1
|
Jia S, Wang X, Wang G, Wang X. Mechanism and application of β-adrenoceptor blockers in soft tissue wound healing. Med Res Rev 2024; 44:422-452. [PMID: 37470332 DOI: 10.1002/med.21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Soft tissue damage stimulates sympathetic nerves to release large amounts of catecholamine hormones which bind to β-adrenergic receptors (β-ARs) on the cell membrane surface. It activates the downstream effector molecules and impairs soft tissue wound healing. β-blockers specifically inhibit β-ARs activation in acute/chronic skin lesions and ulcerative hemangiomas. They also accelerate soft tissue wound healing by shortening the duration of inflammation, speeding keratinocyte migration and reepithelialization, promoting wound contraction and angiogenesis, and inhibiting bacterial virulence effects. In addition, β-blockers shorten wound healing periods in patients with severe thermal damage by reducing the hypermetabolic response. While β-blockers promote/inhibit corneal epithelial cell regeneration and restores limbal stem/progenitor cells function, it could well accelerate/delay corneal wound healing. Given these meaningful effects, a growing number of studies are focused on examining the efficacy and safety of β-blockers in soft tissue wound repair, including acute and chronic wounds, severe thermal damage, ulcerated infantile hemangioma, corneal wounds, and other soft tissue disorders. However, an intensive investigation on their acting mechanisms is imperatively needed. The purpose of this article is to summerize the roles of β-blockers in soft tissue wound healing and explore their clinical applications.
Collapse
Affiliation(s)
- Shasha Jia
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xueya Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Guowei Wang
- Department of Stomatology, No. 971 Hospital of the Chinese Navy, Qingdao, Shandong, People's Republic of China
| | - Xiaojing Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
2
|
Yan JT, Zhu YZ, Liang L, Feng XY. NE-activated β 2-AR/β-arrestin 2/Src pathway mediates duodenal hyperpermeability induced by water-immersion restraint stress. Am J Physiol Cell Physiol 2023; 324:C133-C141. [PMID: 36440855 DOI: 10.1152/ajpcell.00412.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress causes a rapid spike in norepinephrine (NE) levels, leading to gastrointestinal dysfunction. NE reduces the expression of tight junctions (TJs) and aggravates intestinal mucosal damage, but the regulatory mechanism is still unclear. The present study aimed to investigate the molecular mechanisms underlying the regulation of stress-associated duodenal hyperpermeability by NE. Fluorescein isothiocyanate-dextran permeability, transepithelial resistance, immunofluorescence, Western blot, and high-performance liquid chromatography analysis were used in water-immersion restraint stress (WIRS) rats in this study. The results indicate that the duodenal permeability, degradation of TJs, mucosal NE, and β2-adrenergic receptor (β2-AR) increased in WIRS rats. The duodenal intracellular cyclic adenosine monophosphate levels were decreased, whereas the expression of β-arrestin 2 negatively regulates G protein-coupled receptors signaling, was significantly increased. Src recruitment was mediated by β-arrestin; thus, the levels of Src kinase activation were enhanced in WIRS rats. NE depletion, β2-AR, or β-arrestin 2 blockade significantly decreased mucosal permeability and increased TJs expression, suggesting improved mucosal barrier function. Moreover, NE induced an increased duodenal permeability of normal rats with activated β-arrestin 2/Src signaling, which was significantly inhibited by β2-AR blockade. The present findings demonstrate that the enhanced NE induced an increased duodenal permeability in WIRS rats through the activated β2-AR/β-arrestin 2/Src pathway. This study provides novel insight into the molecular mechanism underlying the regulation of NE on the duodenal mucosal barrier and a new target for treating duodenal ulcers induced by stress.
Collapse
Affiliation(s)
- Jing-Ting Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Yin-Zhe Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liang Liang
- Grade 2020 Pediatrics, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
4
|
Moser B, Poetsch F, Estepa M, Luong TTD, Pieske B, Lang F, Alesutan I, Voelkl J. Increased β-adrenergic stimulation augments vascular smooth muscle cell calcification via PKA/CREB signalling. Pflugers Arch 2021; 473:1899-1910. [PMID: 34564739 PMCID: PMC8599266 DOI: 10.1007/s00424-021-02621-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
In chronic kidney disease (CKD), hyperphosphatemia promotes medial vascular calcification, a process augmented by osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). VSMC function is regulated by sympathetic innervation, and these cells express α- and β-adrenergic receptors. The present study explored the effects of β2-adrenergic stimulation by isoproterenol on VSMC calcification. Experiments were performed in primary human aortic VSMCs treated with isoproterenol during control or high phosphate conditions. As a result, isoproterenol dose dependently up-regulated the expression of osteogenic markers core-binding factor α-1 (CBFA1) and tissue-nonspecific alkaline phosphatase (ALPL) in VSMCs. Furthermore, prolonged isoproterenol exposure augmented phosphate-induced calcification of VSMCs. Isoproterenol increased the activation of PKA and CREB, while knockdown of the PKA catalytic subunit α (PRKACA) or of CREB1 genes was able to suppress the pro-calcific effects of isoproterenol in VSMCs. β2-adrenergic receptor silencing or inhibition with the selective antagonist ICI 118,551 blocked isoproterenol-induced osteogenic signalling in VSMCs. The present observations imply a pro-calcific effect of β2-adrenergic overstimulation in VSMCs, which is mediated, at least partly, by PKA/CREB signalling. These observations may support a link between sympathetic overactivity in CKD and vascular calcification.
Collapse
Affiliation(s)
- Barbara Moser
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Florian Poetsch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Wolpe AG, Ruddiman CA, Hall PJ, Isakson BE. Polarized Proteins in Endothelium and Their Contribution to Function. J Vasc Res 2021; 58:65-91. [PMID: 33503620 DOI: 10.1159/000512618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localization in endothelial cells is tightly regulated to create distinct signaling domains within their tight spatial restrictions including luminal membranes, abluminal membranes, and interendothelial junctions, as well as caveolae and calcium signaling domains. Protein localization in endothelial cells is also determined in part by the vascular bed, with differences between arteries and veins and between large and small arteries. Specific protein polarity and localization is essential for endothelial cells in responding to various extracellular stimuli. In this review, we examine protein localization in the endothelium of resistance arteries, with occasional references to other vessels for contrast, and how that polarization contributes to endothelial function and ultimately whole organism physiology. We highlight the protein localization on the luminal surface, discussing important physiological receptors and the glycocalyx. The protein polarization to the abluminal membrane is especially unique in small resistance arteries with the presence of the myoendothelial junction, a signaling microdomain that regulates vasodilation, feedback to smooth muscle cells, and ultimately total peripheral resistance. We also discuss the interendothelial junction, where tight junctions, adherens junctions, and gap junctions all convene and regulate endothelial function. Finally, we address planar cell polarity, or axial polarity, and how this is regulated by mechanosensory signals like blood flow.
Collapse
Affiliation(s)
- Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Phillip J Hall
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA,
| |
Collapse
|
6
|
Changes in Pulmonary Circulation in Experimental Model of Pulmonary Thromboembolism after Carvedilol Treatment. Bull Exp Biol Med 2019; 167:432-435. [DOI: 10.1007/s10517-019-04543-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 01/20/2023]
|
7
|
Endothelial Cell Inflammation and Barriers Are Regulated by the Rab26-Mediated Balance between β2-AR and TLR4 in Pulmonary Microvessel Endothelial Cells. Mediators Inflamm 2019; 2019:7538071. [PMID: 31182932 PMCID: PMC6512073 DOI: 10.1155/2019/7538071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/03/2019] [Accepted: 03/05/2019] [Indexed: 01/04/2023] Open
Abstract
Rab26 GTPase modulates the trafficking of cell surface receptors, such as G protein-coupled receptors including α2-adrenergic receptors in some cell types. However, the effect of Rab26 on β2-adrenergic receptor (β2-AR) trafficking or/and Toll-like receptor 4 (TLR4) expression in human pulmonary microvascular endothelial cells (HPMECs) is still unclear. Here, we investigated the role of Rab26 in regulating the expression of β2-ARs and TLR4 in HPMECs and the effect of these receptors' imbalance on endothelial cell barrier function. The results showed that there was unbalance expression in these receptors, where β2-AR expression was remarkably reduced, and TLR4 was increased on the cell membrane after lipopolysaccharide (LPS) treatment. Furthermore, we found that Rab26 overexpression not only upregulated β2-ARs but also downregulated TLR4 expression on the cell membrane. Subsequently, the TLR4-related inflammatory response was greatly attenuated, and the hyperpermeability of HPMECs also was partially relived. Taken together, these data suggest that basal Rab26 maintains the balance between β2-ARs and TLR4 on the cell surface, and it might be a potential therapeutic target for diseases involving endothelial barrier dysfunction.
Collapse
|
8
|
Parks XX, Ronzier E, O-Uchi J, Lopes CM. Fluvastatin inhibits Rab5-mediated IKs internalization caused by chronic Ca 2+-dependent PKC activation. J Mol Cell Cardiol 2019; 129:314-325. [PMID: 30898664 DOI: 10.1016/j.yjmcc.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/26/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
Abstract
Statins, in addition to their cholesterol lowering effects, can prevent isoprenylation of Rab GTPase proteins, a key protein family for the regulation of protein trafficking. Rab-GTPases have been shown to be involved in the control of membrane expression level of ion channels, including one of the major cardiac repolarizing channels, IKs. Decreased IKs function has been observed in a number of disease states and associated with increased propensity for arrhythmias, but the mechanism underlying IKs decrease remains elusive. Ca2+-dependent PKC isoforms (cPKC) are chronically activated in variety of human diseases and have been suggested to acutely regulate IKs function. We hypothesize that chronic cPKC stimulation leads to Rab-mediated decrease in IKs membrane expression, and that can be prevented by statins. In this study we show that chronic cPKC stimulation caused a dramatic Rab5 GTPase-dependent decrease in plasma membrane localization of the IKs pore forming subunit KCNQ1, reducing IKs function. Our data indicates fluvastatin inhibition of Rab5 restores channel localization and function after cPKC-mediated channel internalization. Our results indicate a novel statin anti-arrhythmic effect that would be expected to inhibit pathological electrical remodeling in a number of disease states associated with high cPKC activation. Because Rab-GTPases are important regulators of membrane trafficking they may underlie other statin pleiotropic effects.
Collapse
Affiliation(s)
- Xiaorong Xu Parks
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Elsa Ronzier
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Jin O-Uchi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America; Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, United States of America
| | - Coeli M Lopes
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America.
| |
Collapse
|
9
|
Evlakhov VI, Poyassov IZ, Ovsyannikov VI. Pulmonary Microcirculation in Experimental Model of Pulmonary Thromboembolism under Conditions of α-Adrenoceptor Blockade. Bull Exp Biol Med 2019; 166:313-316. [PMID: 30680492 DOI: 10.1007/s10517-019-04340-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 11/25/2022]
Abstract
Changes in the pulmonary microcirculation in isolated perfused rabbit lungs during modeling of pulmonary thromboembolism were studied in control animals and against the background of α-adrenoceptors blockade with phentolamine. Intravenous injection of emboli to control animals was followed by an increase in pressure in the pulmonary artery, mean capillary hydrostatic pressure, capillary filtration coefficient, pulmonary vascular resistance, as well as precapillary and postcapillary resistances. Against the background of α-adrenoceptor blockade, the increase in most parameters was less pronounced than in control animals, while capillary filtration coefficient increased more drastically. Thus, adrenergic mechanisms are involved in the constrictor reactions of both arterial and venous pulmonary vessels under conditions of pulmonary thromboembolism.
Collapse
Affiliation(s)
- V I Evlakhov
- Department of Physiology of the Visceral System, Institute of Experimental Medicine, St. Petersburg, Russia
| | - I Z Poyassov
- Department of Physiology of the Visceral System, Institute of Experimental Medicine, St. Petersburg, Russia
| | - V I Ovsyannikov
- Department of Physiology of the Visceral System, Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
10
|
Evlakhov VI, Poyasov IZ. [Adrenergic mechanisms of regulation of pulmonary microvessels tonicity and endothelial permeability]. ANGIOLOGIIA I SOSUDISTAIA KHIRURGIIA = ANGIOLOGY AND VASCULAR SURGERY 2019; 25:11-16. [PMID: 31503242 DOI: 10.33529/angi02019320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The review contains the data on adrenergic mechanisms of regulation of pulmonary microvessels tonicity and endothelial permeability. On smooth muscle cells of pulmonary vessels there are postsynaptic α1A-, α1B-, α1D- and α2A-, α2B-, α2C-adrenoreceptors whose activation by norepinephrine induces vasoconstriction. Excitation of β1- and β2-subtypes of adrenoreceptors leads to vasodilatation, Activation of α1-2- and β1-3-adrenoreceptors of the endothelium contributes to enhancement of nitric oxide synthesis. The resulting reaction of pulmonary microvessels in response to administration of catecholamines appears be determined by interaction of adrenergic mechanisms of regulation of tonicity of smooth muscle cells and synthesis of nitric oxide by the endothelium. Constrictor and dilator reactions of pulmonary venous vessels in response to activation of α- and β-adrenoreceptors, respectively, are more pronounced than in pulmonary arteries and make a significant contribution to the shifts of pulmonary vascular resistance. Excitation of α2- and β2-adrenoreceptors of endothelial cells of microvessels of the lungs contributes to a decrease in their permeability. In order to find out the role of adrenergic mechanisms in shifts of the capillary filtration coefficient in simulating various pathology of pulmonary circulation, it is necessary to carry out integral studies that would make it possible to evaluate alterations in macro- and microhaemodynamics of the lungs.
Collapse
Affiliation(s)
- V I Evlakhov
- Laboratory of Physiology of Visceral Systems named after K.M. Bykov, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - I Z Poyasov
- Laboratory of Physiology of Visceral Systems named after K.M. Bykov, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
11
|
Dong W, He B, Qian H, Liu Q, Wang D, Li J, Wei Z, Wang Z, Xu Z, Wu G, Qian G, Wang G. RAB26-dependent autophagy protects adherens junctional integrity in acute lung injury. Autophagy 2018; 14:1677-1692. [PMID: 29965781 DOI: 10.1080/15548627.2018.1476811] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microvascular barrier dysfunction is the central pathophysiological feature of acute lung injury (ALI). RAB26 is a newly identified small GTPase involved in the regulation of endothelial cell (EC) permeability. However, the mechanism behind this protection has not been clearly elucidated. Here we found that RAB26 promoted the integrity of adherens junctions (AJs) in a macroautophagy/autophagy-dependent manner in ALI. RAB26 is frequently downregulated in mouse lungs after LPS treatment. Mice lacking Rab26 exhibited phosphorylated SRC expression and increased CDH5/VE-cadherin phosphorylation, leading to AJ destruction. rab26-null mice showed further aggravation of the effects of endotoxin insult on lung vascular permeability and water content. Depletion of RAB26 resulted in upregulation of phosphorylated SRC, enhancement of CDH5 phosphorylation, and aggravation of CDH5 internalization, thereby weakening AJ integrity and endothelial barrier function in human pulmonary microvascular endothelial cells (HPMECs). RAB26 overexpression caused active interaction between SRC and the autophagy marker LC3-II and promoted degradation of phosphorylated SRC. Furthermore, RAB26 was involved in a direct and activation-dependent manner in autophagy induction through interaction with ATG16L1 in its GTP-bound form. These findings demonstrate that RAB26 exerts a protective effect on endothelial cell (EC) permeability, which is in part dependent on autophagic targeting of active SRC, and the resultant CDH5 dephosphorylation maintains AJ stabilization. Thus, RAB26-mediated autophagic targeting of phosphorylated SRC can maintain barrier integrity when flux through the RAB26-SRC pathway is protected. These findings suggest that activation of RAB26-SRC signaling provides a new therapeutic opportunity to prevent vascular leakage in ALI. ABBREVIATIONS AJs: adherens junctions; ALI: acute lung injury; ARDS: acute respiratory distress syndrome; ATG5: autophagy related 5; ATG12: autophagy related 12; ATG 16L1: autophagy related 16 like; 1 BALF: bronchoalveolar lavage fluidCQ: chloroquine; Ctrl: control; EC: endothelial cell; GFP: green fluorescent protein; HA-tagged; RAB26WT: HA-tagged wild-type; RAB26 HA-tagged; RAB26QL: HA-tagged; RAB26Q123LHA-tagged; RAB26NI: HA-tagged; RAB26N177IHPMECs: human pulmonary microvascular endothelial cells; H&E: hematoxylin & eosin; IgG: immunoglobulin; GIF: immunofluorescence; IP: immunoprecipitationi;. p.: intraperitoneal; LPS: lipopolysaccharide; PBS: phosphate-buffered salinesi; RNA: small interfering;RNASQSTM1/p62, sequestosome; 1TBS: Tris-buffered saline; VEGF: vascular endothelial growth factor; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Weijie Dong
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Binfeng He
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Hang Qian
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Qian Liu
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Dong Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jin Li
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zhenghua Wei
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zi Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zhi Xu
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Guangyu Wu
- b Department of Pharmacology and Toxicology , Georgia Regents University , Augusta , Georgia , USA
| | - Guisheng Qian
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Guansong Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
12
|
Wang G, Wei Z, Wu G. Role of Rab GTPases in the export trafficking of G protein-coupled receptors. Small GTPases 2018; 9:130-135. [PMID: 28125329 PMCID: PMC5902197 DOI: 10.1080/21541248.2016.1277000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute a superfamily of cell surface receptors that regulate a variety of cell functions. As the cell surface is the functional destination for most GPCRs, the cell surface targeting process represents a crucial checkpoint in controlling the functionality of the receptors. However, the molecular mechanisms underlying the cell surface delivery of newly synthesized GPCRs remain poorly understood. In this review, we will highlight the role of Rab GTPases in GPCR cell surface transport, particularly post-Golgi traffic, and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
13
|
Chichger H, Braza J, Duong H, Boni G, Harrington EO. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin. Am J Respir Cell Mol Biol 2017; 54:769-81. [PMID: 26551054 DOI: 10.1165/rcmb.2015-0286oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Huetran Duong
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Geraldine Boni
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
14
|
Li H, He B, Liu X, Li J, Liu Q, Dong W, Xu Z, Qian G, Zuo H, Hu C, Qian H, Mao C, Wang G. Regulation on Toll-like Receptor 4 and Cell Barrier Function by Rab26 siRNA-loaded DNA Nanovector in Pulmonary Microvascular Endothelial Cells. Am J Cancer Res 2017; 7:2537-2554. [PMID: 28744333 PMCID: PMC5525755 DOI: 10.7150/thno.17584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
The small GTPase Rab26 is involved in multiple processes, such as vesicle-mediated secretion and autophagy. However, the mechanisms and functions of Rab26 in the human pulmonary microvascular endothelial cells (HPMVECs) are not clear. In this study, we thoroughly investigated the role and novel mechanism of Rab26 in permeability and apoptosis of HPMVECs using a self-assembled Rab26 siRNA loaded DNA Y-motif nanoparticle (siRab26-DYM) and Rab26 adenovirus. We found that siRab26-DYM could be efficiently transfected into HPMVECs in a time- and dose-dependent manner. Importantly, the siRab26-DYM nanovector markedly aggravated the LPS-induced apoptosis and hyper-permeability of HPMVECs by promoting the nuclear translocation of Foxo1, and subsequent activation of Toll-like receptor 4 (TLR4) signal pathway. Overexpression of Rab26 by Rab26 adenoviruses partially inactivated LPS-induced TLR4 signaling pathway, suppressed the cell apoptosis and attenuated the hyperpermeability of HPMVECs. These results suggest that the permeability and apoptosis of HPMVECs can be modulated by manipulating Rab26 derived TLR4 signaling pathway, and that Rab26 can be potential therapeutic target for the treatment of vascular diseases related to endothelial barrier functions.
Collapse
|