1
|
Cruz P, Peña-Lopez D, Figueroa D, Riobó I, Benedetti V, Saavedra F, Espinoza-Arratia C, Escobar TM, Lladser A, Loyola A. Unraveling the Role of JMJD1B in Genome Stability and the Malignancy of Melanomas. Int J Mol Sci 2024; 25:10689. [PMID: 39409021 PMCID: PMC11476393 DOI: 10.3390/ijms251910689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Genome instability relies on preserving the chromatin structure, with any histone imbalances threating DNA integrity. Histone synthesis occurs in the cytoplasm, followed by a maturation process before their nuclear translocation. This maturation involves protein folding and the establishment of post-translational modifications. Disruptions in this pathway hinder chromatin assembly and contribute to genome instability. JMJD1B, a histone demethylase, not only regulates gene expression but also ensures a proper supply of histones H3 and H4 for the chromatin assembly. Reduced JMJD1B levels lead to the cytoplasmic accumulation of histones, causing defects in the chromatin assembly and resulting in DNA damage. To investigate the role of JMJD1B in regulating genome stability and the malignancy of melanoma tumors, we used a JMJD1B/KDM3B knockout in B16F10 mouse melanoma cells to perform tumorigenic and genome instability assays. Additionally, we analyzed the transcriptomic data of human cutaneous melanoma tumors. Our results show the enhanced tumorigenic properties of JMJD1B knockout melanoma cells both in vitro and in vivo. The γH2AX staining, Micrococcal Nuclease sensitivity, and comet assays demonstrated increased DNA damage and genome instability. The JMJD1B expression in human melanoma tumors correlates with a lower mutational burden and fewer oncogenic driver mutations. Our findings highlight JMJD1B's role in maintaining genome integrity by ensuring a proper histone supply to the nucleus, expanding its function beyond gene expression regulation. JMJD1B emerges as a crucial player in preserving genome stability and the development of melanoma, with a potential role as a safeguard against oncogenic mutations.
Collapse
Affiliation(s)
- Perla Cruz
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | - Diego Peña-Lopez
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | - Diego Figueroa
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | - Isidora Riobó
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | - Vincenzo Benedetti
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | - Francisco Saavedra
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | | | - Thelma M. Escobar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alvaro Lladser
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| | - Alejandra Loyola
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| |
Collapse
|
2
|
Rui X, Zhang X, Jia X, Han J, Wang C, Cao Q, Zhong O, Ding J, Zhao C, Zhang J, Ling X, Li H, Ma X, Meng Q, Huo R. Variants in NLRP2 and ZFP36L2, non-core components of the human subcortical maternal complex, cause female infertility with embryonic development arrest. Mol Hum Reprod 2024; 30:gaae031. [PMID: 39178021 DOI: 10.1093/molehr/gaae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
The subcortical maternal complex (SCMC), which is vital in oocyte maturation and embryogenesis, consists of core proteins (NLRP5, TLE6, OOEP), non-core proteins (PADI6, KHDC3L, NLRP2, NLRP7), and other unknown proteins that are encoded by maternal effect genes. Some variants of SCMC genes have been linked to female infertility characterized by embryonic development arrest. However, so far, the candidate non-core SCMC components associated with embryonic development need further exploration and the pathogenic variants that have been identified are still limited. In this study, we discovered two novel variants [p.(Ala131Val) and p.(Met326Val)] of NLRP2 in patients with primary infertility displaying embryonic development arrest from large families. In vitro studies using 293T cells and mouse oocytes, respectively, showed that these variants significantly decreased protein expression and caused the phenotype of embryonic development arrest. Additionally, we combined the 'DevOmics' database with the whole exome sequence data of our cohort and screened out a new candidate non-core SCMC gene ZFP36L2. Its variants [p.(Ala241Pro) and p.(Pro291dup)] were found to be responsible for embryonic development arrest. Co-immunoprecipitation experiments in 293T cells, used to demonstrate the interaction between proteins, verified that ZFP36L2 is one of the human SCMC components, and microinjection of ZFP36L2 complementary RNA variants into mouse oocytes affected embryonic development. Furthermore, the ZFP36L2 variants were associated with disrupted stability of its target mRNAs, which resulted in aberrant H3K4me3 and H3K9me3 levels. These disruptions decreased oocyte quality and further developmental potential. Overall, this is the first report of ZFP36L2 as a non-core component of the human SCMC and we found four novel pathogenic variants in the NLRP2 and ZFP36L2 genes in 4 of 161 patients that caused human embryonic development arrest. These findings contribute to the genetic diagnosis of female infertility and provide new insights into the physiological function of SCMC in female reproduction.
Collapse
Affiliation(s)
- Ximan Rui
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiaolan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xinru Jia
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Han
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Congjing Wang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Qiqi Cao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Ou Zhong
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Junqiang Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hong Li
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingxia Meng
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ran Huo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou, Nanjing Medical University, Suzhou, China
| |
Collapse
|
3
|
Yang Y, Feng W, Zhou J, Zhang R, Lin X, Sooranna SR, Deng Y, Shi D. Epigenetic modifications of gonadotropin receptors can regulate follicular development. Anim Reprod Sci 2024; 268:107534. [PMID: 39047429 DOI: 10.1016/j.anireprosci.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
The spatiotemporal transcription of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR) are crucial events for follicular development. However, their regulatory mechanisms are unclear. DNA methylation and histone acetylation are the main epigenetic modifications, and play important roles in transcriptional expression, which regulate cell responses including cell proliferation, senescence and apoptosis. This review will discuss the dynamic epigenetic modifications of FSHR and LHCGR that occur during the process of follicular development and their response to gonadotropins. In addition, some alteration patterns that occur during these epigenetic modifications, as well as their retrospect retrotransposons, which regulate the gene expression levels of FSHR and LHCGR will be discussed.
Collapse
Affiliation(s)
- Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wanyou Feng
- School of Environmental and Life Sciences, Nanning Normal University, Nanning 530023, China
| | - Jinhua Zhou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinyue Lin
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Yanfei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Yoo J, Kim GW, Jeon YH, Lee SW, Kwon SH. Epigenetic roles of KDM3B and KDM3C in tumorigenesis and their therapeutic implications. Cell Death Dis 2024; 15:451. [PMID: 38926399 PMCID: PMC11208531 DOI: 10.1038/s41419-024-06850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Advances in functional studies on epigenetic regulators have disclosed the vital roles played by diverse histone lysine demethylases (KDMs), ranging from normal development to tumorigenesis. Most of the KDMs are Jumonji C domain-containing (JMJD) proteins. Many of these KDMs remove methyl groups from histone tails to regulate gene transcription. There are more than 30 known KDM proteins, which fall into different subfamilies. Of the many KDM subfamilies, KDM3 (JMJD1) proteins specifically remove dimethyl and monomethyl marks from lysine 9 on histone H3 and other non-histone proteins. Dysregulation of KDM3 proteins leads to infertility, obesity, metabolic syndromes, heart diseases, and cancers. Among the KDM3 proteins, KDM3A has been largely studied in cancers. However, despite a number of studies pointing out their importance in tumorigenesis, KDM3B and KDM3C are relatively overlooked. KDM3B and KDM3C show context-dependent functions, showing pro- or anti-tumorigenic abilities in different cancers. Thus, this review provides a thorough understanding of the involvement of KDM3B and KDMC in oncology that should be helpful in determining the role of KDM3 proteins in preclinical studies for development of novel pharmacological methods to overcome cancer.
Collapse
Affiliation(s)
- Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
5
|
Reshetnikov E, Churnosova M, Reshetnikova Y, Stepanov V, Bocharova A, Serebrova V, Trifonova E, Ponomarenko I, Sorokina I, Efremova O, Orlova V, Batlutskaya I, Ponomarenko M, Churnosov V, Aristova I, Polonikov A, Churnosov M. Maternal Age at Menarche Genes Determines Fetal Growth Restriction Risk. Int J Mol Sci 2024; 25:2647. [PMID: 38473894 PMCID: PMC10932237 DOI: 10.3390/ijms25052647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
We aimed to explore the potential link of maternal age at menarche (mAAM) gene polymorphisms with risk of the fetal growth restriction (FGR). This case (FGR)-control (FGR free) study included 904 women (273 FGR and 631 control) in the third trimester of gestation examined/treated in the Departments of Obstetrics. For single nucleotide polymorphism (SNP) multiplex genotyping, 50 candidate loci of mAAM were chosen. The relationship of mAAM SNPs and FGR was appreciated by regression procedures (logistic/model-based multifactor dimensionality reduction [MB-MDR]) with subsequent in silico assessment of the assumed functionality pithy of FGR-related loci. Three mAAM-appertain loci were FGR-linked to genes such as KISS1 (rs7538038) (effect allele G-odds ratio (OR)allelic = 0.63/pperm = 0.0003; ORadditive = 0.61/pperm = 0.001; ORdominant = 0.56/pperm = 0.001), NKX2-1 (rs999460) (effect allele A-ORallelic = 1.37/pperm = 0.003; ORadditive = 1.45/pperm = 0.002; ORrecessive = 2.41/pperm = 0.0002), GPRC5B (rs12444979) (effect allele T-ORallelic = 1.67/pperm = 0.0003; ORdominant = 1.59/pperm = 0.011; ORadditive = 1.56/pperm = 0.009). The haplotype ACA FSHB gene (rs555621*rs11031010*rs1782507) was FRG-correlated (OR = 0.71/pperm = 0.05). Ten FGR-implicated interworking models were founded for 13 SNPs (pperm ≤ 0.001). The rs999460 NKX2-1 and rs12444979 GPRC5B interplays significantly influenced the FGR risk (these SNPs were present in 50% of models). FGR-related mAAM-appertain 15 polymorphic variants and 350 linked SNPs were functionally momentous in relation to 39 genes participating in the regulation of hormone levels, the ovulation cycle process, male gonad development and vitamin D metabolism. Thus, this study showed, for the first time, that the mAAM-appertain genes determine FGR risk.
Collapse
Affiliation(s)
- Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Yuliya Reshetnikova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Vadim Stepanov
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Anna Bocharova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Victoria Serebrova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Ekaterina Trifonova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Olga Efremova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Valentina Orlova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Irina Batlutskaya
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Marina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Vladimir Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| |
Collapse
|
6
|
Dillingham CM, Cormaty H, Morgan EC, Tak AI, Esgdaille DE, Boutz PL, Sridharan R. KDM3A and KDM3B Maintain Naïve Pluripotency Through the Regulation of Alternative Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543088. [PMID: 37398291 PMCID: PMC10312572 DOI: 10.1101/2023.05.31.543088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Histone modifying enzymes play a central role in maintaining cell identity by establishing a conducive chromatin environment for lineage specific transcription factor activity. Pluripotent embryonic stem cell (ESC) identity is characterized by a lower abundance of gene repression associated histone modifications that enables rapid response to differentiation cues. The KDM3 family of histone demethylases removes the repressive histone H3 lysine 9 dimethylation (H3K9me2). Here we uncover a surprising role for the KDM3 proteins in the maintenance of the pluripotent state through post-transcriptional regulation. We find that KDM3A and KDM3B interact with RNA processing factors such as EFTUD2 and PRMT5. Acute selective degradation of the endogenous KDM3A and KDM3B proteins resulted in altered splicing independent of H3K9me2 status or catalytic activity. These splicing changes partially resemble the splicing pattern of the more blastocyst-like ground state of pluripotency and occurred in important chromatin and transcription factors such as Dnmt3b, Tbx3 and Tcf12. Our findings reveal non-canonical roles of histone demethylating enzymes in splicing to regulate cell identity.
Collapse
Affiliation(s)
- Caleb M Dillingham
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Harshini Cormaty
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ellen C Morgan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Andrew I Tak
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dakarai E Esgdaille
- Department of Biochemistry and Biophysics, Center for RNA Biology, Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry
| | - Paul L Boutz
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| |
Collapse
|
7
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
8
|
Xiong X, Huang X, Zhu Y, Hai Z, Fei X, Pan B, Yang Q, Xiong Y, Fu W, Lan D, Zhang X, Li J. Testis-specific knockout of Kdm2a reveals nonessential roles in male fertility but partially compromises spermatogenesis. Theriogenology 2023; 209:9-20. [PMID: 37354760 DOI: 10.1016/j.theriogenology.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Lysine-specific histone demethylase 2 (Kdm2a) is a regulatory factor of histone modifications that participates in gametogenesis and embryonic development. The mis-regulation of Kdm2a can lead to aberrant gene expression, thereby contributing to abnormal cell proliferation, differentiation, apoptosis, and tumorigenesis. However, due to the potential confounding effects that are secondary to the loss of Kdm2a function from the soma in existing whole-animal mutants, the in vivo function of Kdm2a in spermatogenesis for male fertility remains unknown. Herein, we focus on exploring the spatiotemporal expression profile and biological functions of Kdm2a in the spermatogenesis and fertility of male mice. A testis-specific knockout Kdm2a model (Kdm2a cKO) was established by using the Stra8-Cre/loxP recombinase system to explore the roles of Kdm2a in male fertility. Our results showed that Kdm2a was ubiquitously expressed and dynamically distributed in multiple tissues and cell types in the testis of mice. Surprisingly, Kdm2a-deficient adult males were completely fertile and comparable with their control (Kdm2aflox/flox) counterparts. Despite the significantly reduced total number of sperm and density of seminiferous tubules in Kdm2a cKO testis accompanied by the degeneration of spermatogenesis, the fertilization ability and embryonic developmental competence of the Kdm2a cKO were comparable with those of their control littermates, suggesting that Kdm2a disruption did not markedly affect male fertility, at least during younger ages. Furthermore, Kdm2a homozygous mutants exhibited a lower total number and motility of sperm than the control group and showed notably affected serum 17β-estradiol concentration. Interestingly, the transcriptome sequencing revealed that the loss of Kdm2a remarkably upregulated the expression level of Kdm2b. This effect, in turn, may induce compensative effects in the case of Kdm2a deficiency to maintain normal male reproduction. Together, our results reveal that Kdm2a shows spatiotemporal expression during testicular development and that its loss is insufficient to compromise the production of spermatozoa completely. The homologous Kdm2b gene might compensate for the loss of Kdm2a. Our work provides a novel Kdm2a cKO mouse allowing for the efficient deletion of Kdm2a in a testis-specific manner, and further investigated the biological function of Kdm2a and the compensatory effects of Kdm2b. Our study will advance our understanding of underlying mechanisms in spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xiangyue Huang
- Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Zhuo Hai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xixi Fei
- Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Qinhui Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xiaojian Zhang
- Center for Assisted Reproduction, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu, 610072, PR China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China; Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
9
|
Reshetnikova Y, Churnosova M, Stepanov V, Bocharova A, Serebrova V, Trifonova E, Ponomarenko I, Sorokina I, Efremova O, Orlova V, Batlutskaya I, Ponomarenko M, Churnosov V, Eliseeva N, Aristova I, Polonikov A, Reshetnikov E, Churnosov M. Maternal Age at Menarche Gene Polymorphisms Are Associated with Offspring Birth Weight. Life (Basel) 2023; 13:1525. [PMID: 37511900 PMCID: PMC10381708 DOI: 10.3390/life13071525] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, the association between maternal age at menarche (AAM)-related polymorphisms and offspring birth weight (BW) was studied. The work was performed on a sample of 716 pregnant women and their newborns. All pregnant women underwent genotyping of 50 SNPs of AAM candidate genes. Regression methods (linear and Model-Based Multifactor Dimensionality Reduction (MB-MDR)) with permutation procedures (the indicator pperm was calculated) were used to identify the correlation between SNPs and newborn weight (transformed BW values were analyzed) and in silico bioinformatic examination was applied to assess the intended functionality of BW-associated loci. Four AAM-related genetic variants were BW-associated including genes such as POMC (rs7589318) (βadditive = 0.202/pperm = 0.015), KDM3B (rs757647) (βrecessive = 0.323/pperm = 0.005), INHBA (rs1079866) (βadditive = 0.110/pperm = 0.014) and NKX2-1 (rs999460) (βrecessive = -0.176/pperm = 0.015). Ten BW-significant models of interSNPs interactions (pperm ≤ 0.001) were identified for 20 polymorphisms. SNPs rs7538038 KISS1, rs713586 RBJ, rs12324955 FTO and rs713586 RBJ-rs12324955 FTO two-locus interaction were included in the largest number of BW-associated models (30% models each). BW-associated AAM-linked 22 SNPs and 350 proxy loci were functionally related to 49 genes relevant to pathways such as the hormone biosynthesis/process and female/male gonad development. In conclusion, maternal AMM-related genes polymorphism is associated with the offspring BW.
Collapse
Affiliation(s)
- Yuliya Reshetnikova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Vadim Stepanov
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Anna Bocharova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Victoria Serebrova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Ekaterina Trifonova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Efremova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Valentina Orlova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Irina Batlutskaya
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Marina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Vladimir Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Natalya Eliseeva
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| |
Collapse
|
10
|
Zhao X, Yu T, Tang J, Yao RE, Li N, Wang J. Two patients with KDM3B variants and new presentations of Diets-Jongmans syndrome. Neurogenetics 2023; 24:95-101. [PMID: 36757469 DOI: 10.1007/s10048-023-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/07/2023] [Indexed: 02/10/2023]
Abstract
KDM3B is located on chromosome 5q31 and encodes KDM3B, which is involved in histone demethylation and epigenetic regulation. Pathogenic KDM3B variants cause a dominantly inherited disorder presenting with intellectual disability (ID), short stature, and facial dysmorphism, named Diets-Jongmans syndrome. We describe two patients with KDM3B variants presenting with Diets-Jongmans syndrome. Genetic testing was performed because of the clinical data and a lack of a clear diagnosis in both patients. Candidate variants were verified by Sanger sequencing. After KDM3B variants were detected, in silico tools were used to predict the pathogenicity of the missense variants. A minigene assay was performed to evaluate the splicing effects of the c.5070 + 1G > A variant on KDM3B. Patient 1 mainly presented with repetitive upper respiratory tract infection and patient 2 presented with palpitation, shortness of breath, and pitting edema; both had ID. Whole exome sequencing identified variants of KDM3B. Patient 1 had the de novo KDM3B c.5070 + 1G > A variant, whereas patient 2 had the c.2828G > A (p.R943Q) variant. Transcriptional experiments of the splicing variant c.5070 + 1G > A revealed aberrant transcripts leading to truncated protein products. We found two pathogenic variants in KDM3B, one of which is novel. Both patients had additional clinical presentations, and patient 1 had transient neutropenia. KDM3B c.5070 + 1G > A is the first KDM3B splice-site variant and was identified as a germline variant. Neutropenia and cardiomyopathy are newly found presentations of Diets-Jongmans syndrome. Our report enriches our knowledge of the genotypic spectrum of the KDM3B variants and phenotypic diversity of Diets-Jongmans syndrome.
Collapse
Affiliation(s)
- Xiangyue Zhao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Tang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ru-En Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Kang Y, Bi Y, Tang Q, Xu H, Lan X, Zhang Q, Pan C. A 7-nt nucleotide sequence variant within the sheep KDM3B gene affects female reproduction traits. Anim Biotechnol 2022; 33:1661-1667. [PMID: 34081570 DOI: 10.1080/10495398.2021.1929270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lysine demethylase 3B (KDM3B) gene is a histone demethylase, demonstrating specific demethylation of the histone H3 lysine 9. It was detected as a sheep reproductive candidate gene by genome-wide scans, and related studies also showed its significance in female reproductive process. However, rare study researched its polymorphism. Herein, we hypothesized that the polymorphisms of KDM3B gene were associated with sheep reproduction traits. A 7-nt nucleotide sequence variant (rs1088697156) within KDM3B gene was identified in a total of 888 individuals, including the Australian White (AUW) sheep and Lanzhou Fat-tailed (LFT) sheep. II (insertion/insertion) and ID (insertion/deletion) genotypes of 7-nt variant were detected, which were at Hardy-Weinberg equilibrium (HWE) in detected breeds. Association analysis illustrated the 7-nt variant was significantly associated with the litter size, duration of pregnancy, live lamb number, live lamb rate, stillbirth number, stillbirth rate of average and different parity (P < 0.05) in AUW sheep. Moreover, 'ID' was the dominant genotype with excellent consistency in reproductive traits. It is instrumental to select individuals with ID genotype for improving the sheep reproduction traits. These findings suggest that the 7-nt variant within KDM3B gene can be used as a candidate marker of reproduction traits for sheep breeding improvement by marker-assisted selection.
Collapse
Affiliation(s)
- Yuxin Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China.,Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd, Tianjin, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Xiong X, Zhang X, Yang M, Zhu Y, Yu H, Fei X, Mastuda F, Lan D, Xiong Y, Fu W, Yin S, Li J. Oocyte-Specific Knockout of Histone Lysine Demethylase KDM2a Compromises Fertility by Blocking the Development of Follicles and Oocytes. Int J Mol Sci 2022; 23:ijms231912008. [PMID: 36233308 PMCID: PMC9570323 DOI: 10.3390/ijms231912008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
The methylation status of histones plays a crucial role in many cellular processes, including follicular and oocyte development. Lysine-specific demethylase 2a (KDM2a) has been reported to be closely associated with gametogenesis and reproductive performance, but the specific function and regulatory mechanism have been poorly characterized in vivo. We found KDM2a to be highly expressed in growing follicles and oocytes of mice in this study. To elucidate the physiological role of Kdm2a, the zona pellucida 3-Cre (Zp3-Cre)/LoxP system was used to generate an oocyte Kdm2a conditional knockout (Zp3-Cre; Kdm2aflox/flox, termed Kdm2a cKO) model. Our results showed that the number of pups was reduced by approximately 50% in adult Kdm2a cKO female mice mating with wildtype males than that of the control (Kdm2aflox/flox) group. To analyze the potential causes, the ovaries of Kdm2a cKO mice were subjected to histological examination, and results indicated an obvious difference in follicular development between Kdm2a cKO and control female mice and partial arrest at the primary antral follicle stage. The GVBD and matured rates of oocytes were also compromised after conditional knockout Kdm2a, and the morphological abnormal oocytes increased. Furthermore, the level of 17β-estradiol of Kdm2a cKO mice was only 60% of that in the counterparts, and hormone sensitivity decreased as the total number of ovulated and matured oocytes decreased after superovulation. After deletion of Kdm2a, the patterns of H3K36me2/3 in GVBD-stage oocytes were remarkedly changed. Transcriptome sequencing showed that the mRNA expression profiles in Kdm2a cKO oocytes were significantly different, and numerous differentially expressed genes were involved in pathways regulating follicular and oocyte development. Taken together, these results indicated that the oocyte-specific knockout Kdm2a gene led to female subfertility, suggesting the crucial role of Kdm2a in epigenetic modification and follicular and oocyte development.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Xiaojian Zhang
- Center for Assisted Reproduction, Sichuan Academy of Medical Science, Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Manzhen Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Hailing Yu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Fuko Mastuda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
13
|
Kang Y, Zhu Q, Meng F, Xu H, Guo Z, Pan C. Rapid detection of InDel within the KDM3B gene in five sheep breeds using the mathematical expectation (ME) method. Gene 2022; 834:146598. [PMID: 35598684 DOI: 10.1016/j.gene.2022.146598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022]
Abstract
Lysine demethylase 3B (KDM3B), a candidate gene associated with bone formation and growth, and differentiation of osteoblast, might affect the animal growth traits. Herein, the insertion/deletion (InDel) of the KDM3B gene was quickly detected in 882 sheep from five breeds using the mathematical expectation (ME) method. The results showed that there were two genotypes of 7-bp variation in KDM3B, including II (insertion/insertion) and ID (insertion/deletion), and the frequency of two genotypes varied among the five sheep breeds. Association analysis results demonstrated that the 7-bp indel was significantly associated with chest depth of LFT sheep (P = 0.012), and body weight (P = 0.006), body height (P = 0.030), chest depth (P = 0.043), chest circumference (P = 0.016), abdominal width (P = 0.035) and height at hip cross (P = 0.022) in LXBH sheep. Moreover, II genotype was the predominant genotype with excellent consistency in sheep growth traits (P < 0.05). Collectively, the above results suggest that this locus can be used as an effective molecular marker to improve the sheep growth traits and provide a scientific basis for the development of sheep breeding.
Collapse
Affiliation(s)
- Yuxin Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qihui Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fanxin Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
| | - Zhengang Guo
- Animal Husbandry and Veterinary Science Institute, Bijie, Guizhou 551700, China; Guizhou New Wumeng Ecological Animal Husbandry Development Limited Company, Hezhang, Guizhou 553200, China.
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Li G, Tang J, Huang J, Jiang Y, Fan Y, Wang X, Ren J. Genome-Wide Estimates of Runs of Homozygosity, Heterozygosity, and Genetic Load in Two Chinese Indigenous Goat Breeds. Front Genet 2022; 13:774196. [PMID: 35559012 PMCID: PMC9086400 DOI: 10.3389/fgene.2022.774196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Runs of homozygosity (ROH) and heterozygosity (ROHet) are windows into population demographic history and adaptive evolution. Numerous studies have shown that deleterious mutations are enriched in the ROH of humans, pigs, cattle, and chickens. However, the relationship of deleterious variants to ROH and the pattern of ROHet in goats have been largely understudied. Here, 240 Guangfeng and Ganxi goats from Jiangxi Province, China, were genotyped using the Illumina GoatSNP50 BeadChip and genome-wide ROH, ROHet, and genetic load analyses were performed in the context of 32 global goat breeds. The classes with the highest percentage of ROH and ROHet were 0.5–2 Mb and 0.5–1 Mb, respectively. The results of inbreeding coefficients (based on SNP and ROH) and ROHet measurements showed that Guangfeng goats had higher genetic variability than most Chinese goats, while Ganxi goats had a high degree of inbreeding, even exceeding that of commercial goat breeds. Next, the predicted damaging homozygotes were more enriched in long ROHs, especially in Guangfeng goats. Therefore, we suggest that information on damaging alleles should also be incorporated into the design of breeding and conservation programs. A list of genes related to fecundity, growth, and environmental adaptation were identified in the ROH hotspots of two Jiangxi goats. A sense-related ROH hotspot (chromosome 12: 50.55–50.81 Mb) was shared across global goat breeds and may have undergone selection prior to goat domestication. Furthermore, an identical ROHet hotspot (chromosome 1: 132.21–132.54 Mb) containing two genes associated with embryonic development (STAG1 and PCCB) was detected in domestic goat breeds worldwide. Tajima’s D and BetaScan2 statistics indicated that this region may be caused by long-term balancing selection. These findings not only provide guidance for the design of conservation strategies for Jiangxi goat breeds but also enrich our understanding of the adaptive evolution of goats.
Collapse
Affiliation(s)
- Guixin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Jinyan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yin Fan
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, China
| | - Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Coker SJ, Smith-Díaz CC, Dyson RM, Vissers MCM, Berry MJ. The Epigenetic Role of Vitamin C in Neurodevelopment. Int J Mol Sci 2022; 23:ijms23031208. [PMID: 35163133 PMCID: PMC8836017 DOI: 10.3390/ijms23031208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The maternal diet during pregnancy is a key determinant of offspring health. Early studies have linked poor maternal nutrition during gestation with a propensity for the development of chronic conditions in offspring. These conditions include cardiovascular disease, type 2 diabetes and even compromised mental health. While multiple factors may contribute to these outcomes, disturbed epigenetic programming during early development is one potential biological mechanism. The epigenome is programmed primarily in utero, and during this time, the developing fetus is highly susceptible to environmental factors such as nutritional insults. During neurodevelopment, epigenetic programming coordinates the formation of primitive central nervous system structures, neurogenesis, and neuroplasticity. Dysregulated epigenetic programming has been implicated in the aetiology of several neurodevelopmental disorders such as Tatton-Brown-Rahman syndrome. Accordingly, there is great interest in determining how maternal nutrient availability in pregnancy might affect the epigenetic status of offspring, and how such influences may present phenotypically. In recent years, a number of epigenetic enzymes that are active during embryonic development have been found to require vitamin C as a cofactor. These enzymes include the ten-eleven translocation methylcytosine dioxygenases (TETs) and the Jumonji C domain-containing histone lysine demethylases that catalyse the oxidative removal of methyl groups on cytosines and histone lysine residues, respectively. These enzymes are integral to epigenetic regulation and have fundamental roles in cellular differentiation, the maintenance of pluripotency and development. The dependence of these enzymes on vitamin C for optimal catalytic activity illustrates a potentially critical contribution of the nutrient during mammalian development. These insights also highlight a potential risk associated with vitamin C insufficiency during pregnancy. The link between vitamin C insufficiency and development is particularly apparent in the context of neurodevelopment and high vitamin C concentrations in the brain are indicative of important functional requirements in this organ. Accordingly, this review considers the evidence for the potential impact of maternal vitamin C status on neurodevelopmental epigenetics.
Collapse
Affiliation(s)
- Sharna J. Coker
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| | - Carlos C. Smith-Díaz
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| | - Rebecca M. Dyson
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
- Correspondence: (M.C.M.V.); (M.J.B.)
| | - Mary J. Berry
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
- Correspondence: (M.C.M.V.); (M.J.B.)
| |
Collapse
|
16
|
Zhu Z, Wu X, Li Q, Zhang J, Yu S, Shen Q, Zhou Z, Pan Q, Yue W, Qin D, Zhang Y, Zhao W, Zhang R, Peng S, Li N, Zhang S, Lei A, Miao YL, Liu Z, Chen X, Wang H, Liao M, Hua J. Histone demethylase complexes KDM3A and KDM3B cooperate with OCT4/SOX2 to define a pluripotency gene regulatory network. FASEB J 2021; 35:e21664. [PMID: 34042215 DOI: 10.1096/fj.202100230r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The pluripotency gene regulatory network of porcine induced pluripotent stem cells(piPSCs), especially in epigenetics, remains elusive. To determine the biological function of epigenetics, we cultured piPSCs in different culture conditions. We found that activation of pluripotent gene- and pluripotency-related pathways requires the erasure of H3K9 methylation modification which was further influenced by mouse embryonic fibroblast (MEF) served feeder. By dissecting the dynamic change of H3K9 methylation during loss of pluripotency, we demonstrated that the H3K9 demethylases KDM3A and KDM3B regulated global H3K9me2/me3 level and that their co-depletion led to the collapse of the pluripotency gene regulatory network. Immunoprecipitation-mass spectrometry (IP-MS) provided evidence that KDM3A and KDM3B formed a complex to perform H3K9 demethylation. The genome-wide regulation analysis revealed that OCT4 (O) and SOX2 (S), the core pluripotency transcriptional activators, maintained the pluripotent state of piPSCs depending on the H3K9 hypomethylation. Further investigation revealed that O/S cooperating with histone demethylase complex containing KDM3A and KDM3B promoted pluripotency genes expression to maintain the pluripotent state of piPSCs. Together, these data offer a unique insight into the epigenetic pluripotency network of piPSCs.
Collapse
Affiliation(s)
- Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qun Li
- College of Life Science, Northwest A&F University, Yangling, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qin Pan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wei Yue
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Dezhe Qin
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Ying Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenxu Zhao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, North-East Agricultural University, Harbin, China
| | - Xingqi Chen
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Huayan Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Mingzhi Liao
- College of Life Science, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
18
|
Sui Y, Gu R, Janknecht R. Crucial Functions of the JMJD1/KDM3 Epigenetic Regulators in Cancer. Mol Cancer Res 2020; 19:3-13. [PMID: 32605929 DOI: 10.1158/1541-7786.mcr-20-0404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
Epigenetic changes are one underlying cause for cancer development and often due to dysregulation of enzymes modifying DNA or histones. Most Jumonji C domain-containing (JMJD) proteins are histone lysine demethylases (KDM) and therefore epigenetic regulators. One JMJD subfamily consists of JMJD1A/KDM3A, JMJD1B/KDM3B, and JMJD1C/KDM3C that are roughly 50% identical at the amino acid level. All three JMJD1 proteins are capable of removing dimethyl and monomethyl marks from lysine 9 on histone H3 and might also demethylate histone H4 on arginine 3 and nonhistone proteins. Analysis of knockout mice revealed critical roles for JMJD1 proteins in fertility, obesity, metabolic syndrome, and heart disease. Importantly, a plethora of studies demonstrated that especially JMJD1A and JMJD1C are overexpressed in various tumors, stimulate cancer cell proliferation and invasion, and facilitate efficient tumor growth. However, JMJD1A may also inhibit the formation of germ cell tumors. Likewise, JMJD1B appears to be a tumor suppressor in acute myeloid leukemia, but a tumor promoter in other cancers. Notably, by reducing methylation levels on histone H3 lysine 9, JMJD1 proteins can profoundly alter the transcriptome and thereby affect tumorigenesis, including through upregulating oncogenes such as CCND1, JUN, and MYC This epigenetic activity of JMJD1 proteins is sensitive to heavy metals, oncometabolites, oxygen, and reactive oxygen species, whose levels are frequently altered within cancer cells. In conclusion, inhibition of JMJD1 enzymatic activity through small molecules is predicted to be beneficial in many different cancers, but not in the few malignancies where JMJD1 proteins apparently exert tumor-suppressive functions.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ruicai Gu
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
19
|
Guo Z, Zhang L, Li Y, Wu S, Wang S, Zhang L, Bao Z. Expression profiling of the Kdm genes in scallop Patinopecten yessoensis suggests involvement of histone demethylation in regulation of early development and gametogenesis. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110434. [PMID: 32201355 DOI: 10.1016/j.cbpb.2020.110434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Histone demethylation modification is an important means of gene expression regulation and is widely involved in biological processes such as animal reproduction and development. Histone lysine demethylases (Kdm) plays an important role in the demethylation of histones. To understand the role of histone demethylation in scallops, we identified the Kdm gene family of the Yesso scallop Patinopecten yessoensis, and analyzed its expression during the gonad and early development. The results showed that the P. yessoensis has a complete Kdm family including seventeen members that belong to sixteen subfamilies (Hif1an, Hspbap1, Jarid2, Jmjd4, Jmjd6, Jmjd7, Jmjd8, Kdm1, Kdm2, Kdm3, Kdm4, Kdm5, Kdm6, Kdm7, Kdm8 and Kdm9). The Kdm genes showed five different expression patterns in the early development of scallop, with some of them (e.g. Jmjd7, Jmjd8 and Kdm8) being highly expressed in only one or two stage and the others (e.g. Kdm1A, Kdm9, Jmjd4 and Jmjd6) in several consecutive stages. During gonadal development, the Kdm genes also display various expression patterns. Some genes (e.g. Kdm2, Kdm4 and Jmjd7) display preferential expression in the testis, and the others have no obvious sex bias but show stage preference (resting, proliferative, growing or maturation stage). These results suggest that various histone demethylation modifications (e.g. H3K4, H3K9 and H3K27) may participate in the regulation of gametogenesis and early development of Yesso scallop. It will facilitate a better understanding of the epigenetic contributions to mollusk development.
Collapse
Affiliation(s)
- Zhenyi Guo
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Lijing Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Saavedra F, Gurard-Levin ZA, Rojas-Villalobos C, Vassias I, Quatrini R, Almouzni G, Loyola A. JMJD1B, a novel player in histone H3 and H4 processing to ensure genome stability. Epigenetics Chromatin 2020; 13:6. [PMID: 32070414 PMCID: PMC7027290 DOI: 10.1186/s13072-020-00331-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Maintaining a proper supply of soluble histones throughout the cell cycle is important to ensure chromatin and genome stability. Following their synthesis, histones undergo a series of maturation steps to prepare them for deposition onto chromatin. RESULTS Here, we identify the lysine demethylase JMJD1B as a novel player in the maturation cascade that contributes to regulate histone provision. We find that depletion of JMJD1B increases the protein levels of the histone chaperone tNASP leading to an accumulation of newly synthesized histones H3 and H4 at early steps of the histone maturation cascade, which perturbs chromatin assembly. Furthermore, we find a high rate of JMJD1B mutations in cancer patients, and a correlation with genomic instability. CONCLUSIONS Our data support a role for JMJD1B in fine-tuning histone supply to maintain genome integrity, opening novel avenues for cancer therapeutics.
Collapse
Affiliation(s)
- Francisco Saavedra
- Fundación Ciencia & Vida, 7780272, Santiago, Chile.,Universidad San Sebastián, 7510156, Santiago, Chile
| | - Zachary A Gurard-Levin
- CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, Paris, 75005, France.,UPMC Univ Paris 06, CNRS, UMR3664, Sorbonne Universités, Paris, 75005, France.,SAMDI Tech, Inc, Chicago, IL, 60616, USA
| | - Camila Rojas-Villalobos
- Fundación Ciencia & Vida, 7780272, Santiago, Chile.,Universidad San Sebastián, 7510156, Santiago, Chile
| | - Isabelle Vassias
- CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, Paris, 75005, France.,UPMC Univ Paris 06, CNRS, UMR3664, Sorbonne Universités, Paris, 75005, France
| | - Raquel Quatrini
- Fundación Ciencia & Vida, 7780272, Santiago, Chile.,Universidad San Sebastián, 7510156, Santiago, Chile
| | - Geneviève Almouzni
- CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, Paris, 75005, France.,UPMC Univ Paris 06, CNRS, UMR3664, Sorbonne Universités, Paris, 75005, France
| | - Alejandra Loyola
- Fundación Ciencia & Vida, 7780272, Santiago, Chile. .,Universidad San Sebastián, 7510156, Santiago, Chile.
| |
Collapse
|
21
|
Dolebo AT, Khayatzadeh N, Melesse A, Wragg D, Rekik M, Haile A, Rischkowsky B, Rothschild MF, Mwacharo JM. Genome-wide scans identify known and novel regions associated with prolificacy and reproduction traits in a sub-Saharan African indigenous sheep (Ovis aries). Mamm Genome 2019; 30:339-352. [PMID: 31758253 PMCID: PMC6884434 DOI: 10.1007/s00335-019-09820-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 02/05/2023]
Abstract
Maximizing the number of offspring born per female is a key functionality trait in commercial- and/or subsistence-oriented livestock enterprises. Although the number of offspring born is closely associated with female fertility and reproductive success, the genetic control of these traits remains poorly understood in sub-Saharan Africa livestock. Using selection signature analysis performed on Ovine HD BeadChip data from the prolific Bonga sheep in Ethiopia, 41 candidate regions under selection were identified. The analysis revealed one strong selection signature on a candidate region on chromosome X spanning BMP15, suggesting this to be the primary candidate prolificacy gene in the breed. The analysis also identified several candidate regions spanning genes not reported before in prolific sheep but underlying fertility and reproduction in other species. The genes associated with female reproduction traits included SPOCK1 (age at first oestrus), GPR173 (mediator of ovarian cyclicity), HB-EGF (signalling early pregnancy success) and SMARCAL1 and HMGN3a (regulate gene expression during embryogenesis). The genes involved in male reproduction were FOXJ1 (sperm function and successful fertilization) and NME5 (spermatogenesis). We also observed genes such as PKD2L2, MAGED1 and KDM3B, which have been associated with diverse fertility traits in both sexes of other species. The results confirm the complexity of the genetic mechanisms underlying reproduction while suggesting that prolificacy in the Bonga sheep, and possibly African indigenous sheep is partly under the control of BMP15 while other genes that enhance male and female fertility are essential for reproductive fitness.
Collapse
Affiliation(s)
- Asrat Tera Dolebo
- Southern Agricultural Research Institute (SARI), P.O. Box 06, Hawassa, Ethiopia
- Department of Animal and Range Sciences, Hawassa University, P.O Box 5, Hawassa, Ethiopia
| | - Negar Khayatzadeh
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Strasse, 1180, Vienna, Austria
| | - Aberra Melesse
- Department of Animal and Range Sciences, Hawassa University, P.O Box 5, Hawassa, Ethiopia
| | - David Wragg
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Mourad Rekik
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Aynalem Haile
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Barbara Rischkowsky
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011-3150, USA
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia.
| |
Collapse
|
22
|
Li S, Ali S, Duan X, Liu S, Du J, Liu C, Dai H, Zhou M, Zhou L, Yang L, Chu P, Li L, Bhatia R, Schones DE, Wu X, Xu H, Hua Y, Guo Z, Yang Y, Zheng L, Shen B. JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells. Cell Rep 2019; 23:389-403. [PMID: 29641999 PMCID: PMC5933860 DOI: 10.1016/j.celrep.2018.03.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 01/23/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022] Open
Abstract
The arginine methylation status of histones dynamically changes during many cellular processes, including hematopoietic stem/progenitor cell (HSPC) development. The arginine methyltransferases and the readers that transduce the histone codes have been defined. However, whether arginine demethylation actively occurs in cells and what enzyme demethylates the methylarginine residues during various cellular processes are unknown. We report that JMJD1B, previously identified as a lysine demethylase for H3K9me2, mediates arginine demethylation of H4R3me2s and its intermediate, H4R3me1. We show that demethylation of H4R3me2s and H3K9me2s in promoter regions is correlated with active gene expression. Furthermore, knockout of JMJD1B blocks demethylation of H4R3me2s and/or H3K9me2 at distinct clusters of genes and impairs the activation of genes important for HSPC differentiation and development. Consequently, JMJD1B−/− mice show defects in hematopoiesis. Altogether, our study demonstrates that demethylase-mediated active arginine demethylation process exists in eukaryotes and that JMJD1B demethylates both H4R3me2s and H3K9me2 for epigenetic programming during hematopoiesis.
Collapse
Affiliation(s)
- Sihui Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Shafat Ali
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Songbai Liu
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Juan Du
- Department of Diabetes Complications & Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA; Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Changwei Liu
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Huifang Dai
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mian Zhou
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lina Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lu Yang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Peiguo Chu
- Department of Pathology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ling Li
- Department of Hematologic Malignancy Translational Science, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ravi Bhatia
- Department of Hematologic Malignancy Translational Science, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dustin E Schones
- Department of Diabetes Complications & Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Hong Xu
- Colleges of Life Sciences and Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuejin Hua
- Colleges of Life Sciences and Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhigang Guo
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yanzhong Yang
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Li Zheng
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| | - Binghui Shen
- Departments of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
23
|
Mahamdallie S, Yost S, Poyastro-Pearson E, Holt E, Zachariou A, Seal S, Elliott A, Clarke M, Warren-Perry M, Hanks S, Anderson J, Bomken S, Cole T, Farah R, Furtwaengler R, Glaser A, Grundy R, Hayden J, Lowis S, Millot F, Nicholson J, Ronghe M, Skeen J, Williams D, Yeomanson D, Ruark E, Rahman N. Identification of new Wilms tumour predisposition genes: an exome sequencing study. THE LANCET. CHILD & ADOLESCENT HEALTH 2019; 3:322-331. [PMID: 30885698 PMCID: PMC6472290 DOI: 10.1016/s2352-4642(19)30018-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Wilms tumour is the most common childhood renal cancer and is genetically heterogeneous. While several Wilms tumour predisposition genes have been identified, there is strong evidence that further predisposition genes are likely to exist. Our study aim was to identify new predisposition genes for Wilms tumour. METHODS In this exome sequencing study, we analysed lymphocyte DNA from 890 individuals with Wilms tumour, including 91 affected individuals from 49 familial Wilms tumour pedigrees. We used the protein-truncating variant prioritisation method to prioritise potential disease-associated genes for further assessment. We evaluated new predisposition genes in exome sequencing data that we generated in 334 individuals with 27 other childhood cancers and in exome data from The Cancer Genome Atlas obtained from 7632 individuals with 28 adult cancers. FINDINGS We identified constitutional cancer-predisposing mutations in 33 individuals with childhood cancer. The three identified genes with the strongest signal in the protein-truncating variant prioritisation analyses were TRIM28, FBXW7, and NYNRIN. 21 of 33 individuals had a mutation in TRIM28; there was a strong parent-of-origin effect, with all ten inherited mutations being maternally transmitted (p=0·00098). We also found a strong association with the rare epithelial subtype of Wilms tumour, with 14 of 16 tumours being epithelial or epithelial predominant. There were no TRIM28 mutations in individuals with other childhood or adult cancers. We identified truncating FBXW7 mutations in four individuals with Wilms tumour and a de-novo non-synonymous FBXW7 mutation in a child with a rhabdoid tumour. Biallelic truncating mutations in NYNRIN were identified in three individuals with Wilms tumour, which is highly unlikely to have occurred by chance (p<0·0001). Finally, we identified two de-novo KDM3B mutations, supporting the role of KDM3B as a childhood cancer predisposition gene. INTERPRETATION The four new Wilms tumour predisposition genes identified-TRIM28, FBXW7, NYNRIN, and KDM3B-are involved in diverse biological processes and, together with the other 17 known Wilms tumour predisposition genes, account for about 10% of Wilms tumour cases. The overlap between these 21 constitutionally mutated predisposition genes and 20 genes somatically mutated in Wilms tumour is limited, consisting of only four genes. We recommend that all individuals with Wilms tumour should be offered genetic testing and particularly, those with epithelial Wilms tumour should be offered TRIM28 genetic testing. Only a third of the familial Wilms tumour clusters we analysed were attributable to known genes, indicating that further Wilms tumour predisposition factors await discovery. FUNDING Wellcome Trust.
Collapse
Affiliation(s)
- Shazia Mahamdallie
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Shawn Yost
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Esty Holt
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Anna Zachariou
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Sheila Seal
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Anna Elliott
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Matthew Clarke
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Sandra Hanks
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - John Anderson
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Simon Bomken
- The Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Trevor Cole
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Roula Farah
- Department of Paediatrics, Saint George Hospital University Medical Centre, Beirut, Lebanon
| | - Rhoikos Furtwaengler
- Department of Paediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany
| | - Adam Glaser
- School of Medicine, University of Leeds, Leeds Institute of Data Analytics, Leeds, UK
| | - Richard Grundy
- Children's Brain Tumour Research Centre, University of Nottingham, Queen's Medical Centre Nottingham, Nottingham, UK
| | - James Hayden
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Steve Lowis
- Department of Paediatric Oncology and Haematology, Bristol Royal Hospital for Children, Bristol, UK
| | - Frédéric Millot
- CIC 1402, Paediatric Oncology and Heamatology, Centre of Clinical Investigation, Poitiers, France
| | - James Nicholson
- Paediatric Oncology and Haematology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Milind Ronghe
- Department of Paediatric Oncology, Royal Hospital for Children, Queen Elizabeth University Hospital, Glasgow, UK
| | - Jane Skeen
- Starship Children's Hospital, Auckland, New Zealand
| | - Denise Williams
- Paediatric Oncology and Haematology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Daniel Yeomanson
- Department of Haematology and Oncology, Sheffield Children's Hospital, Sheffield, UK
| | - Elise Ruark
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Nazneen Rahman
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK; Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
24
|
Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma 2019; 128:423-441. [DOI: 10.1007/s00412-019-00704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023]
|
25
|
Diets IJ, van der Donk R, Baltrunaite K, Waanders E, Reijnders MRF, Dingemans AJM, Pfundt R, Vulto-van Silfhout AT, Wiel L, Gilissen C, Thevenon J, Perrin L, Afenjar A, Nava C, Keren B, Bartz S, Peri B, Beunders G, Verbeek N, van Gassen K, Thiffault I, Cadieux-Dion M, Huerta-Saenz L, Wagner M, Konstantopoulou V, Vodopiutz J, Griese M, Boel A, Callewaert B, Brunner HG, Kleefstra T, Hoogerbrugge N, de Vries BBA, Hwa V, Dauber A, Hehir-Kwa JY, Kuiper RP, Jongmans MCJ. De Novo and Inherited Pathogenic Variants in KDM3B Cause Intellectual Disability, Short Stature, and Facial Dysmorphism. Am J Hum Genet 2019; 104:758-766. [PMID: 30929739 PMCID: PMC6451728 DOI: 10.1016/j.ajhg.2019.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/21/2019] [Indexed: 01/17/2023] Open
Abstract
By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood. KDM3B encodes for a histone demethylase and is involved in H3K9 demethylation, a crucial part of chromatin modification required for transcriptional regulation. We identified missense and truncating variants, suggesting that KDM3B haploinsufficiency is the underlying mechanism for this syndrome. By using a hybrid facial-recognition model, we show that individuals with a pathogenic variant in KDM3B have a facial gestalt, and that they show significant facial similarity compared to control individuals with ID. In conclusion, pathogenic variants in KDM3B cause a syndrome characterized by ID, short stature, and facial dysmorphism.
Collapse
Affiliation(s)
- Illja J Diets
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Roos van der Donk
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands
| | - Kristina Baltrunaite
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Esmé Waanders
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands
| | - Margot R F Reijnders
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center, 6229HX Maastricht, the Netherlands
| | - Alexander J M Dingemans
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | | | - Laurens Wiel
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Julien Thevenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, 21079 Dijon, France; Equipe Génétique des Anomalies du Développement, Université de Bourgogne-France Comté, 21070 Dijon, France
| | - Laurence Perrin
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, 21079 Dijon, France
| | - Alexandra Afenjar
- APHP, Département de Génétique et Embryologie Médicale, Centre de Référence Déficiences Intellectuelles de Causes Rares, GRC n°19, ConCer-LD, Hôpital Armand Trousseau, 75012 Paris, France
| | - Caroline Nava
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, 75013, Paris, France; Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France
| | - Boris Keren
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, 75013, Paris, France
| | - Sarah Bartz
- Division of Endocrinology, Children's Hospital of Colorado, Aurora, CO 80045, USA
| | - Bethany Peri
- Division of Endocrinology, Children's Hospital of Colorado, Aurora, CO 80045, USA
| | - Gea Beunders
- Department of Clinical Genetics, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Nienke Verbeek
- Department of Genetics, University Medical Center Utrecht, 3508AB Utrecht, the Netherlands
| | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, 3508AB Utrecht, the Netherlands
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 66211, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 66211, USA; University of Missouri, Kansas City School of Medicine, Kansas City, MO 66211, USA
| | - Maxime Cadieux-Dion
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 66211, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 66211, USA
| | - Lina Huerta-Saenz
- Children's Mercy Hospital, Kansas City, MO 66211, USA; Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Penn State Hershey Children's Hospital, Hershey, PA 17033, USA
| | - Matias Wagner
- Institute of Human Genetics, Technische Universität München, 80333 Munich, Germany; Institute for Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Vassiliki Konstantopoulou
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich, German Center for Lung Research, 80333 Munich, Germany
| | - Annekatrien Boel
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands; Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6202AZ Maastricht, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Endocrinology, Children's National Health System, Washington, DC 20010, USA
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands
| | - Roland P Kuiper
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands
| | - Marjolijn C J Jongmans
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, 3508AB Utrecht, the Netherlands.
| |
Collapse
|
26
|
Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med 2019; 131:282-298. [PMID: 30572012 DOI: 10.1016/j.freeradbiomed.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
The chromatin structure of the mammalian genome must facilitate both precisely-controlled DNA replication together with tightly-regulated gene transcription. This necessarily involves complex mechanisms and processes which remain poorly understood. It has long been recognised that the epigenetic landscape becomes established during embryonic development and acts to specify and determine cell fate. In addition, the chromatin structure is highly dynamic and allows for both cellular reprogramming and homeostatic modulation of cell function. In this respect, the functions of epigenetic "erasers", which act to remove covalently-linked epigenetic modifications from DNA and histones are critical. The enzymatic activities of the TET and JmjC protein families have been identified as demethylases which act to remove methyl groups from DNA and histones, respectively. Further, they are characterised as members of the Fe(II)- and 2-oxoglutarate-dependent dioxygenase superfamily. This provides the intriguing possibility that their enzymatic activities may be modulated by cellular metabolism, oxygen availability and redox-based mechanisms, all of which are likely to display dynamic cell- and tissue-specific patterns of flux. Here we discuss the current evidence for such [O2]- and redox-dependent regulation of the TET and Jmjc demethylases and the potential physiological and pathophysiological functional consequences of such regulation.
Collapse
Affiliation(s)
- Nermina Lamadema
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Simon Burr
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|
27
|
Song XX, Shi S, Guo Z, Li XF, Yu BW. Estrogen receptors involvement in intervertebral discogenic pain of the elderly women: colocalization and correlation with the expression of Substance P in nucleus pulposus. Oncotarget 2018; 8:38136-38144. [PMID: 28430617 PMCID: PMC5503520 DOI: 10.18632/oncotarget.15421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/08/2017] [Indexed: 11/25/2022] Open
Abstract
Estrogenic modulation of pain is an exceedingly complex phenomenon. However, whether estrogen is involved in discogenic low back pain still remains unclear. Here, immunoreactivity staining technique was used to examine the expression level of the estrogen receptors (ERα and ERβ) and a pain related neuropeptide, Substance P in the lumbar intervertebral discs to analyze the relationship between the ERs and Substance P. Nucleus pulposus tissues of 23 elderly female patients were harvested during spinal surgeries and made to detect the immunoreactivity staining of ERα, ERβ and Substance P. The colocalization and intensities of ERs and Substance P were explored and evaluated respectively. The correlations between changes of ERα, ERβ and Substance P were also assessed.Our results revealed that Substance P colocalized with ERα and ERβ both in cytoplasm and nucleus of the nucleus pulposus cells. HSCORE analysis indicated that Substance P negatively correlated with both ERα and ERβ expression. Collectively, the crosstalk between ERs and Substance P might exist in the disc tissue. Estrogen-dependent pain mechanism might partly be mediated through ERs and Substance P in the nucleus pulposus of the elderly females. Estrogen and its receptors might be drug targets in discogenic low back pain diseases.
Collapse
Affiliation(s)
- Xiao-Xing Song
- Department of Anesthesiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Orthopaedic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Shi
- Department of Orthopaedic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Guo
- Department of Orthopaedic Surgery, Yang Pu Hospital, Tongji University, Shanghai, China
| | - Xin-Feng Li
- Department of Orthopaedic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bu-Wei Yu
- Department of Anesthesiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Kuroki S, Nakai Y, Maeda R, Okashita N, Akiyoshi M, Yamaguchi Y, Kitano S, Miyachi H, Nakato R, Ichiyanagi K, Shirahige K, Kimura H, Shinkai Y, Tachibana M. Combined Loss of JMJD1A and JMJD1B Reveals Critical Roles for H3K9 Demethylation in the Maintenance of Embryonic Stem Cells and Early Embryogenesis. Stem Cell Reports 2018. [PMID: 29526734 PMCID: PMC5998703 DOI: 10.1016/j.stemcr.2018.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Histone H3 lysine 9 (H3K9) methylation is unevenly distributed in mammalian chromosomes. However, the molecular mechanism controlling the uneven distribution and its biological significance remain to be elucidated. Here, we show that JMJD1A and JMJD1B preferentially target H3K9 demethylation of gene-dense regions of chromosomes, thereby establishing an H3K9 hypomethylation state in euchromatin. JMJD1A/JMJD1B-deficient embryos died soon after implantation accompanying epiblast cell death. Furthermore, combined loss of JMJD1A and JMJD1B caused perturbed expression of metabolic genes and rapid cell death in embryonic stem cells (ESCs). These results indicate that JMJD1A/JMJD1B-meditated H3K9 demethylation has critical roles for early embryogenesis and ESC maintenance. Finally, genetic rescue experiments clarified that H3K9 overmethylation by G9A was the cause of the cell death and perturbed gene expression of JMJD1A/JMJD1B-depleted ESCs. We summarized that JMJD1A and JMJD1B, in combination, ensure early embryogenesis and ESC viability by establishing the correct H3K9 methylated epigenome.
Collapse
Affiliation(s)
- Shunsuke Kuroki
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuji Nakai
- Institute for Food Sciences, Hirosaki University, 2-1-1 Yanagawa, Aomori 038-0012, Japan
| | - Ryo Maeda
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Naoki Okashita
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mika Akiyoshi
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto 606-8597, Japan
| | - Yutaro Yamaguchi
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto 606-8597, Japan
| | - Satsuki Kitano
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto 606-8597, Japan
| | - Hitoshi Miyachi
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto 606-8597, Japan
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, The University of Tokyo, 1-1-1 Yayoi, Bonkyo-ku, Tokyo 113-0032, Japan
| | - Kenji Ichiyanagi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, The University of Tokyo, 1-1-1 Yayoi, Bonkyo-ku, Tokyo 113-0032, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Tachibana
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto 606-8597, Japan.
| |
Collapse
|
29
|
Whitton L, Cosgrove D, Clarkson C, Harold D, Kendall K, Richards A, Mantripragada K, Owen MJ, O'Donovan MC, Walters J, Hartmann A, Konte B, Rujescu D, Gill M, Corvin A, Rea S, Donohoe G, Morris DW. Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1170-1179. [PMID: 27762073 DOI: 10.1002/ajmg.b.32503] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022]
Abstract
Epigenetic mechanisms are an important heritable and dynamic means of regulating various genomic functions, including gene expression, to orchestrate brain development, adult neurogenesis, and synaptic plasticity. These processes when perturbed are thought to contribute to schizophrenia pathophysiology. A core feature of schizophrenia is cognitive dysfunction. For genetic disorders where cognitive impairment is more severe such as intellectual disability, there are a disproportionally high number of genes involved in the epigenetic regulation of gene transcription. Evidence now supports some shared genetic aetiology between schizophrenia and intellectual disability. GWAS have identified 108 chromosomal regions associated with schizophrenia risk that span 350 genes. This study identified genes mapping to those loci that have epigenetic functions, and tested the risk alleles defining those loci for association with cognitive deficits. We developed a list of 350 genes with epigenetic functions and cross-referenced this with the GWAS loci. This identified eight candidate genes: BCL11B, CHD7, EP300, EPC2, GATAD2A, KDM3B, RERE, SATB2. Using a dataset of Irish psychosis cases and controls (n = 1235), the schizophrenia risk SNPs at these loci were tested for effects on IQ, working memory, episodic memory, and attention. Strongest associations were for rs6984242 with both measures of IQ (P = 0.001) and episodic memory (P = 0.007). We link rs6984242 to CHD7 via a long range eQTL. These associations were not replicated in independent samples. Our study highlights that a number of genes mapping to risk loci for schizophrenia may function as epigenetic regulators of gene expression but further studies are required to establish a role for these genes in cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Whitton
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Donna Cosgrove
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Christopher Clarkson
- Centre for Chromosome Biology, Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Denise Harold
- Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine and Discipline of Psychiatry, Trinity College Dublin, Dublin, Ireland.,School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Kimberley Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Alex Richards
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Kiran Mantripragada
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - James Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - Betina Konte
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany
| | | | - Michael Gill
- Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine and Discipline of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine and Discipline of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Stephen Rea
- Centre for Chromosome Biology, Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Derek W Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
30
|
Li X, Guo Y, Yao Y, Hua J, Ma Y, Liu C, Guan W. Reversine Increases the Plasticity of Long-Term Cryopreserved Fibroblasts to Multipotent Progenitor Cells through Activation of Oct4. Int J Biol Sci 2016; 12:53-62. [PMID: 26722217 PMCID: PMC4679398 DOI: 10.7150/ijbs.12199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022] Open
Abstract
Reversine, a purine analog, had been evidenced that it could induce dedifferentiation of differentiated cells into multipotent progenitor cells. Here, we showed that reversine could increase the plasticity of long-term cryopreserved bovine fibroblasts, and reversine-treated cells achieved the ability to differentiate into all three germ layers cells, such as osteoblasts and adipocytes from mesoblast, neurocyte from ectoderm, hepatocytes and smooth muscle cells from endoderm. Moreover, treatment of reversine caused the grow arrest of fibroblasts at G2/M and distinct cell swelling resulting in the formation of polyploid cells. In parallel, reversine treatment induced a multipotency of fibroblasts might be attributed to the activation of histone modifications, especially the degression of DNA methylation. However, molecular and cellular experiments suggested that reversine treatment enhanced selectively the expression of pluripotent marker gene Oct4 and mesenchymal marker genes CD29, CD44 and CD73, but Sox2 and Nanog were not detected. Taken together, these results clearly demonstrate the ability of reversine to dedifferentiation of long-term cryopreserved somatic cells through activation of pluripotent gene Oct4.
Collapse
Affiliation(s)
- Xiangchen Li
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Guo
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. ; 2. Department of Bioscience, Department of laboratory medicine, Bengbu Medical College, Bengbu 233000, China
| | - Yaxin Yao
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinlian Hua
- 3. Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A & F University, Yangling, 712100, China
| | - Yuehui Ma
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changqing Liu
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. ; 2. Department of Bioscience, Department of laboratory medicine, Bengbu Medical College, Bengbu 233000, China
| | - Weijun Guan
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
31
|
Liu Z, Oyola MG, Zhou S, Chen X, Liao L, Tien JCY, Mani SK, Xu J. Knockout of the Histone Demethylase Kdm3b Decreases Spermatogenesis and Impairs Male Sexual Behaviors. Int J Biol Sci 2015; 11:1447-57. [PMID: 26681924 PMCID: PMC4672002 DOI: 10.7150/ijbs.13795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/04/2015] [Indexed: 12/14/2022] Open
Abstract
Kdm3b is a JmjC domain-containing histone H3 (H3) demethylase and its physiological functions are largely unknown. In this study, we found that Kdm3b protein is highly expressed in multiple cell types in the mouse testes, including Leydig cells, Sertoli cells, spermatogonia and spermatocytes at different differentiation stages. We also observed Kdm3b protein in the epithelial cells of the caput epididymis, prostate and seminal vesicle. Breeding tests revealed that the number of pups produced by the breeding pairs with Kdm3b knockout (Kdm3bKO) males and wild type (WT) females was reduced 68% because of the decreased number of litters when compared with the breeding pairs with WT males and females. Further analysis demonstrated that Kdm3bKO male mice produced 44% fewer number of mature sperm in their cauda epididymides, displaying significantly reduced sperm motility. No significant differences in the circulating concentration of testosterone and the expression levels of androgen receptor and its representative target genes in the testis were observed. However, the circulating levels of 17β-estradiol, a modulator of sperm maturation and male sexual behaviors, was markedly reduced in Kdm3bKO male mice. Strikingly, abrogation of Kdm3b in male mice significantly increased the latencies to mount, intromit and ejaculate and decreased the number of mounts and intromissions, largely due to their loss of interest in female odors. These findings indicate that Kdm3b is required for normal spermatogenesis and sexual behaviors in male mice.
Collapse
Affiliation(s)
- Zhaoliang Liu
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. ; 2. Institute of Cancer Research, Harbin Medical University, Harbin, China
| | - Mario G Oyola
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Suoling Zhou
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xian Chen
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lan Liao
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jean Ching-Yi Tien
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Shailaja K Mani
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jianming Xu
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. ; 3. Institute for Cancer Medicine and College of Basic Medical Sciences, Sichuan Medical University, Luzhou, Sichuan, China
| |
Collapse
|
32
|
Chen X, Qin L, Liu Z, Liao L, Martin JF, Xu J. Knockout of SRC-1 and SRC-3 in Mice Decreases Cardiomyocyte Proliferation and Causes a Noncompaction Cardiomyopathy Phenotype. Int J Biol Sci 2015. [PMID: 26221073 PMCID: PMC4515817 DOI: 10.7150/ijbs.12408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Noncompaction cardiomyopathy (NCC) is a congenital heart disease that causes ventricular dysfunction and high mortality rate in children. The mechanisms responsible for NCC are still unknown. The steroid receptor coactivator-1 (SRC-1) and SRC-3 are transcriptional coactivators for nuclear hormone receptors and certain other transcription factors that regulate many genes in development and organ function. However, the roles of SRC-1/3 in heart morphogenesis, function and NCC occurrence are unknown. This study aims to examine the spatial and temporal expression patterns of SRC-1/3 in the heart and investigate the specific roles of SRC-1/3 in heart development, function and NCC occurrence. Immunochemical analysis detected SRC-1/3 expressions in the proliferating cardiomyocytes of mouse heart at prenatal and neonatal stages, while these expressions disappeared within two weeks after birth. Through generating and characterizing mouse lines with global or cardiomyocyte-specific knockouts of SRC-1/3, we found ablation of SRC-1/3 in the myocardial lineage resulted in prominent trabeculae, deep intertrabecular recesses and thin ventricular wall and septum. These developmental defects caused a failure of trabecular compaction, decreased internal ventricular dimension, reduced cardiac ejection fraction and output and led to a high rate of postnatal mortality. Collectively, these structural and functional abnormalities closely simulate the phenotype of NCC patients. Further molecular analysis of cardiomyocytes in vivo and in vitro revealed that SRC-1/3 directly up-regulate cyclin E2, cyclin B1 and myocardin to promote cardiomyocyte proliferation and differentiation. In conclusion, SRC-1/3 are required for cardiomyocyte proliferation and differentiation at earlier developmental stages, and their dysfunction causes NCC-like abnormalities in the hearts of newborn and adult mice.
Collapse
Affiliation(s)
- Xian Chen
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Qin
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhaoliang Liu
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Liao
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- 2. Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. ; 3. Sichuan Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|