1
|
Sousa CS, Monteiro A, Salgado AJ, Silva NA. Combinatorial therapies for spinal cord injury repair. Neural Regen Res 2025; 20:1293-1308. [PMID: 38845223 PMCID: PMC11624878 DOI: 10.4103/nrr.nrr-d-24-00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 07/31/2024] Open
Abstract
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.
Collapse
Affiliation(s)
- Carla S. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| |
Collapse
|
2
|
Natsios P, Golini L, Park BH, Steffen F. Effect of local epidural application of methylprednisolone acetate on time to ambulation in non-ambulatory dogs with thoracolumbar intervertebral disc disease: A prospective randomised, blinded control trial. Vet Rec 2024:e4962. [PMID: 39727220 DOI: 10.1002/vetr.4962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The objective of this study was to analyse the potential benefit of the epidural application of steroids on time to ambulation in non-ambulatory dogs affected by intervertebral disc disease (IVDD) treated with decompressive surgery. METHODS This prospective, randomised, blinded control trial involved 41 dogs with thoracolumbar disc extrusion, which were randomly allocated into two groups. In the control group, saline was locally applied after surgical decompression of the spinal cord (n = 23). In the treatment group (n = 18), local epidural application of methylprednisolone acetate (1 mg/kg) was used. Ambulation time was the primary outcome measure, defined as the ability to take 10 independent steps. RESULTS The median number of days to ambulation was 7 days (range: 1‒17 days) for the control group and 3 days (range: 1‒8 days) for the treatment group. One dog from the treatment group developed discospondylitis and abscess formation. LIMITATIONS The study's heterogeneity in dog breeds, ages and pre-existing health conditions could affect the generalisability of the findings. CONCLUSION Epidural methylprednisolone acetate applied locally at the time of surgery may accelerate recovery in dogs following IVDD surgery.
Collapse
Affiliation(s)
- Pavlos Natsios
- Small Animal Surgery Clinic, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Lorenzo Golini
- Division of Neurology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brian H Park
- Small Animal Surgery Clinic, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Frank Steffen
- Division of Neurology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Xu T, Chen G, Li J, Zhang Y. Exploring causal correlations between inflammatory cytokines and intervertebral disc degeneration: A Mendelian randomization. JOR Spine 2024; 7:e1349. [PMID: 38993524 PMCID: PMC11237178 DOI: 10.1002/jsp2.1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Background Inflammatory cytokines have been reported to be related to intervertebral disc degeneration (IVDD) in several previous studies. However, it remains unclear about the causal relationship between inflammatory cytokines and IVDD. This study employs Mendelian randomization (MR) to analyze the causal link between inflammatory cytokines and the risk of IVDD. Method We used genetic variants associated with inflammatory cytokines from a meta-analysis of genome-wide association study (GWAS) in 8293 Finns as instrumental variables and IVDD data were sourced from the FinnGen consortium. The main analytical approach utilized Inverse-Variance Weighting (IVW) with random effects to assess the causal relationship. Additionally, complementary methods such as MR-Egger, weighted median, simple mode, weighted mode, and MR pleiotropy residual sum and outlier were employed to enhance the robustness of the final results. Result We found interferon-gamma (IFN-γ, p = 2.14 × 10-6, OR = 0.870, 95% CI = 0.821-0.921), interleukin-1 beta (IL-1b, p = 0.012, OR = 0.951, 95% CI = 0.914-0.989), interleukin-4 (IL-4, p = 0.034, OR = 0.946, 95% CI = 0.899-0.996), interleukin-18 (IL-18, p = 0.028, OR = 0.964, 95% CI = 0.934-0.996), granulocyte colony-stimulating factor (GCSF, p = 0.010, OR = 0.919, 95% CI = 0.861-0.980), and Stromal cell-derived factor 1a (SDF1a, p = 0.014, OR = 1.072, 95% CI = 1.014-1.134) were causally associated with risk of IVDD. Conclusion Our MR analyses found a potential causal relationship between six inflammation cytokines (IFN-γ, IL-1b, IL-4, IL-18, SDF1a, and GCSF) and altered IVDD risk.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Guangzi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Jian Li
- Department of OrthopaedicsThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanPeople's Republic of China
| | - Yingchi Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
- Department of Traumatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| |
Collapse
|
4
|
Tao JW, Fan X, Zhou JY, Huo LY, Mo YJ, Bai HZ, Zhao Y, Ren JP, Mu XH, Xu L. Granulocyte colony-stimulating factor effects on neurological and motor function in animals with spinal cord injury: a systematic review and meta-analysis. Front Neurosci 2023; 17:1168764. [PMID: 37449274 PMCID: PMC10338098 DOI: 10.3389/fnins.2023.1168764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Spinal cord injury (SCI) is a severe neurological injury for which no effective treatment exists. Granulocyte colony-stimulating factor (G-CSF) is used to treat autologous bone marrow transplantation, chemotherapy-induced granulocytopenia, Acquired Immune Deficiency Syndrome (AIDS), etc. Recent research has revealed the potential application of G-CSF on neuroprotective effectiveness. In central nervous system diseases, G-CSF can be used to alleviate neuronal injury. Objective To investigate the effects of G-CSF on Basso, Beattie, and Bresnahan (BBB) scale score, inclined plane test, electrophysiologic exam, quantitative analysis of TUNEL-positive cells, and quantitative analysis of glial fibrillary acidic protein (GFAP) immunostaining images in animal models of SCI. Methods We searched PubMed, Web of Science, and Embase databases for all articles on G-CSF intervention with animal models of SCI reported before November 2022. A total of 20 studies met the inclusion criteria. Results Results revealed that G-CSF intervention could improve the BBB scale score in both groups at 3, 7, 14, 28, and 35 days [at 35 days, weighted mean differences (WMD) = 2.4, 95% CI: 1.92-2.87, p < 0.00001, I2 = 69%]; inclined plane test score; electrophysiologic exam; quantitative analysis of TUNEL-positive cell numbers; quantitative analysis of GFAP immunostaining images in animal models of SCI. Subgroup analysis revealed that treatment with normal saline, phosphate-buffered saline, and no treatment resulted in significantly different neurological function effectiveness compared to the G-CSF therapy. SD rats and Wistar rats with SCI resulted in significant neurological function effectiveness. C57BL/6 mice showed no difference in the final effect. The T9-T10 or T10 segment injury model and the T8-T9 or T9 segment injury model resulted in significant neurological function effectiveness. The BBB score data showed no clear funnel plot asymmetry. We found no bias in the analysis result (Egger's test, p = 0.42). In our network meta-analysis, the SUCRA ranking showed that 15 mg/kg-20 mg/kg was an optimal dose for long-term efficacy. Conclusion Our meta-analysis suggests that G-CSF therapy may enhance the recovery of motor activity and have a specific neuroprotective effect in SCI animal models.Systematic review registration: PROSPERO, identifier: CRD42023388315.
Collapse
Affiliation(s)
- Jing-Wei Tao
- Center for Orthopedic Surgery, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Fan
- Center for Orthopedic Surgery, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jing-Ya Zhou
- Center for Orthopedic Surgery, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing, China
| | - Lu-Yao Huo
- Center for Orthopedic Surgery, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing, China
| | - Yan-Jun Mo
- Center for Orthopedic Surgery, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing, China
| | - Hui-Zhong Bai
- Center for Orthopedic Surgery, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing, China
| | - Yi Zhao
- Center for Orthopedic Surgery, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing, China
| | - Jing-Pei Ren
- Center for Orthopedic Surgery, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing, China
| | - Xiao-Hong Mu
- Center for Orthopedic Surgery, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing, China
| | - Lin Xu
- Center for Orthopedic Surgery, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing, China
| |
Collapse
|
5
|
Raue KD, David BT, Fessler RG. Spinal Cord-Gut-Immune Axis and its Implications Regarding Therapeutic Development for Spinal Cord Injury. J Neurotrauma 2023; 40:793-806. [PMID: 36509451 DOI: 10.1089/neu.2022.0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) affects ∼1,300,000 people living in the United States. Most research efforts have been focused on reversing paralysis, as this is arguably the most defining feature of SCI. The damage caused by SCI, however, extends past paralysis and includes other debilitating outcomes including immune dysfunction and gut dysbiosis. Recent efforts are now investigating the pathophysiology of and developing therapies for these more distal manifestations of SCI. One exciting avenue is the spinal cord-gut-immune axis, which proposes that gut dysbiosis amplifies lesion inflammation and impairs SCI recovery. This review will highlight the most recent findings regarding gut and immune dysfunction following SCI, and discuss how the central nervous system (CNS), gut, and immune system all coalesce to form a bidirectional axis that can impact SCI recovery. Finally, important considerations regarding how the spinal cord-gut-immune axis fits within the larger framework of therapeutic development (i.e., probiotics, fecal transplants, dietary modifications) will be discussed, emphasizing the lack of interdepartmental investigation and the missed opportunity to maximize therapeutic benefit in SCI.
Collapse
Affiliation(s)
- Kristen D Raue
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
6
|
Hashemizadeh S, Pourkhodadad S, Hosseindoost S, Pejman S, Kamarehei M, Badripour A, Omidi A, Pestehei SK, Seifalian AM, Hadjighassem M. Ac-SDKP peptide improves functional recovery following spinal cord injury in a preclinical model. Neuropeptides 2022; 92:102228. [PMID: 35101843 DOI: 10.1016/j.npep.2022.102228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
Damage to the spinal cord triggers a local complex inflammatory reaction that results in irreversible impairments or complete loss of motor function. The evidence suggested that inhibiting the pro-inflammatory macrophage/microglia (M1 subsets) and stimulating the anti-inflammatory macrophage/microglia (M2 subsets) are potential strategies for the treatment of neuroinflammation-related diseases. We evaluated the potentially protective effect of Ac-SDKP as an endogenous tetrapeptide on rat spinal cord injury (SCI). Wistar rats were subjected to a weight-drop contusion model and were treated with Ac-SDKP (0.8 mg/kg) given subcutaneously once a day for 7 days starting at two clinically relevant times, at 2 h or 6 h post-injury. The effect of Ac-SDKP was assessed by motor functional analysis, real-time PCR (CD86 and CD206 mRNA), western blot (caspase-3), ELISA (TNF-a, IL-10), and histological analysis (toluidine blue staining). Ac-SDKP improved locomotor recovery and rescue motor neuron loss after SCI. Moreover, a decreased in TNF-a level as well as caspase 3 protein levels occurred in the lesion epicenter of the spinal cord following treatment. In addition, CD206 mRNA expression level increased significantly in Ac-SDKP treated rats compared with SCI. Together these data suggest that Ac-SDKP might be a novel immunomodulatory drug. It may be beneficial for the treatment of SCI with regards to increasing CD206 gene expression and suppress inflammatory cytokine to improve motor function and reducing histopathological lesion.
Collapse
Affiliation(s)
- Shiva Hashemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Pejman
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Maryam Kamarehei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Abolfazl Badripour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Khalil Pestehei
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.; Department of Anesthesiology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran..
| |
Collapse
|
7
|
Zirak A, Soleimani M, Jameie SB, Abdollahifar MA, Fadaei Fathabadi F, Hassanzadeh S, Esmaeilzadeh E, Farjoo MH, Norouzian M. Related Fluoxetine and Methylprednisolone Changes of TNF-α and IL-6 Expression in The Hypothyroidism Rat Model of Spinal Cord Injury. CELL JOURNAL 2021; 23:763-771. [PMID: 34979066 PMCID: PMC8753107 DOI: 10.22074/cellj.2021.7459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 12/03/2022]
Abstract
Objective Spinal cord injury (SCI) is a serious clinical condition that leads to disability. Following primary injury, pro-
inflammatory cytokines play an important role in the subsequent secondary events. The thyroid hormone (TH) is known
as the modulator of inflammatory cytokines and acts as a neuroprotective agent. Methylprednisolone (MP) is used
for the early treatment of SCI. Fluoxetine (FLX), also is known as a selective serotonin reuptake inhibitor (SSRI), has
therapeutic potential in neurological disorders. The aim of the present study was to investigate the combined effects of
MP and FLX on SCI in the rat hypothyroidism (hypo) model. Materials and Methods In this experimental study, 48 male Wistar rats with hypothyroidism were randomly divided
into 6 groups (n=8/group): control (Hypo), Hypo+Surgical sham, Hypo+SCI, Hypo+SCI+MP, Hypo+SCI+FLX, and
Hypo+SCI+MP+FLX. SCI was created using an aneurysm clip and Hypothyroidism was induced by 6-Propyl-2-thiouracil
(PTU) at a dose of 10 mg/kg/day administered intraperitoneally. Following SCI induction, rats received MP and FLX
treatments via separate intraperitoneal injections at a dose of 30 and 10 mg/kg/day respectively on the surgery day
and FLX continued daily for 3 weeks. The expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6
(IL-6) were quantified by Real-time polymerase chain reaction (PCR) and Western blotting. Myelination and glutathione
(GSH) levels were analyzed by Luxol Fast Blue (LFB) staining and ELISA respectively.
Results Following combined MP and FLX treatments, the expression levels of TNF-α and IL-6 significantly decreased
and GSH level considerably increased in the trial animals.
Conclusion Our results show the neuroprotective effects of MP and FLX with better results in Hypo+SCI+MP+FLX
group. Further study is required to identify the mechanisms involved.
Collapse
Affiliation(s)
- Atousa Zirak
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Seyed Behnamedin Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Hassanzadeh
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran.,Skull Base Research Center, Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hadi Farjoo
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
CRISPR, Prime Editing, Optogenetics, and DREADDs: New Therapeutic Approaches Provided by Emerging Technologies in the Treatment of Spinal Cord Injury. Mol Neurobiol 2020; 57:2085-2100. [DOI: 10.1007/s12035-019-01861-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
|