1
|
Dmitriev AA, Rosenberg EE, Krasnov GS, Gerashchenko GV, Gordiyuk VV, Pavlova TV, Kudryavtseva AV, Beniaminov AD, Belova AA, Bondarenko YN, Danilets RO, Glukhov AI, Kondratov AG, Alexeyenko A, Alekseev BY, Klein G, Senchenko VN, Kashuba VI. Identification of Novel Epigenetic Markers of Prostate Cancer by NotI-Microarray Analysis. DISEASE MARKERS 2015; 2015:241301. [PMID: 26491211 PMCID: PMC4602334 DOI: 10.1155/2015/241301] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022]
Abstract
A significant need for reliable and accurate cancer diagnostics and prognosis compels the search for novel biomarkers that would be able to discriminate between indolent and aggressive tumors at the early stages of disease. The aim of this work was identification of potential diagnostic biomarkers for characterization of different types of prostate tumors. NotI-microarrays with 180 clones associated with chromosome 3 genes/loci were applied to determine genetic and epigenetic alterations in 33 prostate tumors. For 88 clones, aberrations were detected in more than 10% of tumors. The major types of alterations were DNA methylation and/or deletions. Frequent methylation of the discovered loci was confirmed by bisulfite sequencing on selective sampling of genes: FGF12, GATA2, and LMCD1. Three genes (BHLHE40, BCL6, and ITGA9) were tested for expression level alterations using qPCR, and downregulation associated with hypermethylation was shown in the majority of tumors. Based on these data, we proposed the set of potential biomarkers for detection of prostate cancer and discrimination between prostate tumors with different malignancy and aggressiveness: BHLHE40, FOXP1, LOC285205, ITGA9, CTDSPL, FGF12, LOC440944/SETD5, VHL, CLCN2, OSBPL10/ZNF860, LMCD1, FAM19A4, CAND2, MAP4, KY, and LRRC58. Moreover, we probabilistically estimated putative functional relations between the genes within each set using the network enrichment analysis.
Collapse
Affiliation(s)
- Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- P.A. Herzen Moscow Cancer Research Institute, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Eugenia E. Rosenberg
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ganna V. Gerashchenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
| | - Vasily V. Gordiyuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
| | - Tatiana V. Pavlova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Artemy D. Beniaminov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anastasia A. Belova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Yuriy N. Bondarenko
- Institute of Urology, National Academy of Medical Sciences of Ukraine, Kiev 04053, Ukraine
| | - Rostislav O. Danilets
- Institute of Urology, National Academy of Medical Sciences of Ukraine, Kiev 04053, Ukraine
| | - Alexander I. Glukhov
- Department of Molecular Biology, Kurchatov NBIC Centre NRC “Kurchatov Institute”, Moscow 123182, Russia
| | - Aleksandr G. Kondratov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
| | - Andrey Alexeyenko
- Bioinformatics Infrastructure for Life Sciences, Science for Life Laboratory, Karolinska Institute, 17177 Stockholm, Sweden
| | - Boris Y. Alekseev
- P.A. Herzen Moscow Cancer Research Institute, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - George Klein
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Vera N. Senchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir I. Kashuba
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
2
|
Braga EA, Khodyrev DS, Loginov VI, Pronina IV, Senchenko VN, Dmitriev AA, Kubatiev AA, Kushlinskii NE. Methylation in the regulation of the expression of chromosome 3 and microRNA genes in clear-cell renal cell carcinomas. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415050026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:735292. [PMID: 24977159 PMCID: PMC4054851 DOI: 10.1155/2014/735292] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/28/2022]
Abstract
This study aimed to clarify epigenetic and genetic alterations that occur during renal carcinogenesis. The original method includes chromosome 3 specific NotI-microarrays containing 180 NotI-clones associated with 188 genes for hybridization with 23 paired normal/tumor DNA samples of primary clear cell renal cell carcinomas (ccRCC). Twenty-two genes showed methylation and/or deletion in 17–57% of tumors. These genes include tumor suppressors or candidates (VHL, CTDSPL, LRRC3B, ALDH1L1, and EPHB1) and genes that were not previously considered as cancer-associated (e.g., LRRN1, GORASP1, FGD5, and PLCL2). Bisulfite sequencing analysis confirmed methylation as a frequent event in ccRCC. A set of six markers (NKIRAS1/RPL15, LRRN1, LRRC3B, CTDSPL, GORASP1/TTC21A, and VHL) was suggested for ccRCC detection in renal biopsies. The mRNA level decrease was shown for 6 NotI-associated genes in ccRCC using quantitative PCR: LRRN1, GORASP1, FOXP1, FGD5, PLCL2, and ALDH1L1. The majority of examined genes showed distinct expression profiles in ccRCC and papillary RCC. The strongest extent and frequency of downregulation were shown for ALDH1L1 gene both in ccRCC and papillary RCC. Moreover, the extent of ALDH1L1 mRNA level decrease was more pronounced in both histological types of RCC stage III compared with stages I and II (P = 0.03). The same was observed for FGD5 gene in ccRCC (P < 0.06). Dedicated to thememory of Eugene R. Zabarovsky
Collapse
|