1
|
Ryazanova O, Voloshin I, Dubey I, Dubey L, Karachevtsev V. Binding of a Tricationic meso-Substituted Porphyrin to poly(A)⋅poly(U): an Experimental Study. J Fluoresc 2024:10.1007/s10895-024-04000-4. [PMID: 39465484 DOI: 10.1007/s10895-024-04000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
The porphyrins are macrocyclic compounds widely used as photosensitizers in anticancer photodynamic therapy. The binding of a tricationic meso-tris(N-methylpyridinium)-porphyrin, TMPyP3+, to poly(A)⋅poly(U) polynucleotide has been studied in neutral buffered solution, pH6.9, of low and near-physiological ionic strength in a wide range of molar phosphate-to-dye ratios (P/D). Effective TMPyP3+ binding to the biopolymer was established using absorption spectroscopy, polarized fluorescence, fluorimetric titration and resonance light scattering. We propose a model in which TMPyP3+ binds to the polynucleotide in two competitive binding modes: at low P/D ratios (< 4) external binding of the porphyrin to polynucleotide backbone without self-stacking dominates, and at higher P/D (> 30) the partially stacked porphyrin J-dimers are embedded into the polymer groove. Enhancement of the porphyrin emission was observed upon binding in all P/D range, contrasting the binding of this porphyrin to poly(G)⋅poly(C) with significant quenching of the porphyrin fluorescence at low P/D ratios. This observation indicates that TMPyP3+ can discriminate between poly(A)⋅poly(U) and poly(G)⋅poly(C) polynucleotides at low P/D ratios. Formation of highly scattering extended porphyrin aggregates was observed near the stoichiometric in charge binding ratio, P/D = 3. It was revealed that the efficiency of the porphyrin external binding and aggregation is reduced in the solution of near-physiological ionic strength.
Collapse
Affiliation(s)
- Olga Ryazanova
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine.
| | - Igor Voloshin
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine
| | - Igor Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev, 03143, Ukraine
| | - Larysa Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev, 03143, Ukraine
| | - Victor Karachevtsev
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine
| |
Collapse
|
2
|
Gorb L, Voiteshenko I, Hurmach V, Zarudnaya M, Nyporko A, Shyryna T, Platonov M, Roszak S, Rasulev B. From RNA sequence to its three-dimensional structure: geometrical structure, stability and dynamics of selected fragments of SARS-CoV-2 RNA. NAR Genom Bioinform 2024; 6:lqae062. [PMID: 38835951 PMCID: PMC11148665 DOI: 10.1093/nargab/lqae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions.
Collapse
Affiliation(s)
- Leonid Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Ivan Voiteshenko
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv01033, Ukraine
| | - Vasyl Hurmach
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Margarita Zarudnaya
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Alex Nyporko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv01033, Ukraine
| | - Tetiana Shyryna
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Maksym Platonov
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Szczepan Roszak
- Faculty of Chemistry, University of Wrocław, 50-370Wrocław, Poland
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymer Materials, North Dakota State University, NDSU Department 2760, PO Box 6050, Fargo, ND 58108, USA
| |
Collapse
|
3
|
Yurenko YP, Novotný J, Marek R. Weak Supramolecular Interactions Governing Parallel and Antiparallel DNA Quadruplexes: Insights from Large-Scale Quantum Mechanics Analysis of Experimentally Derived Models. Chemistry 2017; 23:5573-5584. [PMID: 28225208 DOI: 10.1002/chem.201700236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 12/30/2022]
Abstract
The topology and energetics of guanine (G) quadruplexes is governed by supramolecular interactions within their strands. In this work, an extensive quantum mechanical (QM) study has been performed to analyze supramolecular interactions that shape the stems of (4+0) parallel (P) and (2+2) antiparallel (AP) quadruplex systems. The large-scale (≈400 atoms) models of P and AP were constructed from high-quality experimental structures. The results provide evidence that each of the P and AP structures is shaped by a distinct network of supramolecular interactions. Analysis of electron topological characteristics of hydrogen bonds in P and AP systems indicates that the P model benefits from stronger intratetrad hydrogen bonding. For intertetrad stacking interactions, both noncovalent interaction plot and energy decomposition analysis approaches suggest that the stem of the P quadruplex benefits more from stacking than that of the AP stem; the difference in energetic stabilization for the two topologies is about 10 %. Stronger hydrogen-bonding and stacking interactions in the stem of the P quadruplex, relative to those in the AP system, can be an important indicator to explain the experimental observations that guanine-rich oligonucleotides tend to form all-parallel stems with an all-anti orientation of nucleobases. However, in addition to intrinsic stabilization, partial desolvation effects, which affect the energetics and dynamics of the G-quadruplex folding process, call for further investigations.
Collapse
Affiliation(s)
- Yevgen P Yurenko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
| |
Collapse
|
4
|
Ryazanova O, Zozulya V, Voloshin I, Glamazda A, Dubey I, Dubey L, Karachevtsev V. Interaction of a tricationic meso-substituted porphyrin with guanine-containing polyribonucleotides of various structures. Methods Appl Fluoresc 2016; 4:034005. [PMID: 28355151 DOI: 10.1088/2050-6120/4/3/034005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interaction of a tricationic water-soluble meso-(N-methylpyridinium)-substituted porphyrin, TMPyP3+, derived from classic TMPyP4, with double-stranded poly(G) ⋅ poly(C) and four-stranded poly(G) polyribonucleotides has been studied in aqueous buffered solutions, pH 6.9, of low and near-physiological ionic strengths in a wide range of molar phosphate-to-dye ratios (P/D). To clarify the binding modes of TMPyP3+ to biopolymers various spectroscopic techniques, including absorption and polarized fluorescence spectroscopy, Raman spectroscopy, and resonance light scattering, were used. As a result, two competitive binding modes were revealed. In solution of low ionic strength outside binding of the porphyrin to the polynucleotide backbone with self-stacking prevailed at low P/D ratios (P/D < 3.5). It manifested itself by the substantial quenching of porphyrin fluorescence. Also the formation of large-scale porphyrin aggregates was observed near the stoichiometric binding ratio. The spectral changes observed at P/D > 30 including emission enhancement were supposed to be caused by the embedding of partially stacked porphyrin J-dimers into the polymer groove. TMPyP3+ binding to poly(G) induced a fluorescence increase 2.5 times as large as that observed for poly(G) ⋅ poly(C). In solution of near-physiological ionic strength the efficiency of external porphyrin binding was reduced substantially due to the competitive binding of Na+ ions with the polymer backbone. The spectroscopic characteristics of porphyrin bound to polynucleotides at different conditions were compared with those for free porphyrin.
Collapse
Affiliation(s)
- Olga Ryazanova
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin ave, 61103 Kharkov, Ukraine. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
5
|
Ryazanova O, Zozulya V, Voloshin I, Dubey L, Dubey I, Karachevtsev V. Binding of Metallated Porphyrin-Imidazophenazine Conjugate to Tetramolecular Quadruplex Formed by Poly(G): a Spectroscopic Investigation. J Fluoresc 2015; 25:1897-904. [PMID: 26449960 DOI: 10.1007/s10895-015-1682-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/28/2015] [Indexed: 01/10/2023]
Abstract
The binding of telomerase inhibitor ZnTMPyP(3+)-ImPzn, Zn(II) derivative of tricationic porphyrin-imidazophenazine conjugate, to tetramolecular quadruplex structure formed by poly(G) was studied in aqueous solutions at neutral pH and near physiological ionic strength using absorption and polarized fluorescent spectroscopy techniques. Three binding modes were determined from the dependences of the fluorescence intensity and polarization degree for the porphyrin and phenazine moieties of the conjugate on molar polymer-to-dye ratio (P/D). The first one is outside electrostatic binding of positively charged porphyrin fragments to anionic phosphate groups of the polymer which prevails only at very low P/D values and manifests itself by substantial fluorescence quenching. It is suggested that the formation of externally bound porphyrin dimers occurs. The other two binding modes observed at high P/D are embedding of the ZnTMPyP(3+) moiety into the groove of poly(G) quadruplex accompanied by more than 3-fold enhancement of the conjugate emission, and simultaneous intercalation of the phenazine fragment between the guanine bases accompanied by the increase of its fluorescence polarization degree up to 0.25. Thus Zn(II) conjugate seems to be promising ligand for the stabilization of G-quadruplex structures since porphyrin binding to poly(G) is strengthened by additional intercalation of phenazine moiety.
Collapse
Affiliation(s)
- Olga Ryazanova
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin ave, 61103, Kharkov, Ukraine.
| | - Victor Zozulya
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin ave, 61103, Kharkov, Ukraine
| | - Igor Voloshin
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin ave, 61103, Kharkov, Ukraine
| | - Larysa Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo str, 03680, Kyiv, Ukraine
| | - Igor Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo str, 03680, Kyiv, Ukraine
| | - Victor Karachevtsev
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin ave, 61103, Kharkov, Ukraine
| |
Collapse
|
6
|
Spectroscopic Studies on Binding of Porphyrin-Phenazine Conjugate to Four-Stranded Poly(G). J Fluoresc 2015; 25:1013-21. [PMID: 26076929 DOI: 10.1007/s10895-015-1585-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Binding of a novel cationic porphyrin-imidazophenazine conjugate, TMPyP(3+)-ImPzn, to four-stranded poly(G) was investigated in aqueous solutions of neutral pH under near physiological ionic conditions using absorption, polarized fluorescent spectroscopy and fluorescence titration techniques. In absence of the polymer the conjugate folds into stable internal heterodimer with stacking between the porphyrin and phenazine chromophores. Binding of TMPyP(3+)-ImPzn to poly(G) is realized by two competing ways. At low polymer-to-dye ratio (P/D < 6) outside electrostatic binding of the cationic porphyrin moieties of the conjugate to anionic polynucleotide backbone with their self-stacking is predominant. It is accompanied by heterodimer dissociation and distancing of phenazine moieties from the polymer. This binding mode is characterized by strong quenching of the conjugate fluorescence. Increase of P/D results in the disintegration of the porphyrin stacks and redistribution of the bound conjugate molecules along the polymer chain. At P/D > 10 another binding mode becomes dominant, embedding of TMPyP(3+)-ImPzn heterodimers into poly(G) groove as a whole is occurred.
Collapse
|
7
|
Self-assemblies of tricationic porphyrin on inorganic polyphosphate. Biophys Chem 2014; 185:39-46. [DOI: 10.1016/j.bpc.2013.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022]
|