1
|
Bu W, Li Y. In Vivo Gene Delivery into Mouse Mammary Epithelial Cells Through Mammary Intraductal Injection. J Vis Exp 2023:10.3791/64718. [PMID: 36847377 PMCID: PMC10874126 DOI: 10.3791/64718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Mouse mammary glands comprise ductal trees, which are lined by epithelial cells and have one opening at the tip of each nipple. The epithelial cells play a major role in mammary gland function and are the origin of most mammary tumors. Introducing genes of interest into mouse mammary epithelial cells is a critical step in evaluating gene function in epithelial cells and generating mouse mammary tumor models. This goal can be accomplished through the intraductal injection of a viral vector carrying the genes of interest into the mouse mammary ductal tree. The injected virus subsequently infects mammary epithelial cells, bringing in the genes of interest. The viral vector can be lentiviral, retroviral, adenoviral, or adenovirus-associated viral (AAV). This study demonstrates how a gene of interest is delivered into mammary epithelial cells through mouse mammary intraductal injection of a viral vector. A lentivirus carrying GFP is used to show stable expression of a delivered gene, and a retrovirus carrying Erbb2 (HER2/Neu) is used to demonstrate oncogene-induced atypical hyperplastic lesions and mammary tumors.
Collapse
Affiliation(s)
- Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine; Department of Medicine, Baylor College of Medicine;
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine; Department of Molecular & Cellular Biology, Baylor College of Medicine;
| |
Collapse
|
2
|
High-throughput profiling of histone post-translational modifications and chromatin modifying proteins by reverse phase protein array. J Proteomics 2022; 262:104596. [PMID: 35489683 PMCID: PMC10165948 DOI: 10.1016/j.jprot.2022.104596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
Epigenetic variation plays a significant role in normal development and human diseases including cancer, in part through post-translational modifications (PTMs) of histones. Identification and profiling of changes in histone PTMs, and in proteins regulating PTMs, are crucial to understanding diseases, and for discovery of epigenetic therapeutic agents. In this study, we have adapted and validated an antibody-based reverse phase protein array (RPPA) platform for profiling 20 histone PTMs and expression of 40 proteins that modify histones and other epigenomic regulators. The specificity of the RPPA assay for histone PTMs was validated with synthetic peptides corresponding to histone PTMs and by detection of histone PTM changes in response to inhibitors of histone modifier proteins in cell cultures. The useful application of the RPPA platform was demonstrated with two models: induction of pluripotent stem cells and a mouse mammary tumor progression model. Described here is a robust platform that includes a rapid microscale method for histone isolation and partially automated workflows for analysis of histone PTMs and histone modifiers that can be performed in a high-throughput manner with hundreds of samples. This RPPA platform has potential for translational applications through the discovery and validation of epigenetic states as therapeutic targets and biomarkers. SIGNIFICANCE: Our study has established an antibody-based reverse phase protein array platform for global profiling of a wide range of post-translational modifications of histones and histone modifier proteins. The high-throughput platform provides comprehensive analyses of epigenetics for biological research and disease studies and may serve as screening assay for diagnostic purpose or therapy development.
Collapse
|
3
|
Liu C, Wu P, Zhang A, Mao X. Advances in Rodent Models for Breast Cancer Formation, Progression, and Therapeutic Testing. Front Oncol 2021; 11:593337. [PMID: 33842308 PMCID: PMC8032937 DOI: 10.3389/fonc.2021.593337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is a highly complicated disease. Advancement in the treatment and prevention of breast cancer lies in elucidation of the mechanism of carcinogenesis and progression. Rodent models of breast cancer have developed into premier tools for investigating the mechanisms and genetic pathways in breast cancer progression and metastasis and for developing and evaluating clinical therapeutics. Every rodent model has advantages and disadvantages, and the selection of appropriate rodent models with which to investigate breast cancer is a key decision in research. Design of a suitable rodent model for a specific research purpose is based on the integration of the advantages and disadvantages of different models. Our purpose in writing this review is to elaborate on various rodent models for breast cancer formation, progression, and therapeutic testing.
Collapse
Affiliation(s)
- Chong Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pei Wu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ailin Zhang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Bu W, Li Y. Intraductal Injection of Lentivirus Vectors for Stably Introducing Genes into Rat Mammary Epithelial Cells in Vivo. J Mammary Gland Biol Neoplasia 2020; 25:389-396. [PMID: 33165800 PMCID: PMC7965254 DOI: 10.1007/s10911-020-09469-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/18/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Various retroviral and lentiviral vectors have been used for up-the-teat intraductal injection to deliver markers, oncogenes, and other genes into mammary epithelial cells in mice. These methods along with the large number of genetically engineered mouse lines have greatly helped us learn normal breast development and tumorigenesis. Rats are also valuable models for studying human breast development and cancer. However, genetically engineered rats are still uncommon, and previous reports of intraductal injection of retroviral vectors into rats appear to be inefficient in generating mammary tumors. Here, we report, and describe the method for, stably introducing marker genes and oncogenes into mammary glands in rats using intraductal injection of commonly used lentiviral vectors. This method can infect mammary epithelial cells efficiently, and the infected cells can initiate tumorigenesis, including estrogen receptor-positive and hormone-dependent tumors, which are the most common subtype of human breast cancer but are yet still difficult to model in mice. This technique provides another tool for studying formation, prevention, and treatment of breast cancer, especially estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Bu W, Liu Z, Jiang W, Nagi C, Huang S, Edwards DP, Jo E, Mo Q, Creighton CJ, Hilsenbeck SG, Leavitt AD, Lewis MT, Wong STC, Li Y. Mammary Precancerous Stem and Non-Stem Cells Evolve into Cancers of Distinct Subtypes. Cancer Res 2018; 79:61-71. [PMID: 30401712 DOI: 10.1158/0008-5472.can-18-1087] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/20/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022]
Abstract
There are distinct cell subpopulations in normal epithelial tissue, including stem cells, progenitor cells, and more differentiated cells, all of which have been extensively studied for their susceptibility to tumorigenesis. However, normal cells usually have to progress through a precancerous lesion state before becoming a full-blown tumor. Precancerous early lesions are heterogeneous, and the cell subset that is the primary source of the eventual tumor remains largely unknown. By using mouse models that are tailored to address this question, we identified a keratin 6a-expressing precancerous stem cell (PcSC) subset and a more differentiated whey acidic protein-positive (WAP+) cell subset in mammary precancerous lesions initiated by the Wnt1 oncogene. Both cell subsets rapidly progressed to cancer upon introduction of constitutively active versions of either HRAS or BRAF. However, the resulting tumors were dramatically different in protein profiles and histopathology: keratin 6a+ precancerous cells gave rise to adenocarcinoma, whereas WAP+ cells yielded metaplastic carcinoma with severe squamous differentiation and more robust activation of MEK/ERK signaling. Therefore, both stem and non-stem cells in mammary precancerous lesions can contribute to the eventual cancers, but their differentiation status determines the resulting cancer phenotype. This work identifies a previously unknown player in cancer heterogeneity and suggests that cancer prevention should target precancerous cells broadly and not be limited to PcSC. SIGNIFICANCE: This work uses a novel mouse mammary gland cancer model to show that tumors initiated from different precancerous mammary epithelial cells are distinct.
Collapse
Affiliation(s)
- Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Zhenyu Liu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Weiyu Jiang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Chandandeep Nagi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Eunji Jo
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Qianxing Mo
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Andrew D Leavitt
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas
| | - Michael T Lewis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Department of Laboratory Medicine and Medicine (Division of Hematology/Oncology), UCSF, San Francisco, California
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Houston, Texas
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Hyperprolactinemia-inducing antipsychotics increase breast cancer risk by activating JAK-STAT5 in precancerous lesions. Breast Cancer Res 2018; 20:42. [PMID: 29778097 PMCID: PMC5960176 DOI: 10.1186/s13058-018-0969-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/11/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Psychiatric medications are widely prescribed in the USA. Many antipsychotics cause serum hyperprolactinemia as an adverse side effect; prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) signaling both induces cell differentiation and suppresses apoptosis. It is controversial whether these antipsychotics increase breast cancer risk. METHODS We investigated the impact of several antipsychotics on mammary tumorigenesis initiated by retrovirus-mediated delivery of either ErbB2 or HRas or by transgenic expression of Wnt-1. RESULTS We found that the two hyperprolactinemia-inducing antipsychotics, risperidone and pimozide, prompted precancerous lesions to progress to cancer while aripiprazole, which did not cause hyperprolactinemia, did not. We observed that risperidone and pimozide (but not aripiprazole) caused precancerous cells to activate STAT5 and suppress apoptosis while exerting no impact on proliferation. Importantly, we demonstrated that these effects of antipsychotics on early lesions required the STAT5 gene function. Furthermore, we showed that only two-week treatment of mice with ruxolitinib, a JAK1/2 inhibitor, blocked STAT5 activation, restored apoptosis, and prevented early lesion progression. CONCLUSIONS Hyperprolactinemia-inducing antipsychotics instigate precancerous cells to progress to cancer via JAK/STAT5 to suppress the apoptosis anticancer barrier, and these cancer-promoting effects can be prevented by prophylactic anti-JAK/STAT5 treatment. This preclinical work exposes a potential breast cancer risk from hyperprolactinemia-inducing antipsychotics in certain patients and suggests a chemoprevention regime that is relatively easy to implement compared to the standard 5-year anti-estrogenic treatment in women who have or likely have already developed precancerous lesions while also requiring hyperprolactinemia-inducing antipsychotics.
Collapse
|
7
|
Hollern DP, Swiatnicki MR, Andrechek ER. Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers. PLoS Genet 2018; 14:e1007135. [PMID: 29346386 PMCID: PMC5773092 DOI: 10.1371/journal.pgen.1007135] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/28/2017] [Indexed: 01/03/2023] Open
Abstract
Human breast cancer has been characterized by extensive transcriptional heterogeneity, with dominant patterns reflected in the intrinsic subtypes. Mouse models of breast cancer also have heterogeneous transcriptomes and we noted that specific histological subtypes were associated with particular subsets. We hypothesized that unique sets of genes define each tumor histological type across mouse models of breast cancer. Using mouse models that contained both gene expression data and expert pathologist classification of tumor histology on a sample by sample basis, we predicted and validated gene expression signatures for Papillary, EMT, Microacinar and other histological subtypes. These signatures predict known histological events across murine breast cancer models and identify counterparts of mouse mammary tumor types in subtypes of human breast cancer. Importantly, the EMT, Adenomyoepithelial, and Solid signatures were predictive of clinical events in human breast cancer. In addition, a pan-cancer comparison revealed that the histological signatures were active in a variety of human cancers such as lung, oral, and esophageal squamous tumors. Finally, the differentiation status and transcriptional activity implicit within these signatures was identified. These data reveal that within tumor histology groups are unique gene expression profiles of differentiation and pathway activity that stretch well beyond the transgenic initiating events and that have clear applicability to human cancers. As a result, our work provides a predictive resource and insights into possible mechanisms that govern tumor heterogeneity.
Collapse
Affiliation(s)
- Daniel P. Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Matthew R. Swiatnicki
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Eran R. Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
8
|
Yuan J, Zhang YM, Wu W, Ma W, Wang F. Effect of glycosides of Cistanche on the expression of mitochondrial precursor protein and keratin type II cytoskeletal 6A in a rat model of vascular dementia. Neural Regen Res 2017; 12:1152-1158. [PMID: 28852399 PMCID: PMC5558496 DOI: 10.4103/1673-5374.211196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Glycosides of Cistanche (GC) is a preparation used extensively for its neuroprotective effect against neurological diseases, but its mechanisms of action remains incompletely understood. Here, we established a bilateral common carotid artery occlusion model of vascular dementia in rats and injected the model rats with a suspension of GC (10 mg/kg/day, intraperitoneally) for 14 consecutive days. Immunohistochemistry showed that GC significantly reduced p-tau and amyloid beta (Aβ) immunoreactivity in the hippocampus of the model rats. Proteomic analysis demonstrated upregulation of mitochondrial precursor protein and downregulation of keratin type II cytoskeletal 6A after GC treatment compared with model rats that had received saline. Western blot assay confirmed these findings. Our results suggest that the neuroprotective effect of GC in vascular dementia occurs via the promotion of neuronal cytoskeleton regeneration.
Collapse
|
9
|
The General Expression Analysis of WTX Gene in Normal and Cancer Tissues. Pathol Oncol Res 2016; 23:439-446. [PMID: 28032309 DOI: 10.1007/s12253-016-0168-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/15/2016] [Indexed: 01/18/2023]
Abstract
WTX (Wilms' tumor suppressor X chromosome) is a novel putative tumor suppressor gene in Wilms' tumor of kidney, its expression and function in other human cancers had not been explored. This study detected the expression of WTX in 459 cases of 15 organs of cancers and adjacent normal tissues by using immunohistochemical staining (IHC), and validated them by in situ hybridization (ISH) and quantitative real-time reverse transcription PCR (qRT-PCR). IHC and ISH data showed that WTX protein was generally expressed in normal tissues, but reduced expression in corresponding cancers. This study demonstrated that WTX downregulation is a common phenomenon in human cancers, WTX might be a general tumor-suppressor gene and biological marker of multiple cancer tissues. Apart from kidney, stomach is another target tissue of WTX gene. The germline and somatic mutations of WTX were screened in 12 gastric cancer patients and identified in one cases (8.3%). Mutation in the WTX gene might be one of the reasons of WTX loss in gastric cancer patients.
Collapse
|
10
|
Wang W, Dong B, Ittmann MM, Yang F. A Versatile Gene Delivery System for Efficient and Tumor Specific Gene Manipulation in vivo. Discoveries (Craiova) 2016; 4. [PMID: 27376150 PMCID: PMC4926771 DOI: 10.15190/d.2016.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Replication-Competent Avian Sarcoma-leukosis virus long-terminal repeat with splice acceptor (RCAS)-Tumor Virus A (TVA) gene delivery system has been created based on the fact that avian sarcoma leukosis virus subgroup A only infects cells expressing its receptor, TVA. This system has been successfully applied to create various mouse models for human cancers. Here we briefly discuss the advantages and the potential caveats of using this RCAS-TVA gene delivery system in cancer research. We also introduce and discuss how our newly designed RCAS-based gene delivery system (RCI-Oncogene, for RCAS-Cre-IRES-Oncogene) allows concise and efficient manipulation of gene expression in tumors in vivo, and how this system can be used to rapidly study the biological function of gene(s) and/or the collaborative actions of multiple genes in regulating tumor initiation, progression and/or metastasis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|