1
|
Dematei A, Costa SR, Moreira DC, Barbosa EA, Friaça Albuquerque LF, Vasconcelos AG, Nascimento T, Silva PC, Silva-Carvalho AÉ, Saldanha-Araújo F, Silva Mancini MC, Saboia Ponte LG, Neves Bezerra RM, Simabuco FM, Batagin-Neto A, Brand G, Borges TKS, Eaton P, Leite JRSA. Antioxidant and Neuroprotective Effects of the First Tryptophyllin Found in Snake Venom ( Bothrops moojeni). JOURNAL OF NATURAL PRODUCTS 2022; 85:2695-2705. [PMID: 36508333 DOI: 10.1021/acs.jnatprod.2c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we report the isolation, characterization, and synthesis of the peptide BmT-2 belonging to the tryptophyllins family, isolated from the venom of the snake Bothrops moojeni. This is the first time a tryptophyllin is identified in snake venom. We tested whether BmT-2 had cytotoxic effects and antioxidant activity in a set of experiments that included both in vitro and cell-based assays. BmT-2 presented a radical scavenging activity toward ABTS• and AAPH-derived radicals. BmT-2 protected fluorescein, DNA molecules, and human red blood cells (RBCs) from free radicals generated by the thermal decomposition of AAPH. The novel tryptophyllin was not toxic in cell viability tests, where it (up to 0.4 mg/mL) did not cause hemolysis of human RBCs and did not cause significant loss of cell viability, showing a CC50 > 1.5 mM for cytotoxic effects against SK-N-BE(2) neuroblastoma cells. BmT-2 prevented the arsenite-induced upregulation of Nrf2 in Neuro-2a neuroblasts and the phorbol myristate acetate-induced overgeneration of reactive oxygen species and reactive nitrogen species in SK-N-BE(2) neuroblastoma cells. Electronic structure calculations and full atomistic reactive molecular dynamics simulations revealed the relevant contribution of aromatic residues in BmT-2 to its antioxidant properties. Our study presents a novel peptide classified into the family of the tryptophyllins, which has been reported exclusively in amphibians. Despite the promising results on its antioxidant activity and low cytotoxicity, the mechanisms of action of BmT-2 still need to be further elucidated.
Collapse
Affiliation(s)
- Anderson Dematei
- Center for Tropical Medicine (NMT), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Samuel Ribeiro Costa
- Laboratory for the Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Daniel C Moreira
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Eder Alves Barbosa
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Laboratory for the Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Lucas F Friaça Albuquerque
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Andreanne G Vasconcelos
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Tiago Nascimento
- Research Center on Biodiversity and Biotechnology (Biotec), Parnaiba Delta Federal University, Parnaíba 64202-020, Brazil
| | - Pedro Costa Silva
- Research Center on Biodiversity and Biotechnology (Biotec), Parnaiba Delta Federal University, Parnaíba 64202-020, Brazil
| | - Amandda É Silva-Carvalho
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Felipe Saldanha-Araújo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Augusto Batagin-Neto
- Institute of Science and Engineering, São Paulo State University (UNESP), Itapeva, São Paulo 01049-010, Brazil
| | - Guilherme Brand
- Laboratory for the Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Tatiana Karla S Borges
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4099-002, Portugal
- The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, U.K
| | - José Roberto S A Leite
- Center for Tropical Medicine (NMT), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| |
Collapse
|
2
|
Karlina W, Tjong DH, Roesma DI, Alamsjah F, Fadil MS. Antimicrobial Activity of Fejervarya Skin Secretions (Anura: Dicroglossidae) in West Sumatra, Indonesia. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Research on the antimicrobial test of Fejervarya frog skin secretions (Anura: Dicroglossidae) in West Sumatra. This study aimed to analyze the ability of compounds secreted from the skin of F. cancrivora and F. limnocharis in West Sumatra to inhibit the growth of Gram Negative bacteria, Gram Positive bacteria, antibiotics-resistant bacteria and fungi. This study used the diffusion method with paper discs for antimicrobial test of frog skin secretions. Result from this study showed that the skin secretions of F. cancrivora and F. limnocharis in West Sumatra, Indonesia did not show any antimicrobial properties.
Collapse
|
3
|
Barbosa EA, Plácido A, Moreira DC, Albuquerque L, Dematei A, Silva-Carvalho AÉ, Cabral WF, Báo SN, Saldanha-Araújo F, Kuckelhaus SAS, Borges TK, Portugal CC, Socodato R, Teixeira C, Lima FCDA, Batagin-Neto A, Sebben A, Eaton P, Gomes P, Brand GD, Relvas JB, Kato MJ, Leite JRSA. The peptide secreted at the water to land transition in a model amphibian has antioxidant effects. Proc Biol Sci 2021; 288:20211531. [PMID: 34753356 DOI: 10.1098/rspb.2021.1531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.
Collapse
Affiliation(s)
- Eder Alves Barbosa
- Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, Brazil.,Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Alexandra Plácido
- Bioprospectum, Lda, UPTEC, Porto, Portugal.,LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Daniel C Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Lucas Albuquerque
- Laboratório de Imunologia Celular, NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Anderson Dematei
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Medicina Tropical, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Amandda É Silva-Carvalho
- Laboratório de Hematologia e Celulas-tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Wanessa F Cabral
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Sonia N Báo
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Felipe Saldanha-Araújo
- Laboratório de Hematologia e Celulas-tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Selma A S Kuckelhaus
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Tatiana K Borges
- Laboratório de Imunologia Celular, NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Camila C Portugal
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Cátia Teixeira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | | - Antônio Sebben
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,The Bridge, School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, UK
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, Brazil
| | - Joao B Relvas
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Massuo J Kato
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jose Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Bioprospectum, Lda, UPTEC, Porto, Portugal
| |
Collapse
|
4
|
Sang M, Wu Q, Xi X, Ma C, Wang L, Zhou M, Burrows JF, Chen T. Identification and target-modifications of temporin-PE: A novel antimicrobial peptide in the defensive skin secretions of the edible frog, Pelophylax kl. esculentus. Biochem Biophys Res Commun 2017; 495:2539-2546. [PMID: 29191658 DOI: 10.1016/j.bbrc.2017.11.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
A potent natural antimicrobial peptide named temporin-PE was identified and encoded from the skin secretions of Pelophylax kl. esculentus via "shotgun" cloning and LC-MS/MS fragmentation analysis. Target-modifications were carried out to further enhance the antimicrobial and anti-proliferative bioactivities, whilst decreasing the hemolytic effect. A range of bioassays demonstrated that replacing a proline with a tyrosine residue resulted in a loss of the bioactivity against Gram-negative bacteria, but dramatically improved the hemolytic and anti-proliferative activity, indicating the FLP- motif influences the hemolytic activity of temporins. Moreover, the coupling of TAT to the peptide dramatically improved its antimicrobial activity, indicating coupling TAT to these peptides could be considered as a potential tool to improve their antimicrobial activity. Overall, we have shown that targeted modifications of this natural antimicrobial peptide can adjust its bioactivities to help its development as an antibiotic or anti-proliferative agent.
Collapse
Affiliation(s)
- Mengru Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, 210023, China; National and Local Collaborative Engineering, Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu, 210023, China.
| | - Xinping Xi
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK.
| | - Chengbang Ma
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - James F Burrows
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
5
|
Zhou C, Wang Z, Peng X, Liu Y, Lin Y, Zhang Z, Qiu Y, Jin M, Wang R, Kong D. Discovery of two bombinin peptides with antimicrobial and anticancer activities from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. Chem Biol Drug Des 2017. [PMID: 28636781 DOI: 10.1111/cbdd.13055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amphibian skin secretions are known to contain numerous peptides with a large array of biological activities. Bombinins are a group of amphibian-derived peptides with broad spectrum antimicrobial activities that have been only identified from the ancient toad species, Bombina. In this study, we described the identification and characterization of a novel bombinin precursor which encoded a bombinin-like peptide (BLP-7) and a novel bombinin H-type peptide (named as Bombinin H-BO) from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. The primary structures of both mature peptides were determined by combinations of molecular cloning of peptide precursor-encoding cDNAs and mass spectrometry techniques. Secondary structure prediction revealed that both peptides had cationic amphipathic α-helical structural features. The synthetic replicate of BLP-7 displayed more potent antimicrobial activity than Bombinin H-BO against Gram-positive and Gram-negative bacteria and yeast. Also, in vitro antitumour assay showed that both peptides possessed obvious antiproliferative activity on three human hepatoma cells (Hep G2/SK-HEP-1/Huh7) at the non-toxic doses. These results indicate the peptide family of bombinins could be a potential source of drug candidates for anti-infection and anticancer therapy.
Collapse
Affiliation(s)
- Chang Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Tianjin Haihe Hospital, Tianjin, China
| | - Zhengming Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yangjun Lin
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Ex Vivo Smooth Muscle Pharmacological Effects of a Novel Bradykinin-Related Peptide, and Its Analogue, from Chinese Large Odorous Frog, Odorrana livida Skin Secretions. Toxins (Basel) 2016; 8:toxins8100283. [PMID: 27690099 PMCID: PMC5086643 DOI: 10.3390/toxins8100283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023] Open
Abstract
Bradykinin-related peptides (BRPs) are one of the most extensively studied frog secretions-derived peptide families identified from many amphibian species. The diverse primary structures of BRPs have been proven essential for providing valuable information in understanding basic mechanisms associated with drug modification. Here, we isolated, identified and characterized a dodeca-BRP (RAP-L1, T6-BK), with primary structure RAPLPPGFTPFR, from the skin secretions of Chinese large odorous frogs, Odorrana livida. This novel peptide exhibited a dose-dependent contractile property on rat bladder and rat ileum, and increased the contraction frequency on rat uterus ex vivo smooth muscle preparations; it also showed vasorelaxant activity on rat tail artery smooth muscle. In addition, the analogue RAP-L1, T6, L8-BK completely abolished these effects on selected rat smooth muscle tissues, whilst it showed inhibition effect on bradykinin-induced rat tail artery relaxation. By using canonical antagonist for bradykinin B1 or B2 type receptors, we found that RAP-L1, T6-BK -induced relaxation of the arterial smooth muscle was very likely to be modulated by B2 receptors. The analogue RAP-L1, T6, L8-BK further enhanced the bradykinin inhibitory activity only under the condition of co-administration with HOE140 on rat tail artery, suggesting a synergistic inhibition mechanism by which targeting B2 type receptors.
Collapse
|
7
|
Davis LR, Klonoski K, Rutschow HL, Van Wijk KJ, Sun Q, Haribal MM, Saporito RA, Vega A, Rosenblum EB, Zamudio KR, Robertson JM. Host Defense Skin Peptides Vary with Color Pattern in the Highly Polymorphic Red-Eyed Treefrog. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Baltikinin: A New Myotropic Tryptophyllin-3 Peptide Isolated from the Skin Secretion of the Purple-Sided Leaf Frog, Phyllomedusa baltea. Toxins (Basel) 2016; 8:toxins8070213. [PMID: 27399779 PMCID: PMC4963846 DOI: 10.3390/toxins8070213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022] Open
Abstract
Here we report the identification of a novel tryptophyllin-3 peptide with arterial smooth muscle relaxation activity from the skin secretion of the purple-sided leaf frog, Phyllomedusa baltea. This new peptide was named baltikinin and had the following primary structure, pGluDKPFGPPPIYPV, as determined by tandem mass spectrometry (MS/MS) fragmentation sequencing and from cloned skin precursor-encoding cDNA. A synthetic replicate of baltikinin was found to have a similar potency to bradykinin in relaxing arterial smooth muscle (half maximal effective concentration (EC50) is 7.2 nM). These data illustrate how amphibian skin secretions can continue to provide novel potent peptides that act through functional targets in mammalian tissues.
Collapse
|