1
|
Wang JY, Chang HC, Lin CH. Vitamin D is involved in the regulation of Cl - uptake in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111678. [PMID: 38885808 DOI: 10.1016/j.cbpa.2024.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Cl- is a major anion in the bodily fluids of vertebrates, and maintaining its homeostasis is essential for normal physiological functions. Fishes inhabiting freshwater (FW) passively lose body fluid ions, including Cl-, to the external environment because of the electrochemical gradient of ions across the body surface. Therefore, FW fishes have to actively absorb Cl- from the surroundings to maintain ion homeostasis in their bodily fluids. Hormonal control is vital for modulating ion uptake in fish. Vitamin D is involved in the regulation of Ca2+ uptake and acid secretion in fish. In the present study, we found that the levels of bioactive vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), significantly increased in zebrafish embryos and adults after exposure to water containing low levels of Cl-. Moreover, the administration of 1α,25(OH)2D3 treatment (20 μg/L) in zebrafish embryos, and intraperitoneal (i.p.) injection of 1α,25(OH)2D3 (5 μg/kg body mass) in zebrafish adults, resulting the increased Cl- content in bodily fluid in zebrafish. Na+-Cl- cotransporter 2b (NCC2b) and Cl- channel 2c (CLC2c) are specifically expressed during Cl- uptake by ionocytes in zebrafish. Our results indicated that the mRNA and protein expression of NCC2b and CLC2c considerably increased in the zebrafish with exogenous 1α,25(OH)2D3 treatment. Additionally, exogenous 1α,25(OH)2D3 administration increased the number of NCC2b- and CLC2c-expressing cells in yolk skins of zebrafish embryos and the gill filaments of zebrafish adults. Transcript signals of vitamin D receptors (VDRs) were identified in NCC2b-expressing cells. Knockdown of VDRa and VDRb significantly reduced the expression of NCC2b and CLC2c and the number of NCC2b- and CLC2c-expressing cells. These results indicate that vitamin D can affect Cl- uptake in zebrafish and extend our knowledge of the role of vitamin D in fish physiology.
Collapse
Affiliation(s)
- Jun-Yi Wang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hung-Chi Chang
- Department of Golden-Ager Industry Management, College of Management, Chaoyang University of Technology, Taichung 413, Taiwan
| | - Chia-Hao Lin
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
3
|
Blondeau-Bidet E, Tine M, Gonzalez AA, Guinand B, Lorin-Nebel C. Coping with salinity extremes: Gill transcriptome profiling in the black-chinned tilapia (Sarotherodon melanotheron). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172620. [PMID: 38642748 DOI: 10.1016/j.scitotenv.2024.172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Steeper and sometimes extreme salinity gradients increasingly affect aquatic organisms because of climate change. Hypersalinity habitats demand powerful physiological adaptive strategies. Few teleost species have the capacity to spend their whole life cycle in salinities way over seawater levels. Focusing on the multifunctional gill, we unraveled the tilapia S. melanotheron key strategies to cope with different environmental conditions, ranging from freshwater up to hypersaline habitats. De novo transcriptome assembly based on RNAseq allowed for the analysis of 40,967 annotated transcripts among samples collected in three wild populations at 0, 40 and 80 ‰. A trend analysis of the expression patterns revealed responses across the salinity gradient with different gene pathways involved. Genes linked to ion transport, pH regulation and cell surface receptor signaling were mainly upregulated in the high salinity habitat. We identified tight junction proteins that were critical in high salinity habitats and that were different from the well-known tightening junctional proteins identified and expressed in fresh water. Expression profiles also suggest a change in the vascular tone that could be linked to an osmorespiratory compromise not only in fresh water, but also in high salinity environments. A striking downregulation of genes linked to the immune system and to the heat shock response was observed suggesting an energetic trade-off between immunity and acclimation/adaptation in the hypersaline habitat. The high expression of transcripts coding for immune and heat shock response in the freshwater habitat suggests the establishment of powerful mechanisms to protect gills from environmental threats and to maintain protein integrity. Non-directional expression trends were also detected with an upregulation of genes only in the hypersaline habitat (80 ‰) or only in the marine habitat (40 ‰). Unravel physiological strategies in S. melanotheron populations will help to better understand the molecular basis of fish euryhalinity in salinity-contrasted environments.
Collapse
Affiliation(s)
| | - Mbaye Tine
- UFR of Agricultural Sciences, Aquaculture and Food Technologies (UFR S2ATA), Gaston Berger University, Saint-Louis, Senegal
| | | | - Bruno Guinand
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | |
Collapse
|
4
|
Breves JP, Puterbaugh KM, Bradley SE, Hageman AE, Verspyck AJ, Shaw LH, Danielson EC, Hou Y. Molecular targets of prolactin in mummichogs (Fundulus heteroclitus): Ion transporters/channels, aquaporins, and claudins. Gen Comp Endocrinol 2022; 325:114051. [PMID: 35533740 DOI: 10.1016/j.ygcen.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Prolactin (Prl) was identified over 60 years ago in mummichogs (Fundulus heteroclitus) as a "freshwater (FW)-adapting hormone", yet the cellular and molecular targets of Prl in this model teleost have remained unknown. Here, we conducted a phylogenetic analysis of two mummichog Prl receptors (Prlrs), designated Prlra and Prlrb, prior to describing the tissue- and salinity-dependent expression of their associated mRNAs. We then administered ovine Prl (oPrl) to mummichogs held in brackish water and characterized the expression of genes associated with FW- and seawater (SW)-type ionocytes. Within FW-type ionocytes, oPrl stimulated the expression of Na+/Cl- cotransporter 2 (ncc2) and aquaporin 3 (aqp3). Alternatively, branchial Na+/H+ exchanger 2 and -3 (nhe2 and -3) expression did not respond to oPrl. Gene transcripts associated with SW-type ionocytes, including Na+/K+/2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and claudin 10f (cldn10f) were reduced by oPrl. Isolated gill filaments incubated with oPrl in vitro exhibited elevated ncc2 and prlra expression. Given the role of Aqps in supporting gastrointestinal fluid absorption, we assessed whether several intestinal aqp transcripts were responsive to oPrl and found that aqp1a and -8 levels were reduced by oPrl. Our collective data indicate that Prl promotes FW-acclimation in mummichogs by orchestrating the expression of solute transporters/channels, water channels, and tight-junction proteins across multiple osmoregulatory organs.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Katie M Puterbaugh
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Serena E Bradley
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Annie E Hageman
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Adrian J Verspyck
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Lydia H Shaw
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Elizabeth C Danielson
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Yubo Hou
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
5
|
Breves JP, Nelson NN, Koltenyuk V, Petro-Sakuma CK, Celino-Brady FT, Seale AP. Enhanced expression of ncc1 and clc2c in the kidney and urinary bladder accompanies freshwater acclimation in Mozambique tilapia. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111021. [PMID: 34174427 PMCID: PMC8355173 DOI: 10.1016/j.cbpa.2021.111021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022]
Abstract
Euryhaline fishes maintain hydromineral balance in a broad range of environmental salinities via the activities of multiple osmoregulatory organs, namely the gill, gastrointestinal tract, skin, kidney, and urinary bladder. Teleosts residing in freshwater (FW) environments are faced with the diffusive loss of ions and the osmotic gain of water, and, therefore, the kidney and urinary bladder reabsorb Na+ and Cl- to support the production of dilute urine. Nonetheless, the regulated pathways for Na+ and Cl- transport by euryhaline fishes, especially in the urinary bladder, have not been fully resolved. Here, we first investigated the ultrastructure of epithelial cells within the urinary bladder of FW-acclimated Mozambique tilapia (Oreochromis mossambicus) by electron microscopy. We then investigated whether tilapia employ Na+/Cl- cotransporter 1 (Ncc1) and Clc family Cl- channel 2c (Clc2c) for the reabsorption of Na+ and Cl- by the kidney and urinary bladder. We hypothesized that levels of their associated gene transcripts vary inversely with environmental salinity. In whole kidney and urinary bladder homogenates, ncc1 and clc2c mRNA levels were markedly higher in steady-state FW- versus SW (seawater)-acclimated tilapia. Following transfer from SW to FW, ncc1 and clc2c in both the kidney and urinary bladder were elevated within 48 h. A concomitant increase in branchial ncc2, and decreases in Na+/K+/2Cl-cotransporter 1a (nkcc1a) and cystic fibrosis transmembrane regulator 1 (cftr1) levels indicated a transition from Na+ and Cl- secretion to absorption by the gills in parallel with the identified renal and urinary bladder responses to FW transfer. Our findings suggest that Ncc1 and Clc2c contribute to the functional plasticity of the kidney and urinary bladder in tilapia.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Nastasia N Nelson
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Victor Koltenyuk
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Cody K Petro-Sakuma
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
6
|
The time course of molecular acclimation to seawater in a euryhaline fish. Sci Rep 2021; 11:18127. [PMID: 34518569 PMCID: PMC8438076 DOI: 10.1038/s41598-021-97295-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
The Arabian pupfish, Aphanius dispar, is a euryhaline fish inhabiting both inland nearly-freshwater desert ponds and highly saline Red Sea coastal lagoons of the Arabian Peninsula. Desert ponds and coastal lagoons, located respectively upstream and at the mouths of dry riverbeds (“wadies”), have been found to potentially become connected during periods of intense rainfall, which could allow the fish to migrate between these different habitats. Flash floods would therefore flush Arabian pupfish out to sea, requiring a rapid acclimation to a greater than 40 ppt change in salinity. To investigate the molecular pathways of salinity acclimation during such events, a Red Sea coastal lagoon and a desert pond population were sampled, with the latter exposed to a rapid increase in water salinity. Changes in branchial gene expression were investigated via genome-wide transcriptome measurements over time from 6 h to 21 days. The two natural populations displayed basal differences in genes related to ion transport, osmoregulation and immune system functions. These mechanisms were also differentially regulated in seawater transferred fish, revealing their crucial role in long-term adaptation. Other processes were only transiently activated shortly after the salinity exposure, including cellular stress response mechanisms, such as molecular chaperone synthesis and apoptosis. Tissue remodelling processes were also identified as transient, but took place later in the timeline, suggesting their importance to long-term acclimation as they likely equip the fish with lasting adaptations to their new environment. The alterations in branchial functional pathways displayed by Arabian pupfish in response to salinity increases are diverse. These reveal a large toolkit of molecular processes important for adaptation to hyperosmolarity that allow for successful colonization to a wide variety of different habitats.
Collapse
|
7
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|
8
|
Shaughnessy CA, Breves JP. Molecular mechanisms of Cl
−
transport in fishes: New insights and their evolutionary context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:207-216. [DOI: 10.1002/jez.2428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jason P. Breves
- Department of Biology Skidmore College Saratoga Springs New York USA
| |
Collapse
|
9
|
Arginine Vasopressin Modulates Ion and Acid/Base Balance by Regulating Cell Numbers of Sodium Chloride Cotransporter and H +-ATPase Rich Ionocytes. Int J Mol Sci 2020; 21:ijms21113957. [PMID: 32486459 PMCID: PMC7312464 DOI: 10.3390/ijms21113957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/14/2023] Open
Abstract
Arginine vasopressin (Avp) is a conserved pleiotropic hormone that is known to regulate both water reabsorption and ion balance; however, many of the mechanisms underlying its effects remain unclear. Here, we used zebrafish embryos to investigate how Avp modulates ion and acid–base homeostasis. After incubating embryos in double-deionized water for 24 h, avp mRNA expression levels were significantly upregulated. Knockdown of Avp protein expression by an antisense morpholino oligonucleotide (MO) reduced the expression of ionocyte-related genes and downregulated whole-body Cl− content and H+ secretion, while Na+ and Ca2+ levels were not affected. Incubation of Avp antagonist SR49059 also downregulated the mRNA expression of sodium chloride cotransporter 2b (ncc2b), which is a transporter responsible for Cl− uptake. Correspondingly, avp morphants showed lower NCC and H+-ATPase rich (HR) cell numbers, but Na+/K+-ATPase rich (NaR) cell numbers remained unchanged. avp MO also downregulated the numbers of foxi3a- and p63-expressing cells. Finally, the mRNA expression levels of calcitonin gene-related peptide (cgrp) and its receptor, calcitonin receptor-like 1 (crlr1), were downregulated in avp morphants, suggesting that Avp might affect Cgrp and Crlr1 for modulating Cl− balance. Together, our results reveal a molecular/cellular pathway through which Avp regulates ion and acid–base balance, providing new insights into its function.
Collapse
|
10
|
Breves JP, Starling JA, Popovski CM, Doud JM, Tipsmark CK. Salinity-dependent expression of ncc2 in opercular epithelium and gill of mummichog (Fundulus heteroclitus). J Comp Physiol B 2020; 190:219-230. [PMID: 31980891 DOI: 10.1007/s00360-020-01260-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Mummichogs (Fundulus heteroclitus) can tolerate abrupt changes in environmental salinity because of their ability to rapidly adjust the activities of ionocytes in branchial and opercular epithelia. In turn, the concerted expression of sub-cellular effectors of ion transport underlies adaptive responses to fluctuating salinities. Exposure to seawater (SW) stimulates the expression of Na+/K+/2Cl- cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator (cftr) mRNAs in support of ion extrusion by SW-type ionocytes. Given the incomplete understanding of how freshwater (FW)-type ionocytes actually operate in mummichogs, the transcriptional responses essential for ion absorption in FW environments remain unresolved. In a subset of species, a 'fish-specific' Na+/Cl- cotransporter denoted Ncc2 (Slc12a10) is responsible for the uptake of Na+ and Cl- across the apical surface of FW-type ionocytes. In the current study, we identified an ncc2 transcript that is highly expressed in gill filaments and opercular epithelium of FW-acclimated mummichogs. Within 1 day of transfer from SW to FW, ncc2 levels in both tissues increased in parallel with reductions in nkcc1 and cftr. Conversely, mummichogs transferred from FW to SW exhibited marked reductions in ncc2 concurrent with increases in nkcc1 and cftr. Immunohistochemical analyses employing a homologous antibody revealed apical Ncc2-immunoreactivity in Na+/K+-ATPase-immunoreactive ionocytes of FW-acclimated animals. Our combined observations suggest that Ncc2/ncc2-expressing ionocytes support the capacity of mummichogs to inhabit FW environments.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Julie A Starling
- Department of Biological Sciences, University of Arkansas, Fayetteville, AK, 72701, USA
| | - Christine M Popovski
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - James M Doud
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, Fayetteville, AK, 72701, USA
| |
Collapse
|
11
|
Pérez-Rius C, Castellanos A, Gaitán-Peñas H, Navarro A, Artuch R, Barrallo-Gimeno A, Estévez R. Role of zebrafish ClC-K/barttin channels in apical kidney chloride reabsorption. J Physiol 2019; 597:3969-3983. [PMID: 31177533 DOI: 10.1113/jp278069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS We have characterized the zebrafish clc-k and barttin proteins, demonstrating that they form a protein complex mediating chloride flux in a similar manner to their mammalian counterparts. As in mammals, in zebrafish, clc-k and barttin are basically expressed in the kidney. Contrary to what is found in mammals, in zebrafish both proteins show an apical localization in the kidney. We have generated the first knockout in zebrafish of a CLC protein. Lack of clc-k in zebrafish resulted in embryonic lethality, possibly caused by a reduction in total chloride content. As a consequence, there is an up-regulation of other chloride channels and other regulatory mechanisms such as renin or the uro-guanylin receptor in the kidney. barttin is mislocalized in vivo when clc-k is not present, indicating that there is a mutual dependence of the protein expression and localization between barttin and clc-k proteins. ABSTRACT ClC-K/barttin channels are very important for salt transport in the kidney. This function can be clearly seen since mutations in CLCNKB or BSND cause Bartter's syndrome types III and IV, respectively. Working with the freshwater teleost zebrafish, we characterized the genes homologous to the mammalian chloride channel ClC-K and its obligate subunit barttin and we obtained and studied clc-k knockout zebrafish. The zebrafish clc-k/barttin proteins are very similar to their mammalian counterparts, and both proteins are necessary to mediate chloride currents. Localization studies indicated that both proteins are exclusively expressed in the apical membranes of zebrafish kidney tubules. Knockout of clc-k resulted in embryonic lethality. These animals showed barttin mislocalization and a reduction in whole-body chloride concentration, as well as up-regulation of the expression of other chloride channels and renin, and an increase in the kidney expression of the uroguanylin receptor. Our results indicate that apical kidney chloride reabsorption through clc-k/barttin channels is crucial for chloride homeostasis in zebrafish as it is in humans. The zebrafish model could be used as a new in vivo system to study ClC-K function.
Collapse
Affiliation(s)
- Carla Pérez-Rius
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Aida Castellanos
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Héctor Gaitán-Peñas
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Almudena Navarro
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Alejandro Barrallo-Gimeno
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Raúl Estévez
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
12
|
Dayal A, Ng SFJ, Grabner M. Ca 2+-activated Cl - channel TMEM16A/ANO1 identified in zebrafish skeletal muscle is crucial for action potential acceleration. Nat Commun 2019; 10:115. [PMID: 30631052 PMCID: PMC6328546 DOI: 10.1038/s41467-018-07918-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/03/2018] [Indexed: 01/16/2023] Open
Abstract
The Ca2+-activated Cl- channel (CaCC) TMEM16A/Anoctamin 1 (ANO1) is expressed in gastrointestinal epithelia and smooth muscle cells where it mediates secretion and intestinal motility. However, ANO1 Cl- conductance has never been reported to play a role in skeletal muscle. Here we show that ANO1 is robustly expressed in the highly evolved skeletal musculature of the euteleost species zebrafish. We characterised ANO1 as bonafide CaCC which is activated close to maximum by Ca2+ ions released from the SR during excitation-contraction (EC) coupling. Consequently, our study addressed the question about the physiological advantage of implementation of ANO1 into the euteleost skeletal-muscle EC coupling machinery. Our results reveal that Cl- influx through ANO1 plays an essential role in restricting the width of skeletal-muscle action potentials (APs) by accelerating the repolarisation phase. Resulting slimmer APs enable higher AP-frequencies and apparently tighter controlled, faster and stronger muscle contractions, crucial for high speed movements.
Collapse
Affiliation(s)
- Anamika Dayal
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria.
| | - Shu Fun J Ng
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Manfred Grabner
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria.
| |
Collapse
|
13
|
Breves JP. Prolactin controls branchial clcn2c but not atp1a1a.2 in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2019; 94:168-172. [PMID: 30367725 DOI: 10.1111/jfb.13854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
This study examined the branchial epithelium of stenohaline zebrafish Danio rerio, and in particular Na+ -Cl- cotransporter-like 2 (Slc12a10.2)-expressing ionocytes (Na+ -Cl- cotransporter [Ncc]-cells), which mediate the active uptake of ions from freshwater environments. The study assessed whether the pituitary hormone prolactin (Prl) stimulates the expression of messenger (m)RNAs encoding a Clc Cl- channel family member (clcn2c) and a Na+ -K+ -ATPase α1 subunit (atp1a1a.2) expressed in Ncc-cells. Branchial clcn2c, but not atp1a1a.2 levels, were sensitive to Prl both in vitro and in vivo. These observations suggest that Prl contributes to maintaining systemic Cl- balance via the regulation of clcn2c.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
14
|
Elmonem MA, Berlingerio SP, van den Heuvel LP, de Witte PA, Lowe M, Levtchenko EN. Genetic Renal Diseases: The Emerging Role of Zebrafish Models. Cells 2018; 7:cells7090130. [PMID: 30200518 PMCID: PMC6162634 DOI: 10.3390/cells7090130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
The structural and functional similarity of the larval zebrafish pronephros to the human nephron, together with the recent development of easier and more precise techniques to manipulate the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish. Over the last few years, great advances have been made, not only in the modeling techniques of genetic diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards more informative explanations of disease pathophysiology and better designed therapeutic interventions in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special attention to the renal phenotype evaluation techniques. We further discuss the future applications of such models, particularly their role in revealing new genetic diseases of the kidney and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 11628 Cairo, Egypt.
| | - Sante Princiero Berlingerio
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Peter A de Witte
- Laboratory for Molecular Bio-Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Brannen M, Gilmour KM. Carbonic anhydrase expression in the branchial ionocytes of rainbow trout. J Exp Biol 2018; 221:jeb.164582. [DOI: 10.1242/jeb.164582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) exposed to acid-base challenges activate branchial mechanisms for the excretion of acid-base equivalents. Current models of branchial acid-base excretion in freshwater rainbow trout propose two main ionocyte types; the peanut lectin agglutinin-positive (PNA+) mitochondrion-rich cell or ionocyte is believed to secrete HCO3− in exchange for Cl−, whereas H+ secretion is thought to occur across PNA− ionocytes in exchange for Na+. Both HCO3− and H+ are supplied by intracellular hydration of CO2 catalyzed by cytosolic carbonic anhydrase (CAc). Immunohistochemical approaches revealed that under control conditions, CAc was detectable in 92.3±1.0% (N=11) of PNA− ionocytes, and the abundance of PNA− ionocytes increased in response to systemic acidosis elicited by 72 h exposure to water of low pH (nominally pH 4.5), hypercapnia (1% CO2, nominally 7.6 Torr) or hyperoxia (achieved by gassing water with pure O2), as did the abundance of PNA− ionocytes that exhibited immunofluorescence for CAc. However, just 4.3 ± 0.6% (N=11) of PNA+ ionocytes expressed detectable CAc under control conditions. Marked increases in the abundance of CAc-positive PNA+ ionocytes were detected following exposure of trout to a base load via recovery from hypercapnia, or base infusion (72 h infusion with 140 mmol L−1 NaHCO3). The percentage of CAc-positive PNA+ ionocytes also was increased in trout treated with cortisol (10 mg kg−1 hydrocortisone 21-hemisuccinate daily for 7 d). These results suggest that regulation of CA within PNA+ ionocytes and/or the abundance of CAc-positive PNA+ ionocytes plays a role in activating base secretion in response to systemic alkalosis.
Collapse
Affiliation(s)
- Michael Brannen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
16
|
Wang YF, Lafont AG, Lee YC, Hwang PP. A novel function of calcitonin gene-related peptide in body fluid Cl- homeostasis. Proc Biol Sci 2017; 283:rspb.2016.0684. [PMID: 27306053 DOI: 10.1098/rspb.2016.0684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
Vertebrates need to maintain extracellular chloride (Cl(-)) concentrations to ensure the normal operation of physiological processes; the transition from aquatic to terrestrial environments necessitated the development of sophisticated mechanisms to ensure Cl(-) homeostasis in the face of fluctuating Cl(-) levels. Zebrafish calcitonin gene-related peptide (CGRP), unlike its splice variant calcitonin, does not respond to environmental Ca(2+) levels. This study aimed to test the hypothesis that CGRP is involved in the control of body fluid Cl(-) homeostasis. Acclimation to high-Cl(-) artificial water stimulated the mRNA expression of cgrp and the receptor (crlr1) when compared with low-Cl(-) CGRP knockdown induced upregulation of the Na(+)-Cl(-) co-transporter (ncc2b), while overexpression of CGRP resulted in the downregulation of ncc2b mRNA synthesis and a simultaneous decrease in Cl(-) uptake in embryos. Consistent with these findings, knockdown of either cgrp or crlr1 was found to increase the density of NCC2b-expressing cells in embryos. This is the first demonstration that CGRP acts as a hypochloremic hormone through suppressing NCC2b expression and the differentiation of NCC-expressing ionocytes. Elucidation of this novel function of CGRP in fish body fluid Cl(-) homeostasis promises to enhance our understanding of the related physiology in vertebrates.
Collapse
Affiliation(s)
- Yi-Fang Wang
- Institute of Fishery Science, National Taiwan University, Taipei, Taiwan Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Anne-Gaëlle Lafont
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD207, UPMC, UCBN, Paris, France
| | - Yi-Chun Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Fishery Science, National Taiwan University, Taipei, Taiwan Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells. Sci Rep 2017; 7:16215. [PMID: 29176723 PMCID: PMC5701230 DOI: 10.1038/s41598-017-16381-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/13/2017] [Indexed: 01/29/2023] Open
Abstract
Molecular mechanisms of Na+, Cl−, and Ca2+ regulation in ionocytes of fish have been well investigated. However, the regulatory mechanism of K+ in fishes has been largely unknown. In this study, we investigated the mechanism of K+ regulation in medaka larvae acclimated to fresh water. Using a scanning ion-selective electrode technique (SIET) to measure the K+ fluxes at skin cells, significant K+ effluxes were found at ionocytes; in contrast, significant K+ influxes were found at the boundaries between keratinocytes. High K+ water (HK) acclimation induced the K+ effluxes at ionocytes and suppressed the K+ influxes at keratinocytes. The K+ effluxes of ionocytes were suppressed by VU591, bumetanide and ouabain. The K+ influxes of keratinocytes were suppressed by TAP. In situ hybridization analysis showed that mRNA of ROMKa was expressed by ionocytes in the skin and gills of medaka larvae. Quantitative PCR showed that mRNA levels of ROMKa and NKCC1a in gills of adult medaka were upregulated after HK acclimation. This study suggests that medaka obtain K+ through a paracellular pathway between keratinocytes and extrude K+ through ionocytes; apical ROMKa and basolateral NKCC1a are involved in the K+ secretion by ionocytes.
Collapse
|
18
|
Breves JP, Keith PLK, Hunt BL, Pavlosky KK, Inokuchi M, Yamaguchi Y, Lerner DT, Seale AP, Grau EG. clc-2c is regulated by salinity, prolactin and extracellular osmolality in tilapia gill. J Mol Endocrinol 2017; 59:391-402. [PMID: 28974537 PMCID: PMC5660657 DOI: 10.1530/jme-17-0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
Teleosts inhabiting fresh water (FW) depend upon ion-absorptive ionocytes to counteract diffusive ion losses to the external environment. A Clc Cl- channel family member, Clc-2c, was identified as a conduit for basolateral Cl- transport by Na+/Cl- cotransporter 2 (Ncc2)-expressing ionocytes in stenohaline zebrafish (Danio rerio). It is unresolved whether Clc-2c/clc-2c is expressed in euryhaline species and how extrinsic and/or intrinsic factors modulate branchial clc-2c mRNA. Here, we investigated whether environmental salinity, prolactin (Prl) and osmotic conditions modulate clc-2c expression in euryhaline Mozambique tilapia (Oreochromis mossambicus). Branchial clc-2c and ncc2 mRNAs were enhanced in tilapia transferred from seawater (SW) to FW, whereas both mRNAs were attenuated upon transfer from FW to SW. Next, we injected hypophysectomized tilapia with ovine prolactin (oPrl) and observed a marked increase in clc-2c from saline-injected controls. To determine whether Prl regulates clc-2c in a gill-autonomous fashion, we incubated gill filaments in the presence of homologous tilapia Prls (tPrl177 and tPrl188). By 24 h, tPrl188 stimulated clc-2c expression ~5-fold from controls. Finally, filaments incubated in media ranging from 280 to 450 mosmol/kg for 3 and 6 h revealed that extracellular osmolality exerts a local effect on clc-2c expression; clc-2c was diminished by hyperosmotic conditions (450 mosmol/kg) compared with isosmotic controls (330 mosmol/kg). Our collective results suggest that hormonal and osmotic control of branchial clc-2c contributes to the FW adaptability of Mozambique tilapia. Moreover, we identify for the first time a regulatory link between Prl and a Clc Cl- channel in a vertebrate.
Collapse
Affiliation(s)
- Jason P Breves
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Paige L K Keith
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Bethany L Hunt
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - K Keano Pavlosky
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i, Kaneohe, Hawaii, USA
| | - Mayu Inokuchi
- Department of Life SciencesToyo University, Itakura, Gunma, Japan
| | - Yoko Yamaguchi
- Department of Biological ScienceShimane University, Matsue, Shimane, Japan
| | - Darren T Lerner
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i, Kaneohe, Hawaii, USA
- Sea Grant College ProgramUniversity of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Andre P Seale
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i, Kaneohe, Hawaii, USA
- Department of Human NutritionFood and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - E Gordon Grau
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i, Kaneohe, Hawaii, USA
| |
Collapse
|
19
|
Guh YJ, Hwang PP. Insights into molecular and cellular mechanisms of hormonal actions on fish ion regulation derived from the zebrafish model. Gen Comp Endocrinol 2017; 251:12-20. [PMID: 27554927 DOI: 10.1016/j.ygcen.2016.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023]
Abstract
Fish have sophisticated mechanisms of ionic and acid-base regulation for maintaining body fluid homeostasis. Many hormones have been proposed to control the ionic and acid-base regulation mechanisms in fishes; however, lots of the proposed actions lack convincing cellular/molecular evidence. With the advantages of available genetic databases and molecular manipulation techniques, zebrafish has become an emerging model for research into ion transport physiology and functional regulation. Different types of ionocytes were found to transport ions through various sets of ion transporters, and the molecular mechanisms of ionocyte proliferation and differentiation have also been dissected, providing a competent platform with which to precisely study the ion transport pathways and ionocytes targeted by hormones, including isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyroid hormone 1, catecholamines, the renin-angiotensin-system, estrogen-related receptor α, and calcitonin gene-related peptide, which have been demonstrated to positively or negatively regulate ion transport through specific receptors at different molecular levels (transcriptional, translational, or posttranslational) or at different developmental stages of ionocytes (proliferation or differentiation). The knowledge obtained in zebrafish not only enhances our understanding of the hormonal control of fish ion regulation, but also informs studies on other animal species, thereby providing insights into related fields.
Collapse
Affiliation(s)
- Ying-Jey Guh
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
20
|
Hwang PP. Molecular physiological exploration beyond the transcriptome. Focus on "Molecular mechanisms underlying active desalination and low water permeability in the esophagus of eels acclimated to seawater". Am J Physiol Regul Integr Comp Physiol 2017; 312:R229-R230. [PMID: 28077387 DOI: 10.1152/ajpregu.00001.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
21
|
Kersten S, Arjona FJ. Ion transport in the zebrafish kidney from a human disease angle: possibilities, considerations, and future perspectives. Am J Physiol Renal Physiol 2017; 312:F172-F189. [DOI: 10.1152/ajprenal.00425.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022] Open
Abstract
Unique experimental advantages, such as its embryonic/larval transparency, high-throughput nature, and ease of genetic modification, underpin the rapid emergence of the zebrafish ( Danio rerio) as a preeminent model in biomedical research. Particularly in the field of nephrology, the zebrafish provides a promising model for studying the physiological implications of human solute transport processes along consecutive nephron segments. However, although the zebrafish might be considered a valuable model for numerous renal ion transport diseases and functional studies of many channels and transporters, not all human renal electrolyte transport mechanisms and human diseases can be modeled in the zebrafish. With this review, we explore the ontogeny of zebrafish renal ion transport, its nephron structure and function, and thereby demonstrate the clinical translational value of this model. By critical assessment of genomic and amino acid conservation of human proteins involved in renal ion handling (channels, transporters, and claudins), kidney and nephron segment conservation, and renal electrolyte transport physiology in the zebrafish, we provide researchers and nephrologists with an indication of the possibilities and considerations of the zebrafish as a model for human renal ion transport. Combined with advanced techniques envisioned for the future, implementation of the zebrafish might expand beyond unraveling pathophysiological mechanisms that underlie distinct genetic or environmentally, i.e., pharmacological and lifestyle, induced renal transport deficits. Specifically, the ease of drug administration and the exploitation of improved genetic approaches might argue for the adoption of the zebrafish as a model for preclinical personalized medicine for distinct renal diseases and renal electrolyte transport proteins.
Collapse
Affiliation(s)
- Simone Kersten
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Francisco J. Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and
| |
Collapse
|
22
|
Takei Y, Wong MKS, Pipil S, Ozaki H, Suzuki Y, Iwasaki W, Kusakabe M. Molecular mechanisms underlying active desalination and low water permeability in the esophagus of eels acclimated to seawater. Am J Physiol Regul Integr Comp Physiol 2016; 312:R231-R244. [PMID: 28003213 DOI: 10.1152/ajpregu.00465.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022]
Abstract
Marine teleosts can absorb imbibed seawater (SW) to maintain water balance, with esophageal desalination playing an essential role. NaCl absorption from luminal SW was enhanced 10-fold in the esophagus of SW-acclimated eels, and removal of Na+ or Cl- from luminal SW abolished the facilitated absorption, indicating coupled transport. Mucosal/serosal application of various blockers for Na+/Cl- transporters profoundly decreased the absorption. Among the transporter genes expressed in eel esophagus detected by RNA-seq, dimethyl amiloride-sensitive Na+/H+ exchanger (NHE3) and 4,4'-diisothiocyano-2,2'-disulfonic acid-sensitive Cl-/[Formula: see text] exchanger (AE) coupled by the scaffolding protein on the apical membrane of epithelial cells, and ouabain-sensitive Na+-K+-ATPases (NKA1α1c and NKA3α) and diphenylamine-2-carboxylic acid-sensitive Cl- channel (CLCN2) on the basolateral membrane, may be responsible for enhanced transcellular NaCl transport because of their profound upregulation after SW acclimation. Upregulated carbonic anhydrase 2a (CA2a) supplies H+ and [Formula: see text] for activation of the coupled NHE and AE. Apical hydrochlorothiazide-sensitive Na+-Cl- cotransporters and basolateral Na+-[Formula: see text] cotransporter (NBCe1) and AE1 are other possible candidates. Concerning the low water permeability that is typically seen in marine teleost esophagus, downregulated aquaporin genes (aqp1a and aqp3) and upregulated claudin gene (cldn15a) are candidates for transcellular/paracellular route. In situ hybridization showed that these upregulated transporters and tight-junction protein genes were expressed in the absorptive columnar epithelial cells of eel esophagus. These results allow us to provide a full picture of the molecular mechanism of active desalination and low water permeability that are characteristic to marine teleost esophagus and gain deeper insights into the role of gastrointestinal tracts in SW acclimation.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan;
| | - Marty K-S Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - Supriya Pipil
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - Haruka Ozaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.,Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama, Japan; and
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Wataru Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Kusakabe
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
23
|
Kwong RWM, Perry SF. A role for sodium-chloride cotransporters in the rapid regulation of ion uptake following acute environmental acidosis: new insights from the zebrafish model. Am J Physiol Cell Physiol 2016; 311:C931-C941. [PMID: 27784676 DOI: 10.1152/ajpcell.00180.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
Abstract
The effects of acute exposure to acidic water on Na+ and Cl- homeostasis, and the mechanisms underlying their compensatory regulation, were investigated in the larval zebrafish Danio rerio Exposure to acidic water (pH 4.0; control pH 7.6) for 2 h significantly reduced Na+ uptake and whole body Na+ content. Nevertheless, the capacity for Na+ uptake was substantially increased in fish preexposed to acidic water but measured in control water. Based on the accumulation of the Na+-selective dye, Sodium Green, two ionocyte subtypes exhibited intracellular Na+ enrichment after preexposure to acidic water: H+-ATPase rich (HR) cells, which coexpress the Na+/H+ exchanger isoform 3b (NHE3b), and a non-HR cell population. In fish experiencing Na+-Cl- cotransporter (NCC) knockdown, we observed no Sodium Green accumulation in the latter cell type, suggesting the non-HR cells were NCC cells. Elimination of NHE3b-expressing HR cells did not prevent the increased Na+ uptake following acid exposure. On the other hand, the increased Na+ uptake was abolished when the acidic water was enriched with Na+ and Cl-, but not with Na+ only, indicating that the elevated Na+ uptake after acid exposure was associated with the compensatory regulation of Cl- Further examinations demonstrated that acute acid exposure also reduced whole body Cl- levels and increased the capacity for Cl- uptake. Moreover, knockdown of NCC prevented the increased uptake of both Na+ and Cl- after exposure to acidic water. Together, the results of the present study revealed a novel role of NCC in the compensatory regulation of Na+ and Cl- uptake following acute acidosis.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; and .,Department of Biology, York University, Toronto, Ontario, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; and
| |
Collapse
|
24
|
Takabe S, Inokuchi M, Yamaguchi Y, Hyodo S. Distribution and dynamics of branchial ionocytes in houndshark reared in full-strength and diluted seawater environments. Comp Biochem Physiol A Mol Integr Physiol 2016; 198:22-32. [PMID: 27040185 DOI: 10.1016/j.cbpa.2016.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022]
Abstract
In teleost fishes, it is well-established that the gill serves as an important ionoregulatory organ in addition to its primary function of respiratory gas exchange. In elasmobranchs, however, the ionoregulatory function of the gills is still incompletely understood. Although two types of ionocytes, Na(+)/K(+)-ATPase (NKA)-rich (type-A) cell and vacuolar-type H(+)-ATPase (V-ATPase)-rich (type-B) cell, have been found in elasmobranch fishes, these cells were considered to function primarily in acid-base regulation. In the present study, we examined ion-transporting proteins expressed in ionocytes of Japanese-banded houndshark, Triakis scyllium, reared in full-strength seawater (SW) and transferred to diluted (30%) SW. In addition to the upregulation of NKA and Na(+)/H(+) exchanger type 3 (NHE3) mRNAs in the type-A ionocytes, we found that Na(+), Cl(-) cotransporter (NCC, Slc12a3) is expressed in a subpopulation of the type-B ionocytes, and that the expression level of NCC mRNA was enhanced in houndsharks transferred to a low-salinity environment. These results suggest that elasmobranch gill ionocytes contribute to NaCl uptake in addition to the already described function of acid-base regulation, and that NCC is most probably one of the key molecules for hyper-osmoregulatory function of elasmobranch gills. The existence of two types of ionocytes (NHE3- and NCC-expressing cells) that are responsible for NaCl absorption seems to be a common feature in both teleosts and elasmobranchs for adaptation to a low salinity environment. A possible driving mechanism for NCC in type-B ionocytes is discussed.
Collapse
Affiliation(s)
- Souichirou Takabe
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Mayu Inokuchi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Yoko Yamaguchi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Hawai'i Institute of Marine Biology, University of Hawai'i, 46-007 Lilipuna Road, Kaneohe, HI 96744, USA
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
25
|
Lai KP, Li JW, Gu J, Chan TF, Tse WKF, Wong CKC. Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel. BMC Genomics 2015; 16:1072. [PMID: 26678671 PMCID: PMC4683740 DOI: 10.1186/s12864-015-2271-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homeostasis of ions and water is important for the maintenance of cellular functions. The regulation of the homeostasis is particularly important in euryhaline fish that migrate between freshwater (FW) and seawater (SW) environments. The fish gill, the major tissue that forms an interface separating the extracellular fluids and external water environment, has an effective transport system to maintain and regulate a constant body osmolality. In fish gills, the two major epithelial cells, pavement cells (PVCs) and mitochondria-rich cells (MRCs), are known to play key and complementary roles in ion transport at the interface. Discovering the robust mechanisms underlying the two cell types' response to osmotic stress would benefit our understanding of the fundamental mechanism allowing PVCs and MRCs to handle osmotic stress. Owing to the limited genomic data available on estuarine species, existing knowledge in this area is slim. In this study, transcriptome analyses were conducted using PVCs and MRCs isolated from Japanese eels adapted to FW or SW environments to provide a genome-wide molecular study to unravel the fundamental processes at work. RESULTS The study identified more than 12,000 transcripts in the gill cells. Interestingly, remarkable differential expressed genes (DEGs) were identified in PVCs (970 transcripts) instead of MRCs (400 transcripts) in gills of fish adapted to FW or SW. Since PVCs cover more than 90 % of the gill epithelial surface, the greater change in gene expression patterns in PVCs in response to external osmolality is anticipated. In the integrity pathway analysis, 19 common biological functions were identified in PVCs and MRCs. In the enriched signaling pathways analysis, most pathways differed between PVCs and MRCs; 14 enriched pathways were identified in PVCs and 12 in MRCs. The results suggest that the osmoregulatory responses in PVCs and MRCs are cell-type specific, which supports the complementary functions of the cells in osmoregulation. CONCLUSIONS This is the first study to provide transcriptomic analysis of PVCs and MRCs in gills of eels adapted to FW or SW environments. It describes the cell-type specific transcriptomic network in different tonicity. The findings consolidate the known osmoregulatory pathways and provide molecular insight in osmoregulation. The presented data will be useful for researchers to select their targets for further studies.
Collapse
Affiliation(s)
- Keng Po Lai
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Jing-Woei Li
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Je Gu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ting-Fung Chan
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - William Ka Fai Tse
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong. .,Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Pok Fu Lam, Hong Kong.
| |
Collapse
|