1
|
Davletgildeeva AT, Kuznetsov NA. Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Curr Issues Mol Biol 2024; 46:10462-10491. [PMID: 39329974 PMCID: PMC11431407 DOI: 10.3390/cimb46090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Alkylating modifications induced by either exogenous chemical agents or endogenous metabolites are some of the main types of damage to DNA, RNA, and proteins in the cell. Although research in recent decades has been almost entirely devoted to the repair of alkyl and in particular methyl DNA damage, more and more data lately suggest that the methylation of RNA bases plays an equally important role in normal functioning and in the development of diseases. Among the most prominent participants in the repair of methylation-induced DNA and RNA damage are human homologs of Escherichia coli AlkB, nonheme Fe(II)/α-ketoglutarate-dependent dioxygenases ABH1-8, and FTO. Moreover, some of these enzymes have been found to act on several protein targets. In this review, we present up-to-date data on specific features of protein structure, substrate specificity, known roles in the organism, and consequences of disfunction of each of the nine human homologs of AlkB. Special attention is given to reports about the effects of natural single-nucleotide polymorphisms on the activity of these enzymes and to potential consequences for carriers of such natural variants.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Camacho-Macorra C, Tabanera N, Sánchez-Bustamante E, Bovolenta P, Cardozo MJ. Maternal vgll4a regulates zebrafish epiboly through Yap1 activity. Front Cell Dev Biol 2024; 12:1362695. [PMID: 38444829 PMCID: PMC10912589 DOI: 10.3389/fcell.2024.1362695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Gastrulation in zebrafish embryos commences with the morphogenetic rearrangement of blastodermal cells, which undergo a coordinated spreading from the animal pole to wrap around the egg at the vegetal pole. This rearrangement, known as epiboly, relies on the orchestrated activity of maternal transcripts present in the egg, compensating for the gradual activation of the zygotic genome. Epiboly involves the mechano-transducer activity of yap1 but what are the regulators of yap1 activity and whether these are maternally or zygotically derived remain elusive. Our study reveals the crucial role of maternal vgll4a, a proposed Yap1 competitor, during zebrafish epiboly. In embryos lacking maternal/zygotic vgll4a (MZvgll4a), the progression of epiboly and blastopore closure is delayed. This delay is associated with the ruffled appearance of the sliding epithelial cells, decreased expression of yap1-downstream targets and transient impairment of the actomyosin ring at the syncytial layer. Our study also shows that, rather than competing with yap1, vgll4a modulates the levels of the E-cadherin/β-catenin adhesion complex at the blastomeres' plasma membrane and hence their actin cortex distribution. Taking these results together, we propose that maternal vgll4a acts at epiboly initiation upstream of yap1 and the E-cadherin/β-catenin adhesion complex, contributing to a proper balance between tissue tension/cohesion and contractility, thereby promoting a timely epiboly progression.
Collapse
Affiliation(s)
- Carlos Camacho-Macorra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Noemí Tabanera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez-Bustamante
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marcos J Cardozo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
3
|
Yu R, Zhang W, Li Y, Tang J, Kim K, Li B. Functional characterisation of Fe (II) and 2OG-dependent dioxygenase TcALKBH4 in the red flour beetle, Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2023; 32:676-688. [PMID: 37462221 DOI: 10.1111/imb.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 11/08/2023]
Abstract
Alpha-ketoglutarate-dependent dioxygenase ALKB homologue 4 (ALKBH4) is a member of the Fe (II) and 2-oxoglutarate-dependent ALKB homologue family that plays important roles in epigenetic regulation by alkyl lesions removal in mammals. However, the roles of ALKBH4 in insects are not clear. Here, TcALKBH4 was cloned and functionally characterised in Tribolium castaneum. Temporal expression revealed that TcALKBH4 was highly expressed in early embryos and early pupae. Spatial expression showed that TcALKBH4 was highly expressed in the adult testis, and followed by the ovary. RNA interference targeting TcALKBH4 at different developmental stages in T. castaneum led to apparent phenotypes including the failure of development in larvae, the reduction of food intake and the deficiency of fertility in adult. However, further dot blot analyses showed that TcALKBH4 RNAi does not seem to influence 6 mA levels in vivo. qRT-PCR was used to further explore the underlying molecular mechanisms; the result showed that TcALKBH4 mediates the development of larvae possibly through 20E signalling pathway, and the fertility of female and male adult might be regulated by the expression of vitellogenesis and JH signalling pathway, respectively. Altogether, these findings will provide new insights into the potential function of ALKBH4 in insects.
Collapse
Affiliation(s)
- Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenjing Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - KumChol Kim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Life-Science, University of Science, Pyongyang, Democratic People's Republic of Korea
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Ka HI, Cho M, Kwon SH, Mun SH, Han S, Kim MJ, Yang Y. IK is essentially involved in ciliogenesis as an upstream regulator of oral-facial-digital syndrome ciliopathy gene, ofd1. Cell Biosci 2023; 13:195. [PMID: 37898820 PMCID: PMC10612314 DOI: 10.1186/s13578-023-01146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The cilia are microtubule-based organelles that protrude from the cell surface. Abnormalities in cilia result in various ciliopathies, including polycystic kidney disease (PKD), Bardet-Biedl syndrome (BBS), and oral-facial-digital syndrome type I (OFD1), which show genetic defects associated with cilia formation. Although an increasing number of human diseases is attributed to ciliary defects, the functions or regulatory mechanisms of several ciliopathy genes remain unclear. Because multi ciliated cells (MCCs) are especially deep in vivo, studying ciliogenesis is challenging. Here, we demonstrate that ik is essential for ciliogenesis in vivo. RESULTS In the absence of ik, zebrafish embryos showed various ciliopathy phenotypes, such as body curvature, abnormal otoliths, and cyst formation in the kidney. RNA sequencing analysis revealed that ik positively regulated ofd1 expression required for cilium assembly. In fact, depletion of ik resulted in the downregulation of ofd1 expression with ciliary defects, and these ciliary defects in ik mutants were rescued by restoring ofd1 expression. Interestingly, ik affected ciliogenesis particularly in the proximal tubule but not in the distal tubule in the kidney. CONCLUSIONS This study demonstrates the role of ik in ciliogenesis in vivo for the first time. Loss of ik in zebrafish embryos displays various ciliopathy phenotypes with abnormal ciliary morphology in ciliary tissues. Our findings on the ik-ofd1 axis provide new insights into the biological function of ik in clinical ciliopathy studies in humans.
Collapse
Affiliation(s)
- Hye In Ka
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Mina Cho
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, 02841, South Korea
| | - Se Hwan Mun
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Sora Han
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Min Jung Kim
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea.
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04312, South Korea.
| | - Young Yang
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea.
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea.
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04312, South Korea.
| |
Collapse
|
5
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
6
|
Li JT, Cheng XN, Zhang C, Shi DL, Shao M. The Adaptor Protein Lurap1 Is Required for Cell Cohesion during Epiboly Movement in Zebrafish. BIOLOGY 2021; 10:biology10121337. [PMID: 34943252 PMCID: PMC8699034 DOI: 10.3390/biology10121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Cell adhesion and active cell shape changes play an important role in morphogenetic movements during embryonic development. Zebrafish is an attractive model for the study of cellular and molecular mechanisms underlying these processes. Epiboly is a conserved gastrulation cell movement, which describes the thinning and spreading of an external sheet of cells to cover other groups of cells in the embryo. It involves differential cellular adhesive properties and dynamic cytoskeletal organization across the embryo, but how these are regulated remains elusive. We found that the adaptor protein Lurap1, which interacts with other proteins required for cell migration, plays a role in cell adhesion during epiboly. In zebrafish mutants with loss of Lurap1 function, there is a reduced cellular cohesion in the epithelial blastoderm cells and a delayed epiboly movement. Our observations suggest that Lurap1 is implicated in the regulation of cellular behavior changes for coordinated morphogenetic movements in vertebrate embryos. Abstract Cell adhesion and polarized cellular behaviors play critical roles in a wide variety of morphogenetic events. In the zebrafish embryo, epiboly represents an important process of epithelial morphogenesis that involves differential cell adhesion and dynamic cell shape changes for coordinated movements of different cell populations, but the underlying mechanism remains poorly understood. The adaptor protein Lurap1 functions to link myotonic dystrophy kinase-related Rac/Cdc42-binding kinase with MYO18A for actomyosin retrograde flow in cell migration. We previously reported that it interacts with Dishevelled in convergence and extension movements during gastrulation. Here, we show that it regulates blastoderm cell adhesion and radial cell intercalation during epiboly. In zebrafish mutant embryos with loss of both maternal and zygotic Lurap1 function, deep cell multilayer of the blastoderm exhibit delayed epiboly with respect to the superficial layer. Time-lapse imaging reveals that these deep cells undergo unstable intercalation, which impedes their expansion over the yolk cell. Cell sorting and adhesion assays indicate reduced cellular cohesion of the blastoderm. These defects are correlated with disrupted cytoskeletal organization in the cortex of blastoderm cells. Thus, the present results extend our previous works by demonstrating that Lurap1 is required for cell adhesion and cell behavior changes to coordinate cell movements during epithelial morphogenesis. They provide insights for a further understanding of the regulation of cytoskeletal organization during gastrulation cell movements.
Collapse
Affiliation(s)
- Ji-Tong Li
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
| | - Xiao-Ning Cheng
- Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
| | - Chong Zhang
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
| | - De-Li Shi
- Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine, Sorbonne University, 75005 Paris, France
- Correspondence: (D.-L.S.); (M.S.)
| | - Ming Shao
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
- Correspondence: (D.-L.S.); (M.S.)
| |
Collapse
|
7
|
Li N, Gao S, Wang S, He S, Wang J, He L, Jiang D, Shi YS, Zhang J, Gu Y, Chen T, Kong M, Xu X, Zhao Q. Attractin Participates in Schizophrenia by Affecting Testosterone Levels. Front Cell Dev Biol 2021; 9:755165. [PMID: 34869343 PMCID: PMC8636034 DOI: 10.3389/fcell.2021.755165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Attractin (ATRN) is a widely expressed glycoprotein that is involved in energy homeostasis, neurodevelopment, and immune response. It is encoded by a gene spanning 180 kb on chromosome 20p13, a region previously implicated in schizophrenia by linkage studies. To address a possible role of ATRN in disorders of the central nervous system, we created an atrn knockout zebrafish line and performed behavioral tests. Adult atrn–/– zebrafish exhibited more pronounced attack behavior relative to wild-type control zebrafish in a tracking analysis. Biochemical analysis revealed elevated testosterone levels in atrn–/– zebrafish. At the gene expression level, we noted an upregulation of cyp51 and hsd17b7, key proteins in testosterone synthesis in the brains of both adult and larvae of atrn–/– zebrafish. In order to further elucidate the relationship between testosterone and behavioral syndromes, we then compared testosterone levels of 9,008 psychiatric patients and 247 healthy controls from the same catchment area. Of all subjects examined, male subjects with schizophrenia exhibited lower testosterone levels compared with controls. In contrast, female subjects with a diagnosis of schizophrenia or bipolar disorder featured higher testosterone levels than did same sex controls. Purposeful sampling of extreme groups showed reduced ATRN expression in a subset of these subjects. Finally, we identified 14 subjects with ATRN mutations. All of whom displayed abnormal testosterone levels. In summary, the interplay of ATRN and testosterone may help to explain sexual dimorphisms in selected behavioral phenotypes.
Collapse
Affiliation(s)
- Nan Li
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Shuzhan Gao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Shuang Wang
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | | | - Jiayin Wang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Luqingqing He
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Dongya Jiang
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Yun Stone Shi
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China
| | | | - Yuan Gu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Tian Chen
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjun Kong
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xijia Xu
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China.,Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qingshun Zhao
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Li YL, Cheng XN, Lu T, Shao M, Shi DL. Syne2b/Nesprin-2 Is Required for Actin Organization and Epithelial Integrity During Epiboly Movement in Zebrafish. Front Cell Dev Biol 2021; 9:671887. [PMID: 34222245 PMCID: PMC8248263 DOI: 10.3389/fcell.2021.671887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
Syne2b/nesprin-2 is a giant protein implicated in tethering the nucleus to the cytoskeleton and plays an important role in maintaining cellular architecture. Epiboly is a conserved morphogenetic movement that involves extensive spreading and thinning of the epithelial blastoderm to shape the embryo and organize the three germ layers. Dynamic cytoskeletal organization is critical for this process, but how it is regulated remains elusive. Here we generated a zebrafish syne2b mutant line and analyzed the effects of impaired Syne2b function during early development. By CRISPR/Cas9-mediated genome editing, we obtained a large deletion in the syne2b locus, predicted to cause truncation of the nuclear localization KASH domain in the translated protein. Maternal and zygotic syne2b embryos showed delayed epiboly initiation and progression without defects in embryonic patterning. Remarkably, disruption of Syne2b function severely impaired cytoskeletal organization across the embryo, leading to aberrant clustering of F-actin at multiple cell contact regions and abnormal cell shape changes. These caused disintegration of the epithelial blastoderm before the end of gastrulation in most severely affected embryos. Moreover, the migration of yolk nuclear syncytium also became defective, likely due to disorganized cytoskeletal networks at the blastoderm margin and in the yolk cell. These findings demonstrate an essential function of Syne2b in maintaining cytoskeletal architecture and epithelial integrity during epiboly movement.
Collapse
Affiliation(s)
- Yu-Long Li
- School of Life Sciences, Shandong University, Qingdao, China
| | | | - Tong Lu
- School of Life Sciences, Shandong University, Qingdao, China
| | - Ming Shao
- School of Life Sciences, Shandong University, Qingdao, China
| | - De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Laboratory of Developmental Biology, CNRS-UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France
| |
Collapse
|
9
|
Xu B, Liu D, Wang Z, Tian R, Zuo Y. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cell Mol Life Sci 2021; 78:129-141. [PMID: 32642789 PMCID: PMC11072825 DOI: 10.1007/s00018-020-03594-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022]
Abstract
AlkB homologs (ALKBH) are a family of specific demethylases that depend on Fe2+ and α-ketoglutarate to catalyze demethylation on different substrates, including ssDNA, dsDNA, mRNA, tRNA, and proteins. Previous studies have made great progress in determining the sequence, structure, and molecular mechanism of the ALKBH family. Here, we first review the multi-substrate selectivity of the ALKBH demethylase family from the perspective of sequence and structural evolution. The construction of the phylogenetic tree and the comparison of key loops and non-homologous domains indicate that the paralogs with close evolutionary relationship have similar domain compositions. The structures show that the lack and variations of four key loops change the shape of clefts to cause the differences in substrate affinity, and non-homologous domains may be related to the compatibility of multiple substrates. We anticipate that the new insights into selectivity determinants of the ALKBH family are useful for understanding the demethylation mechanisms.
Collapse
Affiliation(s)
- Baofang Xu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Dongyang Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zerong Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruixia Tian
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
10
|
Xiao MZ, Liu JM, Xian CL, Chen KY, Liu ZQ, Cheng YY. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed Pharmacother 2020; 131:110645. [PMID: 32942149 DOI: 10.1016/j.biopha.2020.110645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of human death. Recently, ALKB homologs, including ALKBH1-8 and FTO, have been found to have a variety of biological functions, such as histone demethylation, RNA demethylation, and DNA demethylation. These functions may regulate the physiological and pathological processes of CVDs, including inflammation, oxidative stress, cell apoptosis, and mitochondrial, endothelial, and fat metabolism dysfunction. In the present review, we summarize the biological functions of ALKB homologs and the relationship between the ALKB homologs and CVDs. Importantly, we discuss the roles of ALKB homologs in the regulation of oxidative stress, inflammation, autophagy, and DNA damage in CVDs, as well as the practical applications of ALKB homologs inhibitors or agonists in treating CVDs. In conclusion, the ALKBH family might be a promising target for CVDs therapy.
Collapse
Affiliation(s)
- Ming-Zhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Ming Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cui-Ling Xian
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keng-Yu Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; The Second Affiliated Hospital of Guangdong Pharmaceutical University, Yunfu, 527300, China
| | - Zhong-Qiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yuan-Yuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
11
|
Wang SY, Mao H, Shibuya H, Uzawa S, O’Brown ZK, Wesenberg S, Shin N, Saito TT, Gao J, Meyer BJ, Colaiácovo MP, Greer EL. The demethylase NMAD-1 regulates DNA replication and repair in the Caenorhabditis elegans germline. PLoS Genet 2019; 15:e1008252. [PMID: 31283754 PMCID: PMC6638966 DOI: 10.1371/journal.pgen.1008252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/18/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023] Open
Abstract
The biological roles of nucleic acid methylation, other than at the C5-position of cytosines in CpG dinucleotides, are still not well understood. Here, we report genetic evidence for a critical role for the putative DNA demethylase NMAD-1 in regulating meiosis in C. elegans. nmad-1 mutants have reduced fertility. They show defects in prophase I of meiosis, which leads to reduced embryo production and an increased incidence of males due to defective chromosomal segregation. In nmad-1 mutant worms, nuclear staging beginning at the leptotene and zygotene stages is disorganized, the cohesin complex is mislocalized at the diplotene and diakinesis stages, and chromosomes are improperly condensed, fused, or lost by the end of diakinesis. RNA sequencing of the nmad-1 germline revealed reduced induction of DNA replication and DNA damage response genes during meiosis, which was coupled with delayed DNA replication, impaired DNA repair and increased apoptosis of maturing oocytes. To begin to understand how NMAD-1 regulates DNA replication and repair, we used immunoprecipitation and mass spectrometry to identify NMAD-1 binding proteins. NMAD-1 binds to multiple proteins that regulate DNA repair and replication, including topoisomerase TOP-2 and co-localizes with TOP-2 on chromatin. Moreover, the majority of TOP-2 binding to chromatin depends on NMAD-1. These results suggest that NMAD-1 functions at DNA replication sites to regulate DNA replication and repair during meiosis. Errors in meiosis are the leading cause of miscarriages, as well as developmental and intellectual disabilities. We have identified that NMAD-1, an enzyme which removes methyl moieties from nucleic acids, is essential for appropriate DNA damage response, DNA replication and meiosis in the nematode C. elegans. We have cytologically and genetically characterized the defects which occur due to deletion of NMAD-1 in the C. elegans germline. Additionally, we have begun to determine molecularly how NMAD-1 can regulate DNA replication, by demonstrating that NMAD-1 binds to components of the DNA replication machinery and is required for their appropriate localization to DNA. Characterizing how epigenetic modifications and the corresponding enzymes that add or remove epigenetic modifications can control the fundamental process of meiosis will have broad implications for understanding and eventually correcting errors in meiosis that disrupt normal development.
Collapse
Affiliation(s)
- Simon Yuan Wang
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston Massachusetts, United States of America
| | - Hui Mao
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston Massachusetts, United States of America
| | - Hiroki Shibuya
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston Massachusetts, United States of America
| | - Satoru Uzawa
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Zach Klapholz O’Brown
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston Massachusetts, United States of America
| | - Sage Wesenberg
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Nara Shin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Takamune T. Saito
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinmin Gao
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara J. Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston Massachusetts, United States of America
- * E-mail:
| |
Collapse
|