-Yang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Wang Z, Wang Z, Du C, Zhang Y, Tao B, Xian H. β-elemene affects angiogenesis of infantile hemangioma by regulating angiotensin-converting enzyme 2 and hypoxia-inducible factor-1 alpha. J Nat Med 2021; 75:655-663. [PMID: 33861415 DOI: 10.1007/s11418-021-01516-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Infantile hemangioma (IH) is the most common benign vascular tumor resulting from the hyper-proliferation of vascular endothelial cells. In treatment of various tumors including IH, β-elemene, a compound extracted from Rhizoma zedoariae, has been reported to have anti-tumor effect. However, the underlying mechanisms of β-elemene in hemangioma have remained uninvestigated. In this presented study, functional analysis showed that low concentrations of β-elemene promoted the proliferation, migration and tube formation of human hemangioma endothelial cells (HemECs), while high concentrations of β-elemene produced inhibitory effects. Further, we also found that angiotensin-converting enzyme 2 (ACE2) expression was down-regulated at both mRNA and protein levels, while hypoxia-inducible factor-1 alpha (HIF-1-α) was up-regulated in infantile hemangiomas tissues and HemECs at both mRNA and protein levels. This result suggested that ACE2 and HIF-1-α play roles in IH. ACE2 expression was down-regulated with the treatment of β-elemene at different dosage point. Interestingly, the expression of Vascular endothelial growth factor-A (VEGFA) increased with treatment of low concentrations of β-elemene in HemECs, in contrary, the expression of VEGFA expression decreased with treatment of high concentrations of β-elemene. Moreover, if the concentration of β-elemene reached 40 μg/ml or higher, the expression of HIF-1-α decreased. Taken together, our data indicated that the different effects of β-elemene on the proliferation, migration and angiogenesis of hemangioma at different concentrations: The ACE2 signaling pathway dominates with treatment of low concentrations of β-elemene, stimulating the expression of downstream VEGFA to promote the angiogenesis of hemangioma; under the condition of high concentrations of β-elemene, the HIF-1-α signaling pathway inhibits the expression of VEGFA and further inhibits the angiogenesis of hemangioma.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhaoxiang Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, 226001, China
| | - Chenyu Du
- Department of Physiology, School of Medicine, Nantong University, Jiangsu, 226001, China
| | - Ye Zhang
- Laboratory of Medical Science, School of Medicine, Nantong University, Jiangsu, 226001, China
| | - Baorui Tao
- Laboratory of Medical Science, School of Medicine, Nantong University, Jiangsu, 226001, China
| | - Hua Xian
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Wu W, Hu Z, Zhao Q, Zhang X, Zhang H, Wang H, Xue W, Yu L, Duan G. Down-Regulation of Hypoxia-Inducible Factor-1α and Downstream Glucose Transporter Protein-1 Gene by β-elemene Enhancing the Radiosensitivity of Lung Adenocarcinoma Transplanted Tumor. Onco Targets Ther 2020; 13:11627-11635. [PMID: 33223837 PMCID: PMC7671467 DOI: 10.2147/ott.s275956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose To study the effect of β-elemene on the radiosensitivity of A549 cell xenograft tumor and potential mechanisms by which β-elemene regulates the expression of hypoxia-inducible factor-1α (HIF-1α) and glucose transporter protein-1 (GLUT-1). Methods Using an A549 cell transplantation tumor model with male nude mice, we studied the effect of β-elemene on the radiosensitivity of non-small cell lung cancer (NSCLC). The expression of HIF-1α and GLUT-1 was detected by real-time PCR, Western blotting and immunohistochemistry. The relationship between the radiosensitivity of β-elemene and the expression of HIF-1α and GLUT-1 was analyzed. Results β-elemene and radiotherapy intervened in the growth of transplanted tumors in varying degrees. The enhancement factor (EF=2.44>1) was calculated; β-elemene at 45 mg/kg had the most significant enhanced effect on radiosensitivity. When β-elemene was used in combination with radiation, the expression of HIF-1α and GLUT-1 was significantly decreased, and there was a positive correlation between the two genes. Conclusion β-elemene exhibits a radiosensitizing effect on A549 cell xenograft tumor. The underlying molecular mechanism is probably associated with the down-regulation of HIF-1α and GLUT-1 expression, suggesting that β-elemene may directly or indirectly inhibit the expression of HIF-1α and GLUT-1. There is a positive significant correlation between expression of HIF-1α and GLUT-1. HIF-1α and downstream GLUT-1 could be used as a new target for the radiosensitization of NSCLC.
Collapse
Affiliation(s)
- Wenbo Wu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China.,Graduate School of Hebei North University, Zhangjiakou, People's Republic of China
| | - Zhonghui Hu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China.,Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Qingtao Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Xiaopeng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Hua Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Huien Wang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Wenfei Xue
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Lei Yu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Guochen Duan
- Department of Thoracic Surgery, Hebei Children's Hospital, Shijiazhuang, People's Republic of China
| |
Collapse
|
4
|
Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, Uddin MS, Mahomoodally MF, Rengasamy KRR. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res 2020; 161:105165. [PMID: 32835868 DOI: 10.1016/j.phrs.2020.105165] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Sesquiterpenes belong to the largest group of plant secondary metabolites, which consist of three isoprene building units. These compounds are widely distributed in various angiosperms, a few gymnosperms and bryophytes. Sesquiterpenes and their allied derivatives are bio-synthesized in various plant parts including leaves, fruits and roots. These plant-based metabolites are predominantly identified in the Asteraceae family, wherein up to 5000 complexes have been documented to date. Sesquiterpenes and their derivatives are characteristically associated with plant defence mechanisms owing to their antifungal, antibacterial and antiviral activities. Over the last two decades, these compounds have been reportedly demonstrated health promoting perspectives against a wide range of metabolic syndromes i.e. hyperglycemia, hyperlipidemia, cardiovascular complications, neural disorders, diabetes, and cancer. The high potential of sesquiterpenes and their derivatives against various cancers like breast, colon, bladder, pancreatic, prostate, cervical, brain, liver, blood, ovarium, bone, endometrial, oral, lung, eye, stomach and kidney are the object of this review. Predominantly, it recapitulates the literature elucidating sesquiterpenes and their derivatives while highlighting the mechanistic approaches associated with their potent anticancer activities such as modulating nuclear factor kappa (NF-kB) activity, inhibitory action against lipid peroxidation and retarding the production of reactive oxygen & nitrogen species (ROS&RNS).
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Md Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Tong H, Liu Y, Jiang L, Wang J. Multi-Targeting by β-Elemene and Its Anticancer Properties: A Good Choice for Oncotherapy and Radiochemotherapy Sensitization. Nutr Cancer 2019; 72:554-567. [PMID: 31387393 DOI: 10.1080/01635581.2019.1648694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several studies have focused on chemical agents, tailored from natural edible products, used to prevent and treat various diseases. β-elemene is a well-known compound derived from Curcuma wenyujin that possesses a wide spectrum of anticancer properties under preclinical and clinical conditions. Several studies have demonstrated its inhibitory effect both in humans and animals with cancers. Numerous in vivo and in vitro experimental models have revealed that β-elemene can modulate multiple molecular pathways involved in carcinogenesis. In general, (1) β-elemene itself can inhibit and kill tumor cells through a variety of mechanisms, and (2) can synergistically enhance the effect of radiotherapy and/or chemotherapy, (3) also can regulate autoimmune in the treatment of tumors. In this article, we critically focused on the available scientific evidence discussing the use of β-elemene in cancer prevention, and its molecular targets and mechanisms of action in different types of cancer. In addition, we have discussed its sources, chemistry, bioavailability, and future research directions.
Collapse
Affiliation(s)
- Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihua Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen, China
| | - Lijie Jiang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingshang Wang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Qureshi MZ, Attar R, Romero MA, Sabitaliyevich UY, Nurmurzayevich SB, Ozturk O, Wakim LH, Lin X, Ozbey U, Yelekenova AB, Farooqi AA. Regulation of signaling pathways by β-elemene in cancer progression and metastasis. J Cell Biochem 2019; 120:12091-12100. [PMID: 30912190 DOI: 10.1002/jcb.28624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 12/27/2022]
Abstract
Entry of β-elemene into various phases of clinical trials advocates its significance as a premium candidate likely to gain access to mainstream medicine. Based on the insights gleaned from decades of research, it seems increasingly transparent that β-elemene has shown significant ability to modulate multiple cell signaling pathways in different cancers. We partition this multicomponent review into how β-elemene strategically modulates various signal transduction cascades. We have individually summarized regulation of tumor necrosis factor related apoptosis-inducing ligand, signal transducers and activators of transcription, transforming growth factor/SMAD, NOTCH, and mammalian target of rapamycin pathways by β-elemene. Last, we will discuss the results of clinical trials of β-elemene and how effectively we can use these findings to stratify patients who can benefit most from β-elemene.
Collapse
Affiliation(s)
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Turkey
| | - Mirna A Romero
- Facultad de Medicina, Universidad Autónoma de Guerrero, Laboratorio de Investigación Clínica, Av. Solidaridad S/N, Colonia Hornos Insurgentes, cp 39355, Acapulco, Guerrero, México
| | | | | | - Ozlem Ozturk
- Institute prévention santé et longévité, Paris, France
| | - Lara H Wakim
- Faculty of Agricultural and Food Sciences, Holy Spirit University of Kaslik, Lebanon
| | - Xiukun Lin
- Department of Pharmacology, Southwest Medical Univerisity, Luzhou, Sichuan, China
| | - Ulku Ozbey
- Department of Genetics, Health High School, Munzur University, 62000, Tunceli, Turkey
| | | | - Ammad A Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
7
|
Asif M, Yehya AHS, Dahham SS, Mohamed SK, Shafaei A, Ezzat MO, Abdul Majid AS, Oon CE, Abdul Majid AMS. Establishment of in vitro and in vivo anti-colon cancer efficacy of essential oils containing oleo-gum resin extract of Mesua ferrea. Biomed Pharmacother 2018; 109:1620-1629. [PMID: 30551416 DOI: 10.1016/j.biopha.2018.10.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Proven the great potential of essential oils as anticancer agents, the current study intended to explore molecular mechanisms responsible for in vitro and in vivo anti-colon cancer efficacy of essential oil containing oleo-gum resin extract (RH) of Mesua ferrea. MTT cell viability studies showed that RH had broad spectrum cytotoxic activities. However, it induced more profound growth inhibitory effects towards two human colon cancer cell lines i.e., HCT 116 and LIM1215 with an IC50 values of 17.38 ± 0.92 and 18.86 ± 0.80 μg/mL respectively. RH induced relatively less toxicity in normal human colon fibroblasts i.e., CCD-18co. Cell death studies conducted, revealed that RH induced characteristic morphological and biochemical changes in HCT 116. At protein level it down-regulated expression of multiple pro-survival proteins i.e., survivin, xIAP, HSP27, HSP60 and HSP70 and up-regulated expression of ROS, caspase-3/7 and TRAIL-R2 in HCT 116. Furthermore, significant reduction in invasion, migration and colony formation potential was observed in HCT 116 treated with RH. Chemical characterization by GC-MS and HPLC methods revealed isoledene and elemene as one the major compounds. RH showed potent antitumor activity in xenograft model. Overall, these findings suggest that RH holds a promise to be further studied for cheap anti-colon cancer naturaceutical development.
Collapse
Affiliation(s)
- Muhammad Asif
- Faculty of Pharmaceutical Sciences, Government College University, 38000, Faisalabad, Pakistan; EMAN Testing and Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universti Sains Malaysia, Penang, 11800, Malaysia.
| | - Ashwaq H S Yehya
- Institute for Research in Molecular Medicine (INFORMM), Universti Sains Malaysia, Penang, 11800, Malaysia
| | - Saad Sabbar Dahham
- Department of Science, Rustaq College of Education, Ministry of Higher Education, 329-Rustaq, Sultanate of Oman, Oman
| | - Shazmin Kithur Mohamed
- EMAN Testing and Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universti Sains Malaysia, Penang, 11800, Malaysia
| | - Armaghan Shafaei
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universti Sains Malaysia, Penang, 11800, Malaysia
| | - Mohammed Oday Ezzat
- Department of Chemistry, College of Education for Women, University of Anbar, 31001, Ramadi, Anbar, Iraq
| | - Aman Shah Abdul Majid
- Department of Pharmacology, School of Medical Sciences, Quest International University, Perak, Malaysia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universti Sains Malaysia, Penang, 11800, Malaysia
| | - Amin Malik Shah Abdul Majid
- EMAN Testing and Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universti Sains Malaysia, Penang, 11800, Malaysia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Australia.
| |
Collapse
|
8
|
Toomeh D, Gadoue SM, Yasmin-Karim S, Singh M, Shanker R, Pal Singh S, Kumar R, Sajo E, Ngwa W. Minimizing the potential of cancer recurrence and metastasis by the use of graphene oxide nano-flakes released from smart fiducials during image-guided radiation therapy. Phys Med 2018; 55:8-14. [DOI: 10.1016/j.ejmp.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023] Open
|
9
|
Fang M, Mei X, Yao H, Zhang T, Zhang T, Lu N, Liu Y, Xu W, Wan C. β-elemene enhances anticancer and anti-metastatic effects of osteosarcoma of ligustrazine in vitro and in vivo. Oncol Lett 2018; 15:3957-3964. [PMID: 29467906 DOI: 10.3892/ol.2018.7788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 09/27/2017] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to determine the anticancer effects of the combination of β-elemene and ligustrazine in vitro as well as in in vivo. Following evaluation using an MTT assay, β-elemene, ligustrazine and the β-elemene-ligustrazine combination treatments all exhibited the capacity to inhibit the growth of OS-732 cells, with inhibitory rates of 43.3, 54.4, and 75.0%, respectively. Using a flow cytometry assay, it was determined that the β-elemene-ligustrazine combination possessed the highest apoptotic rate (30.6%). Furthermore, β-elemene-ligustrazine combination treatment resulted in the highest downregulation of G protein-coupled receptor 124, vascular endothelial growth factor, matrix metallopeptidase (MMP)-2 and MMP-9 mRNA, and protein expression levels. In addition, the combined treatment led to an increase in the mRNA and protein expression of endostatin, TIMP metallopeptidase inhibitor (TIMP)-1 and TIMP-2 in OS-732 cells. Additionally, β-elemene-ligustrazine caused a decrease in nuclear factor-κB, interleukin-8, C-X-C motif chemokine receptor 4 and urokinase-type plasminogen activator mRNA expression, as well as an increase in caspase-3, caspase-8, and caspase-9 mRNA expression. In vivo, the β-elemene-ligustrazine combination was able to reduce the weight and the bulk of the tumor in BALB/c-nu/nu nude mice compared with any other group. All the results described above regarding changes to mRNA and protein expression were further confirmed in vivo in the tumor tissue of mice. The results of the present study have suggested that the combination of β-elemene-ligustrazine exhibits greater anticancer effects compared with β-elemene- or ligustrazine-alone treatment.
Collapse
Affiliation(s)
- Min Fang
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Xiaolong Mei
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Hui Yao
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Tao Zhang
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Tao Zhang
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Na Lu
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Yanshi Liu
- Department of Clinical Medicine, Tianjin Medical University, Tianjin 300270, P.R. China
| | - Wenyue Xu
- Department of Ultrasonography, Tianjin Liulin Hospital, Tianjin 300222, P.R. China
| | - Chunyou Wan
- Department of Trauma, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
10
|
Sarangi M, Padhi S. Novel herbal drug delivery system: An overview. ARCHIVES OF MEDICINE AND HEALTH SCIENCES 2018. [DOI: 10.4103/amhs.amhs_88_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Russo EB, Marcu J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. ADVANCES IN PHARMACOLOGY 2017; 80:67-134. [PMID: 28826544 DOI: 10.1016/bs.apha.2017.03.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The golden age of cannabis pharmacology began in the 1960s as Raphael Mechoulam and his colleagues in Israel isolated and synthesized cannabidiol, tetrahydrocannabinol, and other phytocannabinoids. Initially, THC garnered most research interest with sporadic attention to cannabidiol, which has only rekindled in the last 15 years through a demonstration of its remarkably versatile pharmacology and synergy with THC. Gradually a cognizance of the potential of other phytocannabinoids has developed. Contemporaneous assessment of cannabis pharmacology must be even far more inclusive. Medical and recreational consumers alike have long believed in unique attributes of certain cannabis chemovars despite their similarity in cannabinoid profiles. This has focused additional research on the pharmacological contributions of mono- and sesquiterpenoids to the effects of cannabis flower preparations. Investigation reveals these aromatic compounds to contribute modulatory and therapeutic roles in the cannabis entourage far beyond expectations considering their modest concentrations in the plant. Synergistic relationships of the terpenoids to cannabinoids will be highlighted and include many complementary roles to boost therapeutic efficacy in treatment of pain, psychiatric disorders, cancer, and numerous other areas. Additional parts of the cannabis plant provide a wide and distinct variety of other compounds of pharmacological interest, including the triterpenoid friedelin from the roots, canniprene from the fan leaves, cannabisin from seed coats, and cannflavin A from seed sprouts. This chapter will explore the unique attributes of these agents and demonstrate how cannabis may yet fulfil its potential as Mechoulam's professed "pharmacological treasure trove."
Collapse
Affiliation(s)
| | - Jahan Marcu
- Americans for Safe Access, Patient Focused Certification, Washington, DC, United States
| |
Collapse
|
12
|
Sun YN, Zhang ZY, Zeng YC, Chi F, Jin XY, Wu R. Comparative efficacy of whole-brain radiotherapy with and without elemene liposomes in patients with multiple brain metastases from non-small-cell lung carcinoma. ACTA ACUST UNITED AC 2016; 23:e377-82. [PMID: 27536187 DOI: 10.3747/co.23.3183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE We explored and compared the clinical effects of whole-brain radiotherapy (wbrt) with and without elemene liposomes in patients with multiple brain metastases from non-small-cell lung carcinoma (nsclc). METHODS We retrospectively analyzed 62 patients with multiple brain metastases from nsclc who received wbrt (30 Gy in 10 fractions) at Shengjing Hospital of China Medical University from January 2012 to May 2013. In 30 patients, elemene liposomes (400 mg) were injected intravenously via a peripherally inserted central catheter for 21 consecutive days from the first day of radiotherapy. Overall survival (os) and nervous system progression-free survival (npfs) for the two groups were compared by Kaplan-Meier analysis. Factors influencing npfs were examined by Cox regression analysis. Chi-square or Fisher exact tests were used for group comparisons. RESULTS The median os was 9.0 months in the wbrt plus elemene group and 7.8 months in the wbrt-alone group (p = 0.581); the equivalent median npfs durations were 5.2 months and 3.7 months (p = 0.005). Patient treatment plan was an independent factor associated with npfs (p = 0.002). Tumour response and disease-control rates in the wbrt plus elemene group were 26.67% and 76.67% respectively; they were 18.75% and 62.5% in the wbrt group (p = 0.452). Compared with the patients in the wbrt-alone group, significantly fewer patients in the wbrt plus elemene group developed headaches (p = 0.04); quality of life was also significantly higher in the wbrt plus elemene group both at 1 month and at 2 months (p = 0.021 and p = 0.001 respectively). CONCLUSIONS The addition of elemene liposomes to wbrt might prolong npfs in patients with multiple brain metastases from nsclc, while also reducing the incidence of headache and improving patient quality of life.
Collapse
Affiliation(s)
- Y N Sun
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, P.R.C
| | - Z Y Zhang
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, P.R.C
| | - Y C Zeng
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, P.R.C
| | - F Chi
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, P.R.C
| | - X Y Jin
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, P.R.C
| | - R Wu
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, P.R.C
| |
Collapse
|