1
|
Rich J, Bennaroch M, Notel L, Patalakh P, Alberola J, Issa F, Opolon P, Bawa O, Rondof W, Marchais A, Dessen P, Meurice G, Le-Gall M, Polrot M, Ser-Le Roux K, Mamchaoui K, Droin N, Raslova H, Maire P, Geoerger B, Pirozhkova I. DiPRO1 distinctly reprograms muscle and mesenchymal cancer cells. EMBO Mol Med 2024; 16:1840-1885. [PMID: 39009887 PMCID: PMC11319797 DOI: 10.1038/s44321-024-00097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
We have recently identified the uncharacterized ZNF555 protein as a component of a productive complex involved in the morbid function of the 4qA locus in facioscapulohumeral dystrophy. Subsequently named DiPRO1 (Death, Differentiation, and PROliferation related PROtein 1), our study provides substantial evidence of its role in the differentiation and proliferation of human myoblasts. DiPRO1 operates through the regulatory binding regions of SIX1, a master regulator of myogenesis. Its relevance extends to mesenchymal tumors, such as rhabdomyosarcoma (RMS) and Ewing sarcoma, where DiPRO1 acts as a repressor via the epigenetic regulators TIF1B and UHRF1, maintaining methylation of cis-regulatory elements and gene promoters. Loss of DiPRO1 mimics the host defense response to virus, awakening retrotransposable repeats and the ZNF/KZFP gene family. This enables the eradication of cancer cells, reprogramming the cellular decision balance towards inflammation and/or apoptosis by controlling TNF-α via NF-kappaB signaling. Finally, our results highlight the vulnerability of mesenchymal cancer tumors to si/shDiPRO1-based nanomedicines, positioning DiPRO1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeremy Rich
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Melanie Bennaroch
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Laura Notel
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Polina Patalakh
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Julien Alberola
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Fayez Issa
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Paule Opolon
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Olivia Bawa
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Windy Rondof
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Philippe Dessen
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Guillaume Meurice
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Morgane Le-Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Melanie Polrot
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Karine Ser-Le Roux
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Nathalie Droin
- Genomic Platform, UMS AMMICA US 23 INSERM UAR 3655 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Hana Raslova
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Pascal Maire
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Iryna Pirozhkova
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France.
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France.
| |
Collapse
|
2
|
The Role of Human Satellite III (1q12) Copy Number Variation in the Adaptive Response during Aging, Stress, and Pathology: A Pendulum Model. Genes (Basel) 2021; 12:genes12101524. [PMID: 34680920 PMCID: PMC8535310 DOI: 10.3390/genes12101524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
The pericentric satellite III (SatIII or Sat3) and II tandem repeats recently appeared to be transcribed under stress conditions, and the transcripts were shown to play an essential role in the universal stress response. In this paper, we review the role of human-specific SatIII copy number variation (CNV) in normal stress response, aging and pathology, with a focus on 1q12 loci. We postulate a close link between transcription of SatII/III repeats and their CNV. The accrued body of data suggests a hypothetical universal mechanism, which provides for SatIII copy gain during the stress response, alongside with another, more hypothetical reverse mechanism that might reduce the mean SatIII copy number, likely via the selection of cells with excessively large 1q12 loci. Both mechanisms, working alternatively like swings of the pendulum, may ensure the balance of SatIII copy numbers and optimum stress resistance. This model is verified on the most recent data on SatIII CNV in pathology and therapy, aging, senescence and response to genotoxic stress in vitro.
Collapse
|
3
|
Yang J, Yuan B, Wu Y, Li M, Li J, Xu D, Gao ZH, Ma G, Zhou Y, Zuo Y, Wang J, Guo Y. The wide distribution and horizontal transfers of beta satellite DNA in eukaryotes. Genomics 2020; 112:5295-5304. [PMID: 33065245 DOI: 10.1016/j.ygeno.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/08/2020] [Accepted: 10/10/2020] [Indexed: 01/12/2023]
Abstract
Beta satellite DNA (satDNA), also known as Sau3A sequences, are repetitive DNA sequences reported in human and primate genomes. It is previously thought that beta satDNAs originated in old world monkeys and bursted in great apes. In this study, we searched 7821 genome assemblies of 3767 eukaryotic species and found that beta satDNAs are widely distributed across eukaryotes. The four major branches of eukaryotes, animals, fungi, plants and Harosa/SAR, all have multiple clades containing beta satDNAs. These results were also confirmed by searching whole genome sequencing data (SRA) and PCR assay. Beta satDNA sequences were found in all the primate clades, as well as in Dermoptera and Scandentia, indicating that the beta satDNAs in primates might originate in the common ancestor of Primatomorpha or Euarchonta. In contrast, the widely patchy distribution of beta satDNAs across eukaryotes presents a typical scenario of multiple horizontal transfers.
Collapse
Affiliation(s)
- Jiawen Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China.
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Meiyu Li
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University; Ministry of Education Experimental Teaching Center, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Jian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Donglin Xu
- Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Zeng-Hong Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Guangwei Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiting Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yachao Zuo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China.
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Monlong J, Cossette P, Meloche C, Rouleau G, Girard SL, Bourque G. Human copy number variants are enriched in regions of low mappability. Nucleic Acids Res 2018; 46:7236-7249. [PMID: 30137632 PMCID: PMC6101599 DOI: 10.1093/nar/gky538] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022] Open
Abstract
Copy number variants (CNVs) are known to affect a large portion of the human genome and have been implicated in many diseases. Although whole-genome sequencing (WGS) can help identify CNVs, most analytical methods suffer from limited sensitivity and specificity, especially in regions of low mappability. To address this, we use PopSV, a CNV caller that relies on multiple samples to control for technical variation. We demonstrate that our calls are stable across different types of repeat-rich regions and validate the accuracy of our predictions using orthogonal approaches. Applying PopSV to 640 human genomes, we find that low-mappability regions are approximately 5 times more likely to harbor germline CNVs, in stark contrast to the nearly uniform distribution observed for somatic CNVs in 95 cancer genomes. In addition to known enrichments in segmental duplication and near centromeres and telomeres, we also report that CNVs are enriched in specific types of satellite and in some of the most recent families of transposable elements. Finally, using this comprehensive approach, we identify 3455 regions with recurrent CNVs that were missing from existing catalogs. In particular, we identify 347 genes with a novel exonic CNV in low-mappability regions, including 29 genes previously associated with disease.
Collapse
Affiliation(s)
- Jean Monlong
- Department of Human Genetics, McGill University, Montréal H3A 1B1, Canada
- Canadian Center for Computational Genomics, Montréal H3A 1A4, Canada
| | - Patrick Cossette
- Centre de Recherche du Centre Hospitalier de l’Universite de Montréal, Montréal H2X 0A9, Canada
| | - Caroline Meloche
- Centre de Recherche du Centre Hospitalier de l’Universite de Montréal, Montréal H2X 0A9, Canada
| | - Guy Rouleau
- Montreal Neurological Institute, McGill University, Montréal H3A 2B4, Canada
| | - Simon L Girard
- Department of Human Genetics, McGill University, Montréal H3A 1B1, Canada
- Centre de Recherche du Centre Hospitalier de l’Universite de Montréal, Montréal H2X 0A9, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H 2B1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal H3A 1B1, Canada
- Canadian Center for Computational Genomics, Montréal H3A 1A4, Canada
- McGill University and Génome Québec Innovation Center, Montréal H3A 1A4, Canada
| |
Collapse
|
5
|
Dumbovic G, Forcales SV, Perucho M. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics 2017; 12:515-526. [PMID: 28426282 PMCID: PMC5687341 DOI: 10.1080/15592294.2017.1318235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022] Open
Abstract
Abundant repetitive DNA sequences are an enigmatic part of the human genome. Despite increasing evidence on the functionality of DNA repeats, their biologic role is still elusive and under frequent debate. Macrosatellites are the largest of the tandem DNA repeats, located on one or multiple chromosomes. The contribution of macrosatellites to genome regulation and human health was demonstrated for the D4Z4 macrosatellite repeat array on chromosome 4q35. Reduced copy number of D4Z4 repeats is associated with local euchromatinization and the onset of facioscapulohumeral muscular dystrophy. Although the role other macrosatellite families may play remains rather obscure, their diverse functionalities within the genome are being gradually revealed. In this review, we will outline structural and functional features of coding and noncoding macrosatellite repeats, and highlight recent findings that bring these sequences into the spotlight of genome organization and disease development.
Collapse
Affiliation(s)
- Gabrijela Dumbovic
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Sonia-V. Forcales
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Manuel Perucho
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
- Sanford-Burnham-Prebys Medical Discovery Institute (SBP), La Jolla, CA, USA
| |
Collapse
|
6
|
Kim E, Rich J, Karoutas A, Tarlykov P, Cochet E, Malysheva D, Mamchaoui K, Ogryzko V, Pirozhkova I. ZNF555 protein binds to transcriptional activator site of 4qA allele and ANT1: potential implication in Facioscapulohumeral dystrophy. Nucleic Acids Res 2015; 43:8227-42. [PMID: 26184877 PMCID: PMC4787827 DOI: 10.1093/nar/gkv721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 06/27/2015] [Indexed: 01/18/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is an epi/genetic satellite disease associated with at least two satellite sequences in 4q35: (i) D4Z4 macrosatellite and (ii) β-satellite repeats (BSR), a prevalent part of the 4qA allele. Most of the recent FSHD studies have been focused on a DUX4 transcript inside D4Z4 and its tandem contraction in FSHD patients. However, the D4Z4-contraction alone is not pathological, which would also require the 4qA allele. Since little is known about BSR, we investigated the 4qA BSR functional role in the transcriptional control of the FSHD region 4q35. We have shown that an individual BSR possesses enhancer activity leading to activation of the Adenine Nucleotide Translocator 1 gene (ANT1), a major FSHD candidate gene. We have identified ZNF555, a previously uncharacterized protein, as a putative transcriptional factor highly expressed in human primary myoblasts that interacts with the BSR enhancer site and impacts the ANT1 promoter activity in FSHD myoblasts. The discovery of the functional role of the 4qA allele and ZNF555 in the transcriptional control of ANT1 advances our understanding of FSHD pathogenesis and provides potential therapeutic targets.
Collapse
Affiliation(s)
- Elena Kim
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| | - Jeremy Rich
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| | - Adam Karoutas
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| | - Pavel Tarlykov
- National Center for Biotechnology, Astana 010000, Kazakhstan
| | - Emilie Cochet
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France Proteomic Platform, IRCIV Gustave Roussy, Villejuif 94408, France
| | - Daria Malysheva
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| | - Kamel Mamchaoui
- Thérapie des maladies du muscle strié, Institut de Myologie, UM76-Pierre et Marie CURIE University/U974-INSERM/UMR7215-CNRS, Paris 75013, France
| | - Vasily Ogryzko
- Proteomic Platform, IRCIV Gustave Roussy, Villejuif 94408, France INSERM, CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| | - Iryna Pirozhkova
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| |
Collapse
|