1
|
Rabapane KJ, Matambo TS. Profiling the dynamic adaptations of CAZyme-Producing microorganisms in the gastrointestinal tract of South African goats. Heliyon 2024; 10:e37508. [PMID: 39290285 PMCID: PMC11407064 DOI: 10.1016/j.heliyon.2024.e37508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
The gastrointestinal tract of goats serves as a habitat for anaerobic microbial populations that work together to break down complex plant material, including lignocellulose. This study explored the microbial diversity and metabolic profiles across different gastrointestinal tract compartments. Significant diversity differences among the compartments were observed (ANOSIM p < 0.006), with the abomasum showing a distinct species composition and a decreased alpha diversity (Mann-Whitney/Kruskal-Wallis test p = 0.00096), possibly due to its acidic environment. Dominant microbial phyla included Proteobacteria, Bacteroidetes, and Firmicutes, with Proteobacteria being the most prevalent in the abomasum (50.06 %). Genera like Proteus and Bacteroides were particularly prominent in the rumen and reticulum, highlighting their significant role in feed degradation and fermentation processes. Over 65 % of genes at Kyoto Encyclopedia of Genes and Genomes level 1 were involved in metabolism with significant xenobiotic biodegradation in the abomasum. The dbCAN2 search identified Glycoside Hydrolases as the most prevalent CAZyme class (79 %), followed by Glycosyltransferases, Polysaccharide Lyases, and Carbohydrate Esterases, with Carbohydrate-Binding Modules and Auxiliary Activities accounting for 1 % of the hits. Higher CAZyme abundance was observed in the reticulum and omasum compartments, possibly due to MAGs diversity. In conclusion, the gastrointestinal tract of South African goats harbors diverse CAZyme classes, with Glycoside Hydrolases predominating. Interestingly, higher CAZyme abundance in specific compartments suggested compartmentalized microbial activity, reflecting adaptation to dietary substrates.
Collapse
Affiliation(s)
- Kgodiso J Rabapane
- Centre of Competence in Environmental Biotechnology, Department of Environmental Science, University of South Africa's College of Agriculture and Environmental Science, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
- Institute for Catalysis and Energy Solutions, University of South Africa's College of Science, Engineering, and Technology, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
| | - Tonderayi S Matambo
- Centre of Competence in Environmental Biotechnology, Department of Environmental Science, University of South Africa's College of Agriculture and Environmental Science, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
2
|
Shang Z, Chen K, Han T, Bu F, Sun S, Zhu N, Man D, Yang K, Yuan S, Fu H. Natural Foraging Selection and Gut Microecology of Two Subterranean Rodents from the Eurasian Steppe in China. Animals (Basel) 2024; 14:2334. [PMID: 39199868 PMCID: PMC11350848 DOI: 10.3390/ani14162334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
As the most abundant group of mammals, rodents possess a very rich ecotype, which makes them ideal for studying the relationship between diet and host gut microecology. Zokors are specialized herbivorous rodents adapted to living underground. Unlike more generalized herbivorous rodents, they feed on the underground parts of grassland plants. There are two species of the genus Myospalax in the Eurasian steppes in China: one is Myospalax psilurus, which inhabits meadow grasslands and forest edge areas, and the other is M. aspalax, which inhabits typical grassland areas. How are the dietary choices of the two species adapted to long-term subterranean life, and what is the relationship of this diet with gut microbes? Are there unique indicator genera for their gut microbial communities? Relevant factors, such as the ability of both species to degrade cellulose, are not yet clear. In this study, we analyzed the gut bacterial communities and diet compositions of two species of zokors using 16S amplicon technology combined with macro-barcoding technology. We found that the diversity of gut microbial bacterial communities in M. psilurus was significantly higher than that in M. aspalax, and that the two species of zokors possessed different gut bacterial indicator genera. Differences in the feeding habits of the two species of zokors stem from food composition rather than diversity. Based on the results of Mantel analyses, the gut bacterial community of M. aspalax showed a significant positive correlation with the creeping-rooted type food, and there was a complementary relationship between the axis root-type-food- and the rhizome-type-food-dominated (containing bulb types and tuberous root types) food groups. Functional prediction based on KEGG found that M. psilurus possessed a stronger degradation ability in the same cellulose degradation pathway. Neutral modeling results show that the gut flora of the M. psilurus has a wider ecological niche compared to that of the M. aspalax. This provides a new perspective for understanding how rodents living underground in grassland areas respond to changes in food conditions.
Collapse
Affiliation(s)
- Zhenghaoni Shang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Kai Chen
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Tingting Han
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Fan Bu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Shanshan Sun
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Na Zhu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Duhu Man
- College of Agriculture, Hulunbuir University, Hulunbuir 021000, China;
| | - Ke Yang
- Alxa League Meteorological Bureau, Alxa 750300, China;
| | - Shuai Yuan
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Heping Fu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| |
Collapse
|
3
|
Geng QS, Huang T, Li LF, Shen ZB, Xue WH, Zhao J. Over-Expression and Prognostic Significance of FN1, Correlating With Immune Infiltrates in Thyroid Cancer. Front Med (Lausanne) 2022; 8:812278. [PMID: 35141255 PMCID: PMC8818687 DOI: 10.3389/fmed.2021.812278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background Thyroid cancer (THCA) is a malignancy affecting the endocrine system, which currently has no effective treatment due to a limited number of suitable drugs and prognostic markers. Methods Three Gene Expression Omnibus (GEO) datasets were selected to identify differentially expressed genes (DEGs) between THCA and normal thyroid samples using GEO2R tools of National Center for Biotechnology Information. We identified hub gene FN1 using functional enrichment and protein-protein interaction network analyses. Subsequently, we evaluated the importance of gene expression on clinical prognosis using The Cancer Genome Atlas (TCGA) database and GEO datasets. MEXPRESS was used to investigate the correlation between gene expression and DNA methylation; the correlations between FN1 and cancer immune infiltrates were investigated using CIBERSORT. In addition, we assessed the effect of silencing FN1 expression, using an in vitro cellular model of THCA. Immunohistochemical(IHC) was used to elevate the correlation between CD276 and FN1. Results FN1 expression was highly correlated with progression-free survival and moderately to strongly correlated with the infiltration levels of M2 macrophages and resting memory CD4+ T cells, as well as with CD276 expression. We suggest promoter hypermethylation as the mechanism underlying the observed changes in FN1 expression, as 20 CpG sites in 507 THCA cases in TCGA database showed a negative correlation with FN1 expression. In addition, silencing FN1 expression suppressed clonogenicity, motility, invasiveness, and the expression of CD276 in vitro. The correlation between FN1 and CD276 was further confirmed by immunohistochemical. Conclusion Our findings show that FN1 expression levels correlate with prognosis and immune infiltration levels in THCA, suggesting that FN1 expression be used as an immunity-related biomarker and therapeutic target in THCA.
Collapse
Affiliation(s)
- Qi-Shun Geng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Huang
- Huanghe Science and Technology University, Zhengzhou, China
| | - Li-Feng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Bo Shen
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Hua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jie Zhao
| |
Collapse
|
4
|
Khalil H, Legin E, Kurek B, Perre P, Taidi B. Morphological growth pattern of Phanerochaete chrysosporium cultivated on different Miscanthus x giganteus biomass fractions. BMC Microbiol 2021; 21:318. [PMID: 34784888 PMCID: PMC8597199 DOI: 10.1186/s12866-021-02350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Solid-state fermentation is a fungal culture technique used to produce compounds and products of industrial interest. The growth behaviour of filamentous fungi on solid media is challenging to study due to the intermixity of the substrate and the growing organism. Several strategies are available to measure indirectly the fungal biomass during the fermentation such as following the biochemical production of mycelium-specific components or microscopic observation. The microscopic observation of the development of the mycelium, on lignocellulosic substrate, has not been reported. In this study, we set up an experimental protocol based on microscopy and image processing through which we investigated the growth pattern of Phanerochaete chrysosporium on different Miscanthus x giganteus biomass fractions. RESULTS Object coalescence, the occupied surface area, and radial expansion of the colony were measured in time. The substrate was sterilized by autoclaving, which could be considered a type of pre-treatment. The fastest growth rate was measured on the unfractionated biomass, followed by the soluble fraction of the biomass, then the residual solid fractions. The growth rate on the different fractions of the substrate was additive, suggesting that both the solid and soluble fractions were used by the fungus. Based on the FTIR analysis, there were differences in composition between the solid and soluble fractions of the substrate, but the main components for growth were always present. We propose using this novel method for measuring the very initial fungal growth by following the variation of the number of objects over time. Once growth is established, the growth can be followed by measurement of the occupied surface by the mycelium. CONCLUSION Our data showed that the growth was affected from the very beginning by the nature of the substrate. The most extensive colonization of the surface was observed with the unfractionated substrate containing both soluble and solid components. The methodology was practical and may be applied to investigate the growth of other fungi, including the influence of environmental parameters on the fungal growth.
Collapse
Affiliation(s)
- Hassan Khalil
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Estelle Legin
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Bernard Kurek
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Patrick Perre
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| | - Behnam Taidi
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France.
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Hu D, Baskin JM, Baskin CC, Liu R, Yang X, Huang Z. A Seed Mucilage-Degrading Fungus From the Rhizosphere Strengthens the Plant-Soil-Microbe Continuum and Potentially Regulates Root Nutrients of a Cold Desert Shrub. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:538-546. [PMID: 33596107 DOI: 10.1094/mpmi-01-21-0014-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Seed mucilage plays important roles in the adaptation of desert plants to the stressful environment. Artemisia sphaerocephala is an important pioneer plant in the Central Asian cold desert, and it produces a large quantity of seed mucilage. Seed mucilage of A. sphaerocephala can be degraded by soil microbes, but it is unknown which microorganisms can degrade mucilage or how the mucilage-degrading microorganisms affect rhizosphere microbial communities or root nutrients. Here, mucilage-degrading microorganisms were isolated from the rhizosphere of A. sphaerocephala, were screened by incubation with mucilage stained with Congo red, and were identified by sequencing and phylogenetic analyses. Fungal-bacterial networks based on high-throughput sequencing of rhizosphere microbes were constructed to explore the seasonal dynamic of interactions between a mucilage-degrading microorganism and its closely related microorganisms. The structural equation model was used to analyze effects of the mucilage-degrading microorganism, rhizosphere fungal-bacterial communities, and soil physicochemical properties on root C and N. The fungus Phanerochaete chrysosporium was identified as a mucilage-degrading microorganism. Relative abundance of the mucilage-degrading fungus (MDF) was highest in May. Subnetworks showed that the abundance of fungi and bacteria closely related to the MDF also were highest in May. Interactions between the MDF and related fungi and bacteria were positive, which might enhance mucilage degradation. In addition, the MDF might regulate root C and N by affecting rhizosphere microbial community structure. Our results suggest that MDF from the rhizosphere strengthens the plant-soil-microbe continuum, thereby potentially regulating microbial interactions and root nutrients of A. sphaerocephala.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dandan Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, U.S.A
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, U.S.A
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Rong Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
6
|
An insight into transcriptome of Cyathus bulleri for lignocellulase expression on wheat bran. Arch Microbiol 2021; 203:3727-3736. [PMID: 33877388 DOI: 10.1007/s00203-021-02326-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
To identify enzymes that can be effectively used for hydrolysis of lignocellulosic biomass, an attractive carbon source in biorefineries, transcriptome analysis was carried out of wheat bran grown fungus, Cyathus bulleri. A comprehensive set of transcripts, encoding carbohydrate active enzymes, were identified. These belonged to 55, 32, 12, 11 and 7 different families of the enzyme classes of Glycoside Hydrolases (GHs), Glycosyl Transferases (GTs), Auxiliary Activities (AAs), Carbohydrate Esterases (CEs) and Polysaccharide Lyases (PLs) respectively. Higher levels of transcripts were obtained for proteins encoding cellulose and hemicellulose degrading activities (of the GH class) with the highest diversity found in the transcripts encoding the hemicellulases. Several transcripts encoding pectin degrading activity were also identified indicating close association of the pectin with the cellulose/hemicellulose in the cell wall of this fungus. Transcripts encoding ligninases were categorized into Cu radical oxidase, Glucose-Methanol-Choline oxidoreductase (with 37 different transcripts in the AA3 sub-family), Laccase and Manganese peroxidases. Temporal gene expression profile for laccase isoforms was studied to understand their role in lignin degradation. To our knowledge, this is the first analysis of the transcriptome of a member belonging to the family Nidulariaceae.
Collapse
|
7
|
Zhang L, Johnson NW, Liu Y, Miao Y, Chen R, Chen H, Jiang Q, Li Z, Dong Y, Mahendra S. Biodegradation mechanisms of sulfonamides by Phanerochaete chrysosporium - Luffa fiber system revealed at the transcriptome level. CHEMOSPHERE 2021; 266:129194. [PMID: 33316476 DOI: 10.1016/j.chemosphere.2020.129194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/11/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The overuse of antibiotics and subsequent enrichment of antibiotic resistant microbes in the natural and built environments is a severe threat to global public health. In this study, a Phanerochaete chrysosporium fungal-luffa fiber system was found to efficiently biodegrade two sulfonamides, sulfadimethoxine (SDM) and sulfadizine (SDZ), in cow urine wastewater. Biodegradation pathways were proposed on the basis of key metabolites identified using high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (HPLC-QqTOF-MS). Transcriptomic, metabolomic, and free radical analyses were performed to explore the functional groups and detailed molecular mechanisms of SDM and SDZ degradation. A total of 27 UniGene clusters showed significant differences between luffa fiber and luffa fiber-free systems, which were significantly correlated to cellulose catabolism, carbohydrate metabolism, and oxidoreductase activity. Carbohydrate-active enzymes and oxidoreductases appear to play particularly important roles in SDM and SDZ degradation. Electron paramagnetic resonance (EPR) spectroscopy revealed the generation and evolution of OH and R during the biodegradation of SDM and SDZ, suggesting that beyond enzymatic degradation, SDM and SDZ were also transformed through a free radical pathway. Luffa fiber also acts as a co-substrate to improve the activity of enzymes for the degradation of SDM and SDZ. This research provides a potential strategy for removing SDM and SDZ from agricultural and industrial wastewater using fungal-luffa fiber systems.
Collapse
Affiliation(s)
- Lan Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Nicholas W Johnson
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| | - Yun Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Yu Miao
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| | - Ruihuan Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Hong Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Qian Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Zhongpei Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Yuanhua Dong
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Shaily Mahendra
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Su C, Liu WX, Wu LS, Dong TJ, Liu JF. Screening of Hub Gene Targets for Lung Cancer via Microarray Data. Comb Chem High Throughput Screen 2020; 24:269-285. [PMID: 32772911 DOI: 10.2174/1386207323666200808172631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/24/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is one of the malignancies exhibiting the fastest increase in morbidity and mortality, but the cause is not clearly understood. The goal of this investigation was to screen and identify relevant biomarkers of lung cancer. METHODS Publicly available lung cancer data sets, including GSE40275 and GSE134381, were obtained from the GEO database. The repeatability test for data was done by principal component analysis (PCA), and a GEO2R was performed to screen differentially expressed genes (DEGs), which were all subjected to enrichment analysis. Protein-protein interactions (PPIs), and the significant module and hub genes were identified via Cytoscape. Expression and correlation analysis of hub genes was done, and an overall survival analysis of lung cancer was performed. A receiver operating characteristic (ROC) curve analysis was performed to test the sensitivity and specificity of the identified hub genes for diagnosing lung cancer. RESULTS The repeatability of the two datasets was good and 115 DEGs and 10 hub genes were identified. Functional analysis revealed that these DEGs were associated with cell adhesion, the extracellular matrix, and calcium ion binding. The DEGs were mainly involved with ECM-receptor interaction, ABC transporters, cell-adhesion molecules, and the p53 signaling pathway. Ten genes including COL1A2, POSTN, DSG2, CDKN2A, COL1A1, KRT19, SLC2A1, SERPINB5, DSC3, and SPP1 were identified as hub genes through module analysis in the PPI network. Lung cancer patients with high expression of COL1A2, POSTN, DSG2, CDKN2A, COL1A1, SLC2A1, SERPINB5, and SPP1 had poorer overall survival times than those with low expression (p <0.05). The CTD database showed that 10 hub genes were closely related to lung cancer. Expression of POSTN, DSG2, CDKN2A, COL1A1, SLC2A1, SERPINB5, and SPP1 was also associated with a diagnosis of lung cancer (p<0.05). ROC analysis showed that SPP1 (AUC = 0.940, p = 0.000*, 95%CI = 0.930-0.973, ODT = 7.004), SLC2A1 (AUC = 0.889, p = 0.000*, 95%CI = 0.791-0.865, ODT = 7.123), CDKN2A (AUC = 0.730, p = 0.000*, 95%CI = 0.465-1.000, ODT = 6.071) were suitable biomarkers. CONCLUSION Microarray technology represents an effective method for exploring genetic targets and molecular mechanisms of lung cancer. In addition, the identification of hub genes of lung cancer provides novel research insights for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Chang Su
- Department of Cardiothoracic Surgery, the 980 Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei 050082, China
| | - Wen-Xiu Liu
- Department of Cardiology, the 980 Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei 050082, China
| | - Li-Sha Wu
- Department of Emergency, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang 050000, China
| | - Tian-Jian Dong
- Department of Cardiothoracic Surgery, the 980 Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei 050082, China
| | - Jun-Feng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
9
|
Zhang YF, Meng LB, Hao ML, Yang JF, Zou T. Identification of Co-expressed Genes Between Atrial Fibrillation and Stroke. Front Neurol 2020; 11:184. [PMID: 32265825 PMCID: PMC7105800 DOI: 10.3389/fneur.2020.00184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) increases the risk of ischemic stroke and systemic arterial embolism. However, the risk factors or predictors of stroke in AF patients have not been clarified. Therefore, it is necessary to find effective diagnostic and therapeutic targets. Two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differently expressed genes (DEGs) were identified between samples of atrial fibrillation without stroke and atrial fibrillation with stroke. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) by Gene Set Enrichment Analysis (GSEA), construction and analysis of protein-protein interaction (PPI) network and significant module, and the receiver operator characteristic (ROC) curve analysis were performed. A total of 524 DEGs were common to both datasets. Analysis of KEGG pathways indicated that the top canonical pathways associated with DEGs were ubiquitin-mediated proteolysis, endocytosis, spliceosome, and so on. Ten hub genes (SMURF2, CDC42, UBE3A, RBBP6, CDC5L, NEDD4L, UBE2D2, UBE2B, UBE2I, and MAPK1) were identified from the PPI network and were significantly associated with a diagnosis of atrial fibrillation and stroke (AFST). In summary, a total of 524 DEGs and 10 hub genes were identified between samples of atrial fibrillation without stroke and atrial fibrillation with stroke. These genes may serve as the target of early diagnosis or treatment of AF complicated by stroke.
Collapse
Affiliation(s)
- Yan-Fei Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ling-Bing Meng
- Neurology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Meng-Lei Hao
- Department of Geriatric Medicine, Affiliated Hospital of Qinghai University, Xining, China
| | - Jie-Fu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Tong Zou
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
10
|
de Vries RP, Mäkelä MR. Genomic and Postgenomic Diversity of Fungal Plant Biomass Degradation Approaches. Trends Microbiol 2020; 28:487-499. [PMID: 32396827 DOI: 10.1016/j.tim.2020.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Plant biomass degradation by fungi is a widely studied and applied field of science, due to its relevance for the global carbon cycle and many biotechnological applications. Before the genome era, many of the in-depth studies focused on a relatively small number of species, whereas now, many species can be addressed in detail, revealing the large variety in the approach used by fungi to degrade plant biomass. This variation is found at many levels and includes genomic adaptation to the preferred biomass component, but also different approaches to degrade this component by diverse sets of activities encoded in the genome. Even larger differences have been observed using transcriptome and proteome studies, even between closely related species, suggesting a high level of adaptation in individual species. A better understanding of the drivers of this diversity could be highly valuable in developing more efficient biotechnology approaches for the enzymatic conversion of plant biomass.
Collapse
Affiliation(s)
- Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Kameshwar AKS, Ramos LP, Qin W. Metadata Analysis Approaches for Understanding and Improving the Functional Involvement of Rumen Microbial Consortium in Digestion and Metabolism of Plant Biomass. J Genomics 2019; 7:31-45. [PMID: 31001361 PMCID: PMC6470328 DOI: 10.7150/jgen.32164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
Rumen is one of the most complex gastro-intestinal system in ruminating animals. With bountiful of microorganisms supporting in breakdown and consumption of minerals and nutrients from the complex plant biomass. It is predicted that a table spoon of ruminal fluid can reside up to 150 billion microorganisms including various species of bacteria, fungi and protozoa. Several studies in the past have extensively explained about the structural and functional physiology of the rumen. Studies based on rumen and its microbiota has increased significantly in the last decade to understand and reveal applications of the rumen microbiota in food processing, pharmaceutical, biofuel and biorefining industries. Recent high-throughput meta-genomic and proteomic studies have revealed humongous information on rumen microbial diversity. In this study, we have extensively reviewed and reported present-day's progress in understanding the rumen microbial diversity. As of today, NCBI resides about 821,870 records based on rumen with approximately 889 genome sequencing studies. We have retrieved all the rumen-based records from NCBI and extensively catalogued the rumen microbial diversity and the corresponding genomic and proteomic studies respectively. Also, we have provided a brief inventory of metadata analysis software packages and reviewed the metadata analysis approaches for understanding the functional involvement of these microorganisms. Knowing and understanding the present progress on rumen microbiota and performing metadata analysis studies will significantly benefit the researchers in identifying the molecular mechanisms involved in plant biomass degradation. These studies are also necessary for developing highly efficient microorganisms and enzyme mixtures for enhancing the benefits of cattle-feedstock and biofuel industries.
Collapse
Affiliation(s)
- Ayyappa Kumar Sista Kameshwar
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Universidade Federal do Paraná, P. O. Box 19032, Curitiba, Paraná, 81531-980, Brazil
| | - Luiz Pereira Ramos
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Universidade Federal do Paraná, P. O. Box 19032, Curitiba, Paraná, 81531-980, Brazil
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| |
Collapse
|
12
|
Kameshwar AKS, Qin W. Genome Wide Analysis Reveals the Extrinsic Cellulolytic and Biohydrogen Generating Abilities of Neocallimastigomycota Fungi. J Genomics 2018; 6:74-87. [PMID: 29928466 PMCID: PMC6004548 DOI: 10.7150/jgen.25648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/25/2018] [Indexed: 11/26/2022] Open
Abstract
Ruminating animals, especially cattle lack the carbohydrate active enzyme encoding genes which are required for the degradation of the glycosidic linkages of plant cell wall carbohydrates (such as cellulose, hemicellulose, lignin and pectin). Thus, ruminating animals are completely dependent on the microorganisms (anaerobic bacteria and fungi, methanogenic archaea and protozoa) residing in their rumen (hindgut). In this study, we have retrieved and analyzed the complete genome wide annotations of the Neocallimastigomycota division fungi such as Anaeromyces robustus, Neocallismatix californiae, Orpinomyces sp, Piromyces finnis, Piromyces sp E2. We have retrieved the InterPro, CAZy, KOG, KEGG, SM Clusters and MEROPS genome level data of these anaerobic fungi from JGI-MycoCosm database. Results obtained in our study reveals that, the genomes of anaerobic fungi completely lack genes encoding for lignin degrading auxiliary activity enzymes. Contrastingly, these fungi outnumbered other fungi by having highest number of CAZyme encoding genes. The genes encoding for dockerins and carbohydrate binding modules exaggerated other CAZymes which are involved in the structure and functioning of cellulosomes. Presence of cellulosomes and higher number of carbohydrate transport and metabolism genes also endorses the plant cell wall carbohydrate degrading abilities of these fungi. We also reported the tentative total cellulolytic, hemicellulolytic and pectinolytic abilities. And we have explicitly reported the genes, enzymes and the mechanisms involved in structure and functioning of the cellulosomes and hydrogenosomes. Our present work reveals the genomic machinery underlying the extrinsic plant cell wall degrading abilities of the anaerobic fungi. Results obtained in our study can be significantly applied in improving the gut health of cattle and especially in the fields of biofuel, biorefining and bioremediation-based industries.
Collapse
Affiliation(s)
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| |
Collapse
|
13
|
Kameshwar AKS, Qin W. Molecular Networks of Postia placenta Involved in Degradation of Lignocellulosic Biomass Revealed from Metadata Analysis of Open Access Gene Expression Data. Int J Biol Sci 2018; 14:237-252. [PMID: 29559843 PMCID: PMC5859471 DOI: 10.7150/ijbs.22868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/09/2018] [Indexed: 11/05/2022] Open
Abstract
To understand the common gene expression patterns employed by P. placenta during lignocellulose degradation, we have retrieved genome wide transcriptome datasets from NCBI GEO database and analyzed using customized analysis pipeline. We have retrieved the top differentially expressed genes and compared the common significant genes among two different growth conditions. Genes encoding for cellulolytic (GH1, GH3, GH5, GH12, GH16, GH45) and hemicellulolytic (GH10, GH27, GH31, GH35, GH47, GH51, GH55, GH78, GH95) glycoside hydrolase classes were commonly up regulated among all the datasets. Fenton's reaction enzymes (iron homeostasis, reduction, hydrogen peroxide generation) were significantly expressed among all the datasets under lignocellulolytic conditions. Due to the evolutionary loss of genes coding for various lignocellulolytic enzymes (including several cellulases), P. placenta employs hemicellulolytic glycoside hydrolases and Fenton's reactions for the rapid depolymerization of plant cell wall components. Different classes of enzymes involved in aromatic compound degradation, stress responsive and detoxification mechanisms (cytochrome P450 monoxygenases) were found highly expressed in complex plant biomass substrates. We have reported the genome wide expression patterns of genes coding for information, storage and processing (KOG), tentative and predicted molecular networks involved in cellulose, hemicellulose degradation and list of significant protein-ID's commonly expressed among different lignocellulolytic growth conditions.
Collapse
Affiliation(s)
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| |
Collapse
|
14
|
Sista Kameshwar AK, Qin W. Analyzing Phanerochaete chrysosporium gene expression patterns controlling the molecular fate of lignocellulose degrading enzymes. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives. Curr Genet 2017; 63:877-894. [PMID: 28275822 DOI: 10.1007/s00294-017-0686-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Lignin, most complex and abundant biopolymer on the earth's surface, attains its stability from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize or separate from other units of biomass. Eccentric lignin degrading ability and availability of annotated genome make Phanerochaete chrysosporium ideal for studying lignin degrading mechanisms. Decoding and understanding the molecular mechanisms underlying the process of lignin degradation will significantly aid the progressing biofuel industries and lead to the production of commercially vital platform chemicals. In this study, we have performed a large-scale metadata analysis to understand the common gene expression patterns of P. chrysosporium during lignin degradation. Gene expression datasets were retrieved from NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly expressed statistically significant genes among different datasets were further considered to understand their involvement in lignin degradation and detoxification mechanisms. We have observed three sets of enzymes commonly expressed during ligninolytic conditions which were later classified into primary ligninolytic, aromatic compound-degrading and other necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification and stress-responsive, phase I and phase II metabolic enzymes. Results obtained in this study indicate the coordinated action of enzymes involved in lignin depolymerization and detoxification-stress responses under ligninolytic conditions. We have developed tentative network of genes and enzymes involved in lignin degradation and detoxification mechanisms by P. chrysosporium based on the literature and results obtained in this study. However, ambiguity raised due to higher expression of several uncharacterized proteins necessitates for further proteomic studies in P. chrysosporium.
Collapse
|