1
|
Altoum AA, Oghenemaro EF, Pallathadka H, Sanghvi G, Hjazi A, Abbot V, Kumar MR, Sharma R, Zwamel AH, Taha ZA. lncRNA-mediated immune system dysregulation in RIF; a comprehensive insight into immunological modifications and signaling pathways' dysregulation. Hum Immunol 2024; 85:111170. [PMID: 39549305 DOI: 10.1016/j.humimm.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
The initial stage of biological pregnancy is referred to as implantation, during which the interaction between the endometrium and the fetus is crucial for successful implantation. Around 10% of couples undergoing in vitro fertilization and embryo transfer encounter recurrent implantation failure (RIF), a clinical condition characterized by the absence of implantation after multiple embryo transfers. It is believed that implantation failure may be caused by inadequate or excessive endometrial inflammatory responses during the implantation window, as the female immune system plays a complex role in regulating endometrial receptivity and embryo implantation. Recent approaches to enhance the likelihood of pregnancy in RIF patients have focused on modifying the mother's immune response during implantation by regulating inflammation. Long non-coding RNAs (lncRNAs) play a significant role in gene transcription during the inflammatory response. Current research suggests that dysfunctional lncRNAs are linked to various human disorders, such as cancer, diabetes, allergies, asthma, and inflammatory bowel disease. These non-coding RNAs are crucial for immune functions as they control protein interactions or the ability of RNA and DNA to form complexes, which are involved in differentiation, cell migration, and the production of inflammatory mediators. Given the apparent involvement of the immune system in RIF and the modulatory effect of lncRNAs on the immune system, this review aims to delve into the role of lncRNAs in immune system modulation and their potential contribution to RIF.
Collapse
Affiliation(s)
- Abdelgadir Alamin Altoum
- Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Rajesh Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 302131, India
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Zahraa Ahmed Taha
- Medical Laboratory Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001 Babylon, Iraq
| |
Collapse
|
2
|
Kyrgiafini MA, Vasilev VV, Chatziparasidou A, Mamuris Z. ΜicroRNA (miRNA) Variants in Male Infertility: Insights from Whole-Genome Sequencing. Genes (Basel) 2024; 15:1393. [PMID: 39596593 PMCID: PMC11593656 DOI: 10.3390/genes15111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Male infertility is a complex condition with various underlying genetic factors. microRNAs (miRNAs) play a crucial role in gene regulation, and their disruption can significantly impact fertility. This study aimed to identify variants within miRNA genes and elucidate their impact on male infertility. METHODS Whole genome sequencing was performed on blood samples from men with asthenozoospermia, oligozoospermia, and teratozoospermia, compared to normozoospermic controls. The analysis revealed a significant number of unique variants in each infertile group. We subsequently focused on variants in miRNA regions, followed by an in silico analysis to investigate the role of the identified variants and miRNAs in male infertility. RESULTS Focused analysis on miRNA genes identified 19 exclusive variants in teratozoospermic men, 24 in asthenozoospermic, and 27 in oligozoospermic, all mapping to pre-miRNAs or mature miRNAs. Functional analyses using Gene Ontology (GO) and KEGG pathways highlighted key biological processes and pathways disrupted by these variants and miRNA-mRNA interactions, including transcription regulation, signaling, and cancer-related pathways. Furthermore, six variants (rs17797090, rs1844035, rs7210937, rs451887, rs12233076, and rs6787734) were common across the infertile groups, suggesting their importance in male infertility or their potential as biomarkers. Common variants were also validated in another clinically relevant group of men. Some miRNAs with identified variants, such as hsa-miR-449b and hsa-miR-296, have been previously implicated in male infertility and exhibit differential expression between fertile and infertile men, according to the literature, too. CONCLUSION These results provide new insights into the genetic basis of male infertility and open avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Veselin Veselinov Vasilev
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Alexia Chatziparasidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
3
|
Wang T, Zhang L, Gao W, Liu Y, Yue F, Ma X, Liu L. Transcriptome-wide N6-methyladenosine modification profiling of long non-coding RNAs in patients with recurrent implantation failure. BMC Med Genomics 2024; 17:251. [PMID: 39394578 PMCID: PMC11470675 DOI: 10.1186/s12920-024-02013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
N6-methyladenosine (m6A) is involved in most biological processes and actively participates in the regulation of reproduction. According to recent research, long non-coding RNAs (lncRNAs) and their m6A modifications are involved in reproductive diseases. In the present study, using m6A-modified RNA immunoprecipitation sequencing (m6A-seq), we established the m6A methylation transcription profiles in patients with recurrent implantation failure (RIF) for the first time. There were 1443 significantly upregulated m6A peaks and 425 significantly downregulated m6A peaks in RIF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that genes associated with differentially methylated lncRNAs are involved in the p53 signalling pathway and amino acid metabolism. The competing endogenous RNA network revealed a regulatory relationship between lncRNAs, microRNAs and messenger RNAs. We verified the m6A methylation abundances of lncRNAs by using m6A-RNA immunoprecipitation (MeRIP)-real-time polymerase chain reaction. This study lays a foundation for further exploration of the potential role of m6A modification in the pathogenesis of RIF.
Collapse
Affiliation(s)
- Ting Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Lili Zhang
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Wenxin Gao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yidan Liu
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China
| | - Feng Yue
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoling Ma
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Lin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China.
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China.
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
4
|
Hasanabadi HE, Govahi A, Chaichian S, Mehdizadeh M, Haghighi L, Ajdary M. LnCRNAs in the Regulation of Endometrial Receptivity for Embryo Implantation. JBRA Assist Reprod 2024; 28:503-510. [PMID: 38875127 PMCID: PMC11349255 DOI: 10.5935/1518-0557.20240038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
The development of endometrial receptivity is crucial for successful embryo implantation and the initiation of pregnancy. Understanding the molecular regulatory processes that transform the endometrium into a receptive phase is essential for enhancing implantation rates in fertility treatments, such as in vitro fertilization (IVF). Long non-coding RNAs (lncRNAs) play a pivotal role as gene regulators and have been examined in the endometrium. This review offers current insights into the role of lncRNAs in regulating endometrial receptivity. Considering the significant variation in endometrial remodeling among species, we summarize the key events in the human endometrial cycle and discuss the identified lncRNAs in both humans and other species, which may play a crucial role in establishing receptivity. Notably, there are 742 lncRNAs in humans and 4438 lncRNAs that have the potential to modulate endometrial receptivity. Additionally, lncRNAs regulating matrix metalloproteinases (MMPs) and Let-7 have been observed in both species. Future investigations should explore the potential of lncRNAs as therapeutic targets and/or biomarkers for diagnosing and improving endometrial receptivity in human fertility therapy.
Collapse
Affiliation(s)
- Haniyeh Ebrahimnejad Hasanabadi
- Department of Pediatric Nursing and NICU, School of Nursing
& Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical
Sciences, Tehran, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical
Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department
of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Ladan Haghighi
- Endometriosis Research Center, Iran University of Medical
Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical
Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu Z, Lai S, Qu Q, Liu X, Zhang W, Zhao D, He S, Sun Y, Bao H. Analysis of weighted gene co-expression networks and clinical validation identify hub genes and immune cell infiltration in the endometrial cells of patients with recurrent implantation failure. Front Genet 2024; 15:1292757. [PMID: 38645487 PMCID: PMC11026622 DOI: 10.3389/fgene.2024.1292757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Background About 10% of individuals undergoing in vitro fertilization encounter recurrent implantation failure (RIF), which represents a worldwide social and economic concern. Nevertheless, the critical genes and genetic mechanisms underlying RIF are largely unknown. Methods We first obtained three comprehensive microarray datasets "GSE58144, GSE103465 and GSE111974". The differentially expressed genes (DEGs) evaluation, enrichment analysis, as well as efficient weighted gene co-expression network analysis (WGCNA), were employed for distinguishing RIF-linked hub genes, which were tested by RT-qPCR in our 30 independent samples. Next, we studied the topography of infiltration of 22 immune cell subpopulations and the association between hub genes and immune cells in RIF using the CIBERSORT algorithm. Finally, a novel ridge plot was utilized to exhibit the potential function of core genes. Results The enrichment of GO/KEGG pathways reveals that Herpes simplex virus 1 infection and Salmonella infection may have an important role in RIF. After WGCNA, the intersected genes with the previous DEGs were obtained using both variance and association. Notably, the subsequent nine hub genes were finally selected: ACTL6A, BECN1, SNRPD1, POLR1B, GSK3B, PPP2CA, RBBP7, PLK4, and RFC4, based on the PPI network and three different algorithms, whose expression patterns were also verified by RT-qPCR. With in-depth analysis, we speculated that key genes mentioned above might be involved in the RIF through disturbing endometrial microflora homeostasis, impairing autophagy, and inhibiting the proliferation of endometrium. Furthermore, the current study revealed the aberrant immune infiltration patterns and emphasized that uterine NK cells (uNK) and CD4+ T cells were substantially altered in RIF endometrium. Finally, the ridge plot displayed a clear and crucial association between hub genes and other genes and key pathways. Conclusion We first utilized WGCNA to identify the most potential nine hub genes which might be associated with RIF. Meanwhile, this study offers insights into the landscape of immune infiltration status to reveal the underlying immune pathogenesis of RIF. This may be a direction for the next study of RIF etiology. Further studies would be required to investigate the involved mechanisms.
Collapse
Affiliation(s)
- Zhenteng Liu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Shoucui Lai
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Qinglan Qu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Xuemei Liu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Wei Zhang
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Dongmei Zhao
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Shunzhi He
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Yuxia Sun
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Hongchu Bao
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| |
Collapse
|
6
|
Yu L, Ye J, Chen Q, Hong Q. lncRNA TTTY14 participates in the progression of repeated implantation failure by regulating the miR-6088/SEMA5A axis. J Assist Reprod Genet 2024; 41:727-737. [PMID: 38294620 PMCID: PMC10957803 DOI: 10.1007/s10815-024-03032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
PURPOSE To identify potential biomarkers and the molecular mechanisms associated with repeated implantation failure (RIF), three microarray datasets, GSE71331 (lncRNA + mRNA), GSE111974 (lncRNA + mRNA), and GSE71332 (miRNA), were retrieved from the Gene Expression Omnibus (GEO) database. METHODS The differentially expressed mRNAs (DEMs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) between normal control samples (C group) and RIF samples (RIF group) were identified, and then a module partition analysis was performed based on weighted correlation network analysis (WGCNA). Following enrichment analysis of the genes, the lncRNA-miRNA-mRNA interactions (ceRNA) were examined. The mRNAs in the ceRNA network were evaluated using the GSE58144 dataset. Finally, the key RNAs were verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS Fifty-three DEmiRNAs, 327 DEMs, and 13 DElncRNAs were identified between the C and RIF groups. According to WGCNA, the magenta module was positively correlated with RIF disease status. The lncRNA-mRNA interaction analysis based on genes in the magenta module revealed the intersecting lncRNAs, including peptidylprolyl isomerase E-like pseudogene (PPIEL) and the testis-specific transcript, y-Linked 14 (TTTY14); these lncRNAs are mainly involved in functions, such as plasma membrane organization. The ceRNA network analysis revealed several interactions, such as TTTY14-miR-6088-semaphorin 5 A (SEMA5A). Finally, SEMA5A and the zinc finger protein 555 (ZNF555) were identified to be significantly upregulated in the RIF group compared with those in the C group in the GSE58144 dataset. The RT-qPCR results aligned with the above results. CONCLUSIONS Overall, TTTY14, ZNF555, SEMA5A, PPIEL, and miR-6088 could serve as novel biomarkers of RIF.
Collapse
Affiliation(s)
- Lingzhu Yu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, P.R. China
| | - Jing Ye
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, P.R. China
| | - Qiuju Chen
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, P.R. China
| | - Qingqing Hong
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, P.R. China.
| |
Collapse
|
7
|
Zhou B, Yu G, Zhao M, Li Y, Li J, Xiang Y, Tong L, Chu X, Wang C, Song Y. The lncRNA LINC00339-encoded peptide promotes trophoblast adhesion to endometrial cells via MAPK and PI3K-Akt signaling pathways. J Assist Reprod Genet 2024; 41:493-504. [PMID: 38049704 PMCID: PMC10894799 DOI: 10.1007/s10815-023-02995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Endometrial receptivity (ER), a pivotal event for successful embryo implantation, refers to the capacity of endometrium to allow the adhesion of the trophectoderm of the blastocyst to endometrial cells. In this paper, we set to elucidate whether the peptides encoded by lncRNAs could influence trophoblast cells' adhesion to endometrial cells. METHODS WGCNA construction and bioinformatics were used to find out the ER-related lncRNAs with coding potential. Protein analysis was done by immunoblotting and immunofluorescence (IF) microscopy. CCK-8 and Calcein-AM/PI double staining assays were employed to evaluate cell viability. The effect of the peptide on trophoblast spheroids' adhesion to endometrial cells was evaluated. The RNA sequencing (RNA-seq) analysis was applied to identify downstream molecular processes. RESULTS lncRNA LINC00339 was found to be related to ER development and it had been predicted to have protein-coding potential. LINC00339 had high occupancy of ribosomes and was confirmed to encode a 49-aa peptide (named LINC00339-205-49aa). LINC00339-205-49aa could promote the attachment of JAR trophoblast spheroids to Ishikawa endometrial cells in vitro. LINC00339-205-49aa also upregulated the expression of E-cadherin in Ishikawa cells. Mechanistically, MAPK and PI3K-Akt signaling pathways were involved in the modulation of LINC00339-205-49aa, which were activated by LINC00339-205-49aa in Ishikawa cells. CONCLUSION These data demonstrate that a previously uncharacterized peptide encoded by lncRNA LINC00339 has the ability to enhance JAR trophoblast spheroids' adhesion to Ishikawa endometrial cells, highlighting a new opportunity for the development of drugs to improve ER.
Collapse
Affiliation(s)
- Bo Zhou
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, People's Republic of China
| | - Guo Yu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Mingqi Zhao
- Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Jing Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Yungai Xiang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Lili Tong
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Xiying Chu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Caiyi Wang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China.
| |
Collapse
|
8
|
Zahir M, Tavakoli B, Zaki-Dizaji M, Hantoushzadeh S, Majidi Zolbin M. Non-coding RNAs in Recurrent implantation failure. Clin Chim Acta 2024; 553:117731. [PMID: 38128815 DOI: 10.1016/j.cca.2023.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Recurrent implantation failure (RIF), defined as the inability to achieve conception following multiple consecutive in-vitro fertilization (IVF) attempts, represents a complex and multifaceted challenge in reproductive medicine. The emerging role of non-coding RNAs in RIF etiopathogenesis has only gained prominence over the last decade, illustrating a new dimension to our understanding of the intricate network underlying RIF. Successful embryo implantation demands a harmonious synchronization between an adequately decidualized endometrium, a competent blastocyst, and effective maternal-embryonic interactions. Emerging evidence has clarified the involvement of a sophisticated network of non-coding RNAs, including microRNAs, circular RNAs, and long non-coding RNAs, in orchestrating these pivotal processes. Disconcerted expression of these molecules can disrupt the delicate equilibrium required for implantation, amplifying the risk of RIF. This comprehensive review presents an in-depth investigation of the complex role played by non-coding RNAs in the pathogenesis of RIF. Furthermore, it underscores the vast potential of non-coding RNAs as diagnostic biomarkers and therapeutic targets, with the ultimate goal of enhancing implantation success rates in IVF cycles. As ongoing research continues to unravel the intercalated web of molecular interactions, exploiting the power of non-coding RNAs may offer promising avenues for mitigating the challenges posed by RIF and improving the outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Mazyar Zahir
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Tavakoli
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Maragheh University, Maragheh, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Sedigheh Hantoushzadeh
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Fathi M, Ghahghaei-Nezamabadi A, Ghafouri-Fard S. Emerging role of lncRNAs in the etiology of recurrent implantation failure. Pathol Res Pract 2024; 253:155057. [PMID: 38147725 DOI: 10.1016/j.prp.2023.155057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Recurrent implantation failure (RIF) is a complex clinical entity with several molecular pathways contributing to its pathogenesis. Long non-coding RNAs (lncRNAs) have recently been found to affect the normal implantation, thus aberrant expression of these transcripts is involved in RIF. Altered expression of HOXA11-AS, NONHSAT193031.1, NONHSAT053761.2, NONHSAT083203.2, LUCAT1, PART1, TUNAR, LINC02190, lncSAMD11-1:1 and H19 has been reported in this condition. Moreover, polymorphisms within some lncRNAs have been shown to be associated with miscarriage/RIF. The current review article summarizes the recent data about the role of lncRNAs in RIF. This information would pave the way for identification of the molecular events in this context.
Collapse
Affiliation(s)
- Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Ghahghaei-Nezamabadi
- Department of Obstetrics and Gynecology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Zhao F, Chen Y, Xie Y, Kong S, Song L, Li H, Guo C, Yin Y, Zhang W, Zhu T. Identification of Zip8-correlated hub genes in pulmonary hypertension by informatic analysis. PeerJ 2023; 11:e15939. [PMID: 37663293 PMCID: PMC10470448 DOI: 10.7717/peerj.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Pulmonary hypertension (PH) is a syndrome characterized by marked remodeling of the pulmonary vasculature and increased pulmonary vascular resistance, ultimately leading to right heart failure and even death. The localization of Zrt/Irt-like Protein 8 (ZIP8, a metal ion transporter, encoded by SLC39A8) was abundantly in microvasculature endothelium and its pivotal role in the lung has been demonstrated. However, the role of Zip8 in PH remains unclear. Methods Bioinformatics analysis was employed to identify SLC39A8 expression patterns and differentially expressed genes (DEGs) between PH patients and normal controls (NC), based on four datasets (GSE24988, GSE113439, GSE117261, and GSE15197) from the Biotechnology Gene Expression Omnibus (NCBI GEO) database. Gene set enrichment analysis (GSEA) was performed to analyze signaling pathways enriched for DEGs. Hub genes were identified by cytoHubba analysis in Cytoscape. Reverse transcriptase-polymerase chain reaction was used to validate SLC39A8 and its correlated metabolic DEGs expression in PH (SU5416/Hypoxia) mice. Results SLC39A8 expression was downregulated in PH patients, and this expression pattern was validated in PH (SU5416/Hypoxia) mouse lung tissue. SLC39A8-correlated genes were mainly enriched in the metabolic pathways. Within these SLC39A8-correlated genes, 202 SLC39A8-correlated metabolic genes were screened out, and seven genes were identified as SLC39A8-correlated metabolic hub genes. The expression patterns of hub genes were analyzed between PH patients and controls and further validated in PH mice. Finally, four genes (Fasn, Nsdhl, Acat2, and Acly) were downregulated in PH mice. However, there were no significant differences in the expression of the other three hub genes between PH mice and controls. Of the four genes, Fasn and Acly are key enzymes in fatty acids synthesis, Nsdhl is involved in cholesterol synthesis, and Acat2 is implicated in cholesterol metabolic transformation. Taken together, these results provide novel insight into the role of Zip8 in PH.
Collapse
Affiliation(s)
- FanRong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yujing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Shuang Kong
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - LiaoFan Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Hanfei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Chao Guo
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yanyan Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Weifang Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Departments of Pharmacy, The Second Affiliated Hospital, Nanchang, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| |
Collapse
|
11
|
Ding P, Zeng M, Yin R. Editorial: Computational methods to analyze RNA data for human diseases. Front Genet 2023; 14:1270334. [PMID: 37674479 PMCID: PMC10478215 DOI: 10.3389/fgene.2023.1270334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Interferon-τ -induced ISG15-AS regulates endometrial receptivity during early goat pregnancy. Theriogenology 2023; 199:1-10. [PMID: 36731281 DOI: 10.1016/j.theriogenology.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/08/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Endometrial receptivity is a critical process for the successful establishment of pregnancy in ruminants. However, the biological role of long non-coding RNAs (lncRNAs) in the development of endometrial receptivity is poorly understood. In this study, we performed RNA-seq analysis of immortalised goat endometrial epithelial cells (gEECs) treated with interferon-τ (IFNT). Transcriptome profiles showed that 8069 high-confidence putative lncRNAs, including 6498 intronic lncRNA transcripts, 1078 lincRNAs and 493 antisense lncRNAs were identified in gEECs with or without IFNT treatment. Functional clustering analysis was performed by using cis and trans lncRNAs prediction. GO and KEGG analyses revealed that differentially expressed lncRNAs may regulate tissue remodelling and immune responses. Subsequently, six of the 21 differentially expressed antisense lncRNAs were validated using qRT-PCR. Through functional screening and co-expression analysis of lncRNAs in gEECs, we identified that ISG15-AS was mainly expressed in the luminal and glandular epithelium on days 5 and 15 and was strongly upregulated on day 18 of pregnancy in vivo. Similarly, ISG15-AS was abundant in the nucleus and cytoplasm, and was significantly upregulated after treatment with IFNT in gEECs. In addition, ISG15 is an IFNT-responsive gene, that displayed an evident increase in vivo and in vitro. Moreover, sense ISG15 was significantly upregulated following ISG15-AS silencing. The key genes related to ISGylation and endometrial receptivity in gEECs dramatically increased after ISG15-AS inhibition. Collectively, our results indicate that a novel antisense lncRNA, ISG15-AS, may be important in regulating endometrial receptivity through ISGylation.
Collapse
|
13
|
Hui L, Ziyue Z, Chao L, Bin Y, Aoyu L, Haijing W. Epigenetic Regulations in Autoimmunity and Cancer: from Basic Science to Translational Medicine. Eur J Immunol 2023; 53:e2048980. [PMID: 36647268 DOI: 10.1002/eji.202048980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Epigenetics, as a discipline that aims to explain the differential expression of phenotypes arising from the same gene sequence and the heritability of epigenetic expression, has received much attention in medicine. Epigenetic mechanisms are constantly being discovered, including DNA methylation, histone modifications, noncoding RNAs and m6A. The immune system mainly achieves an immune response through the differentiation and functional expression of immune cells, in which epigenetic modification will have an important impact. Because of immune infiltration in the tumor microenvironment, immunotherapy has become a research hotspot in tumor therapy. Epigenetics plays an important role in autoimmune diseases and cancers through immunology. An increasing number of drugs targeting epigenetic mechanisms, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and drug combinations, are being evaluated in clinical trials for the treatment of various cancers (including leukemia and osteosarcoma) and autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis). This review summarizes the progress of epigenetic regulation for cancers and autoimmune diseases to date, shedding light on potential therapeutic strategies.
Collapse
Affiliation(s)
- Li Hui
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Zhao Ziyue
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Liu Chao
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yu Bin
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Li Aoyu
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Wu Haijing
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
14
|
Lin N, Lin JZ. Identification of long non-coding RNA biomarkers and signature scoring, with competing endogenous RNA networks- targeted drug candidates for recurrent implantation failure. HUM FERTIL 2022; 25:983-992. [PMID: 34308739 DOI: 10.1080/14647273.2021.1956693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Recurrent implantation failure (RIF) remains a source of frustration and presents challenges to clinicians in the practice of assisted reproductive technology (ART). Long non-coding RNAs (lncRNAs) are increasingly recognised as potential biomarkers in various diseases. In this study, eight differentially expressed lncRNAs (LINC00645, LINC00844, LINC02349, AC010975.1, AC022034.1, AC096719.1, AC104072.1 and DLGAP1-AS3) to distinguish RIF from fertile women were identified by RobustRankAggreg (RRA). A two-lncRNA signature for predicting RIF was established by least absolute shrinkage and selection operator (LASSO) regression, with accuracy confirmed by receiver operating characteristic (ROC) curves. After lncRNA-microRNA-mRNA regulatory networks were established by Cytoscape 3.7.2, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses were performed, suggesting that the lncRNA-miRNA-mRNA regulatory networks were associated with biological processes involved in endometrial receptivity. Finally, three putative drugs (miconazole, terfenadine and STOCK1N-35215) for RIF were predicted by a Connectivity Map. In conclusion, we identified eight lncRNA biomarkers and a two-lncRNA signature for predicting RIF, as well as proposing three candidate drugs against RIF by targeting the ceRNA networks.
Collapse
Affiliation(s)
- Nuan Lin
- Obstetrics & Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jia-Zhe Lin
- Neurosurgical Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
15
|
Luo C, Zhang J, Bo L, Wei L, Yang G, Gao S, Mao C. Construction of a ceRNA-based lncRNA–mRNA network to identify functional lncRNAs in premature ovarian insufficiency. Front Genet 2022; 13:956805. [PMID: 36313451 PMCID: PMC9608794 DOI: 10.3389/fgene.2022.956805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Premature ovarian insufficiency, characterized by ovarian infertility and low fertility, has become a significant problem in developed countries due to its propensity for late delivery. It has been described that the vital role of lncRNA in the development and progression of POI. The aim of this work was to create a POI-based lncRNA–mRNA network (POILMN) to recognize key lncRNAs. Overall, differently expressed mRNAs (DEGs) and differently expressed lncRNAs (DELs) were achieved by using the AnnoProbe and limma R packages. POI-based lncRNA–mRNA network (POILMN) construction was carried out using the tinyarray R package and hypergeometric distribution. To identify key lncRNAs, we used CentiScaPe plug-in Cytoscape as a screening tool. In total, 244 differentially expressed lncRNAs (DELs) and 288 differentially expressed mRNAs (DEGs) were obtained in this study. Also, 177 lncRNA/mRNA pairs (including 39 lncRNAs and 86 mRNAs) were selected using the hypergeometric test. Finally, we identified four lncRNA (HCP5, NUTM2A-AS1, GABPB1-IT1, and SMIM25) intersections by topological analysis between two centralities (degree and betweenness), and we explored their subnetwork GO and KEGG pathway enrichment analysis. Here, we have provided strong evidence for a relationship with apoptosis, DNA repair damage, and energy metabolism terms and pathways in the key lncRNAs in our POI-based lncRNA–mRNA network. In addition, we evaluated the localization information of genes related to POI and found that genes were more distributed on chromosomes 15, 16, 17, and 19. However, more experiments are needed to confirm the functional significance of such predicted lncRNA/mRNA. In conclusion, our study identified four long non-coding RNA molecules that may be relevant to the progress of premature ovarian insufficiency.
Collapse
Affiliation(s)
- Chao Luo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiakai Zhang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Monash University, Caulfield East, Melbourne, VIC, Australia
| | - Le Bo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lun Wei
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guangzhao Yang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shasha Gao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Caiping Mao,
| |
Collapse
|
16
|
Zhang X, Yan J, Dai Z, Long X, Jin J, Yang Q, Lin C, Yang Y, Chen Y, Zhu J. Long non-coding RNA LINC01347 suppresses trophoblast cell migration, invasion and EMT by regulating miR-101-3p/PTEN/AKT axis. Reprod Biol 2022; 22:100670. [PMID: 35810709 DOI: 10.1016/j.repbio.2022.100670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Recurrent miscarriage (RM) is one of the common complications of pregnancy, which is closely related to gene mutation. The profiling of non-coding RNAs showed that the expression level of long non-coding RNA LINC01347 (LINC01347) in the serum of patients with recurrent abortion was significantly increased, which could serve as a potential marker for early diagnosis. However, the biological functions of LINC01347 in the miscarriage remain to be elucidated. In this study, LINC01347 expression levels in HTR-8/SVneo cells and placenta samples were measured by RT-qPCR. The migration ability of HTR-8/SVneo cells was detected by wound-healing assay. Western blotting (WB) assay was conducted to measure E-cadherin, Vimentin, N-cadherin, PTEN, phospho-AKT(S473), phospho-AKT(T308) and AKT levels. Dual luciferase reporter assay and RNA pull-down analysis were performed to validate the molecular interactions. The results showed an upregulation of LINC01347 in the placenta samples of RM patients and HTR-8/SVneo cells. LINC01347 overexpression impaired the invasion and migration of trophoblast cells, while LINC01347 silencing promoted cell migration and invasion. LINC01347 level was also negatively correlated with the changes of epithelial-mesenchymal transition (EMT) markers in trophoblasts. We further demonstrated that miR-101-3p/PTEN/AKT axis played an important role in mediating the biological roles of LINC01347 in the invasion and migration of trophoblasts. In conclusion, our results revealed that LINC01347 suppresses the migratory ability and regulates the EMT processes in trophoblasts by regulating miR-101-3p/PTEN/AKT axis, suggesting that targeting LINC01347 may serve as a strategy to ameliorate RM.
Collapse
Affiliation(s)
- Xiahui Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, 317500, China
| | - Jinyu Yan
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, 317500, China
| | - Zhenzhen Dai
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, 317500, China
| | - Xiaoxi Long
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, 317500, China
| | - Jiaxi Jin
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, 317500, China
| | - Qian Yang
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, 317500, China
| | - Chenxiao Lin
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, 317500, China
| | - Youlin Yang
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, 317500, China
| | - Yi Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, 317500, China.
| | - Jun Zhu
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, 317500, China.
| |
Collapse
|
17
|
Li S, Yao W, Liu R, Gao L, Lu Y, Zhang H, Liang X. Long non-coding RNA LINC00152 in cancer: Roles, mechanisms, and chemotherapy and radiotherapy resistance. Front Oncol 2022; 12:960193. [PMID: 36033524 PMCID: PMC9399773 DOI: 10.3389/fonc.2022.960193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNA LINC00152 (cytoskeleton regulator, or LINC00152) is an 828-bp lncRNA located on chromosome 2p11.2. LINC00152 was originally discovered during research on hepatocarcinogenesis and has since been regarded as a crucial oncogene that regulates gene expression in many cancer types. LINC00152 is aberrantly expressed in various cancers, including gastric, breast, ovarian, colorectal, hepatocellular, and lung cancer, and glioma. Several studies have indicated that LINC00152 is correlated with cell proliferation, apoptosis, migration, invasion, cell cycle, epithelial-mesenchymal transition (EMT), chemotherapy and radiotherapy resistance, and tumor growth and metastasis. High LINC00152 expression in most tumors is significantly associated with poor patient prognosis. Mechanistic analysis has demonstrated that LINC00152 can serve as a competing endogenous RNA (ceRNA) by sponging miRNA, regulating the abundance of the protein encoded by a particular gene, or modulating gene expression at the epigenetic level. LINC00152 can serve as a diagnostic or prognostic biomarker, as well as a therapeutic target for most cancer types. In the present review, we discuss the roles and mechanisms of LINC00152 in human cancer, focusing on its functions in chemotherapy and radiotherapy resistance.
Collapse
Affiliation(s)
- Shuang Li
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
| | - Weiping Yao
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Ruiqi Liu
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Haibo Zhang
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaodong Liang, ; Haibo Zhang,
| | - Xiaodong Liang
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Xiaodong Liang, ; Haibo Zhang,
| |
Collapse
|
18
|
Li J, Jiang X, Xu Y, Kang P, Huang P, Meng N, Wang H, Zheng W, Wang H, Wang Z, Zhong X, Cui Y. YY1-induced DLEU1/miR-149-5p Promotes Malignant Biological Behavior of Cholangiocarcinoma through Upregulating YAP1/TEAD2/SOX2. Int J Biol Sci 2022; 18:4301-4315. [PMID: 35864972 PMCID: PMC9295058 DOI: 10.7150/ijbs.66224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Cholangiocarcinoma is an extremely malignant cancer with poor prognosis. Finding efficient diagnosis and treatment is the indispensable way to improve the prognosis of CCA patients. Therefore, exploring molecular abnormalities in CCA development is urgently needed. DLEU1 is a potential tumor-related lncRNA and abnormally expressed in multiple cancers. In this study, TCGA data analysis showed upregulation of DLEU1 expression in CCA. Furthermore, we confirmed that DLEU1 expression was increased in CCA tissues and cells compared with corresponding controls. Upregulated DLEU1 was related to poor clinicopathological characteristics. Functionally, silencing DLEU1 inhibited CCA proliferation, invasion, stemness maintenance and chemo-resistance, whereas amplifying DLEU1 promoted malignant biological behavior of CCA cells. Mechanistically, DLEU1 expression was transcriptionally facilitated by transcription factor YY1. Moreover, DLEU1 promoted oncogene YAP1 expression by functioning as a sponge to competitively bind to miR-149-5p. YAP1 promoted CCA proliferation, invasion and stemness maintenance, whereas miR-149-5p inhibited malignant biological behavior of CCA. Rescue experiments confirmed that the cancer-promoting effect of DLEU1 was saved by interfering miR-149-5p or YAP1. Furthermore, YAP1 promoted tumor stemness maintenance partly by acting as a transcriptional coactivator to promote TEAD2-induced SOX2 expression. These findings indicated that YY1-induced DLEU1 played a crucial role in CCA progression via miR-149-5p/YAP1/TEAD2/SOX2 axis.
Collapse
Affiliation(s)
- Jinglin Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Yi Xu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Pengcheng Kang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Peng Huang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Nanfeng Meng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Hang Wang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Wangyang Zheng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Hao Wang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Zhidong Wang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Xiangyu Zhong
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Yunfu Cui
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
19
|
Geng J, Cui C, Yin Y, Zhao Y, Zhang C. LncRNA NEAT1 affects endometrial receptivity by regulating HOXA10 promoter activity. Cell Cycle 2022; 21:1932-1944. [PMID: 35574918 PMCID: PMC9415530 DOI: 10.1080/15384101.2022.2075198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vitro fertilization and embryo transfer (IVF-ET) is one of the effective methods to treat female infertility. Poor endometrial receptivity (ER) is an important factor leading to embryo implantation dysfunction, which can reduce pregnancy rate of IVF-ET. The mice model with embryo implantation dysfunction in vivo and attachment model of trophoblast (JAR) spheroids in vitro were constructed. The levels of lncRNA NEAT1, HOXA10, CTCF and markers of ER were detected. The cell proliferation was measured. The interaction between lncRNA NEAT1 and CTCF, HOXA10 promoter and CTCF were confirmed. LncRNA NEAT1 and HOXA10 levels in infertile patients and mice model with embryo implantation dysfunction were increased. In vitro experiments showed that down-regulation of lncRNA NEAT1 improved EECs proliferation and ER marker expressions. LncRNA NEAT1 could bind to CTCF, and CTCF could bind to HOXA10 promoter and down-regulate HOXA10 gene expression by regulating histone modification level. The lncRNA NEAT1/CTCF/HOXA10 signaling pathway regulated EECs proliferation and ER establishment in vitro and in vivo. Our study suggested that lncRNA NEAT1 could up-regulate HOXA10 promoter activity and its expression by combining with CTCF, thus improving EECs proliferation and ER establishment, and ultimately facilitating embryo implantation.
Collapse
Affiliation(s)
- Jiaxuan Geng
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Chenchen Cui
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Yisha Yin
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Yan Zhao
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Zhang Y, Wang S. The possible role of long non-coding RNAs in recurrent miscarriage. Mol Biol Rep 2022; 49:9687-9697. [PMID: 35397764 PMCID: PMC9515028 DOI: 10.1007/s11033-022-07427-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Recurrent miscarriage (RM) is a complicated disease in reproductive medicine that impacts many families. Currently, the etiology of RM is thought to include chromosome abnormalities, reproductive tract malformations, autoimmune dysfunction, infection, and environmental factors. However, the underlying mechanisms of RM remain unknown. At present, research on long non-coding RNAs (lncRNAs) is rapidly emerging and becoming a hot research topic in epigenetic studies. Recent studies revealed that lncRNAs are strongly linked to RM and play a crucial role in epigenetic, cell cycle, cell differentiation regulation, and other life activities. This article mainly reviews the difference in lncRNA expression in patients with RM and regulation of susceptibility, endometrial receptivity, and the maternal-fetal interface. Meanwhile, the correlation between lncRNAs and RM is expounded, which provides new insights for the early diagnosis and treatment of RM.
Collapse
Affiliation(s)
- Yanan Zhang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
21
|
Zhao Z, Chen L, Cao M, Chen T, Huang Y, Wang N, Zhang B, Li F, Chen K, Yuan C, Li C, Zhou X. Comparison of lncRNA Expression in the Uterus between Periods of Embryo Implantation and Labor in Mice. Animals (Basel) 2022; 12:ani12030399. [PMID: 35158722 PMCID: PMC8833358 DOI: 10.3390/ani12030399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Progesterone has been proven to play an important role in female mammals during pregnancy. In this study, the uteri of pregnant mice were collected to compare mRNA and lncRNA expression between periods of embryo implantation and labor. The results show that 19 known differentially expressed lncRNAs and 31 novel differentially lncRNAs were commonly expressed between the two stages, indicating that these lncRNAs’ function is related to progesterone. Abstract Uterine function during pregnancy is regulated mainly by progesterone (P4) and estrogen (E2). Serum P4 levels are known to fluctuate significantly over the course of pregnancy, especially during embryo implantation and labor. In this study, pregnant mice at E0.5, E4.5, E15.5, and E18.5 (n = 3/E) were used for an RNA-Seq-based analysis of mRNA and lncRNA expression. In this analysis, 1971 differentially expressed (DE) mRNAs, 493 known DE lncRNAs, and 1041 novel DE lncRNAs were found between E0.5 and E4.5 at the embryo implantation stage, while 1149 DE mRNAs, 192 known DE lncRNAs, and 218 novel DE lncRNAs were found between E15.5 and E18.5 at the labor stage. The expression level of lncRNA-MMP11 was significantly downregulated by P4 treatment on MSM cells, while lncRNA-ANKRD37 was significantly upregulated. Notably, 117 DE mRNAs, 19 known DE lncRNAs, and 31 novel DE lncRNAs were commonly expressed between the two stages, indicating that these mRNAs and lncRNAs may be directly or indirectly regulated by P4.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xu Zhou
- Correspondence: (C.L.); (X.Z.)
| |
Collapse
|
22
|
Zhou T, Ni T, Li Y, Zhang Q, Yan J, Chen ZJ. circFAM120A participates in repeated implantation failure by regulating decidualization via the miR-29/ABHD5 axis. FASEB J 2021; 35:e21872. [PMID: 34449947 DOI: 10.1096/fj.202002298rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Repeated implantation failure (RIF) is a major problem that limits the pregnancy rate associated with assisted reproductive technology. However, the pathogenesis of RIF is still unknown. Recently, the expression levels of circular RNAs (circRNAs) were profiled in the endometrial tissues of patients with RIF. However, the exact role of circRNAs in RIF remains unclear. In our study, we found that circFAM120A levels were significantly down-regulated in the endometrium at the window of implantation in RIF patients compared with non-RIF controls. The suppression of circFAM120A expression inhibited decidualization in human endometrial stromal cells (hESCs). Furthermore, RNA-seq analysis after circFAM120A knockdown revealed ABHD5 as a potential downstream target gene of circFAM120A. As expected, down-regulating ABHD5 in hESCs also inhibited decidualization. Using the starBase and TargetScan databases, we predicted that miR-29 may interact with ABHD5, based on nucleotide sequence matching. Luciferase reporter assay showed that miR-29 bound to the 3' UTR of ABHD5 at the predicted complementary sites. Moreover, miR-29 mimics efficiently reduced ABHD5 expression levels and suppressed the decidualization process, whereas a miR-29 inhibitor partly rescued ABHD5 mRNA expression level and decidualization reduced by the knockdown of circFAM120A. Therefore, circFAM120A modulated decidualization in RIF through the miR-29/ABHD5 axis.
Collapse
Affiliation(s)
- Tingting Zhou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Tianxiang Ni
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Qian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Junhao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| |
Collapse
|
23
|
Shi XM, Bai YC, Gao YR, Bu N, Song HY, Huang LH, Zhao YH, Wang SH. Comprehensive Analysis of Differentially Expressed lncRNAs miRNAs and mRNA and Their ceRNA Network of Patients With Rare-Earth Pneumoconiosis. Front Genet 2021; 12:700398. [PMID: 34349786 PMCID: PMC8326912 DOI: 10.3389/fgene.2021.700398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rare-earth pneumoconiosis (REP) is the main occupational disease of rare earth exposed workers and there is no specific treatment. In this study, we performed high-throughput sequencing on the plasma of nine REP to describe and analyze the expression profiles of long non-coding RNA (lncRNA), micro RNA (miRNA) and mRNA and investigate their regulatory networks. Our results identified a total of 125 lncRNAs, 5 miRNAs, and 82 mRNAs were differentially expressed in the plasma of patients with REP. Furthermore, Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to analyze the differentially expressed non-coding RNAs (ncRNA). We found the differential expression of ncRNA are mainly related to the response of cells to stimulation, Hedgehog signaling pathway and so on. We also constructed lncRNA-miRNA-mRNA networks to further explore their underlying mechanism and possible relationships in REP. We found that in the competitive endogenous RNA (ceRNA) networks, lncRNA acts as a sponge of miRNA to regulate the target gene. The expression results were verified by qRT-PCR and the protein interaction networks of differentially expressed genes were constructed via the STRING database. OncoLnc online platform was used to do the lung cancer survival analysis among the top five mRNA analyzed by Protein-protein interaction (PPI) network analysis. We found miR-16-2-3p may used as biomarker for REP, because it is closely related to the occurrence and prognosis of REP through inflammatory reaction and in lung squamous cell carcinoma, its expression levels were positively correlated with the overall survival rate of patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu-hang Zhao
- School of Public Health, Baotou Medical College, Baotou, China
| | - Su-hua Wang
- School of Public Health, Baotou Medical College, Baotou, China
| |
Collapse
|
24
|
Huang J, Song N, Xia L, Tian L, Tan J, Chen Q, Zhu J, Wu Q. Construction of lncRNA-related competing endogenous RNA network and identification of hub genes in recurrent implantation failure. Reprod Biol Endocrinol 2021; 19:108. [PMID: 34243770 PMCID: PMC8268333 DOI: 10.1186/s12958-021-00778-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The mechanism of recurrent implantation failure (RIF) is unclear at present and poor endometrial receptivity may be one of the leading reasons. This study aims to construct a competing endogenous RNA (ceRNA) network and identify potential hub genes underlying the development of RIF. METHODS Weighted gene co-expression network analysis was performed based on differentially expressed mRNAs (DEMs) and lncRNAs (DELs) from the GSE111974 dataset. Functional enrichment analyses of gene modules were conducted using Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway. A lncRNA-miRNA-mRNA ceRNA regulatory network was constructed according to predictive interaction derived from the LncRNADisease, miRTarBase, miRDB and TargetScan databases. Topological analysis determined the key genes with the highest centroid and their expressions were further verified using public datasets and quantitative real-time polymerase chain reaction. RESULTS A total of 1500 DEMs and 3 DELs were significantly up-regulated, whereas 1022 DEMs and 4 DELs were significantly down-regulated in the RIF group compared with the control group. Six functional co-expression modules were enriched in various biological processes, such as cell adhesion, regulation of cell motility and cellular response to vascular endothelial growth factor stimulus. Five hub genes were identified in the ceRNA network, of which GJA1 was down-regulated whereas TET2, MAP2K6, LRRC1 and TRPM6 were up-regulated in RIF endometrium. CONCLUSIONS We constructed a lncRNA-associated ceRNA network and identified five novel hub genes in RIF. This finding could be helpful to understand the molecular mechanism for RIF pathogenesis, and may provide novel insights for its early diagnosis and treatment.
Collapse
Affiliation(s)
- Jialyu Huang
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, 330006, Nanchang, China
| | - Ning Song
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Leizhen Xia
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, 330006, Nanchang, China
| | - Lifeng Tian
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, 330006, Nanchang, China
| | - Jun Tan
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, 330006, Nanchang, China
| | - Qianqian Chen
- Reproductive Medical Center, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Jing Zhu
- Reproductive Medical Center, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| | - Qiongfang Wu
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, 330006, Nanchang, China.
| |
Collapse
|
25
|
Sun Y, Li C, Lu Q, Jiang H, Zhu M, Huang G, Wang T. Integrative Analysis of lncRNA-mRNA Profile Reveals Potential Predictors for SAPHO Syndrome. Front Genet 2021; 12:684520. [PMID: 34234815 PMCID: PMC8255928 DOI: 10.3389/fgene.2021.684520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 01/11/2023] Open
Abstract
Synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome is known as a rare disease characterized by inflammatory lesions on bones and skin. Polymorphism of clinical manifestation and lack of molecular biomarkers have both limited its diagnosis. Our study performed RNA sequencing (RNA-seq) and integrative bioinformatics analysis of long noncoding RNA (lncRNA)-messenger RNA (mRNA) profile in patients with SAPHO syndrome and healthy controls. A total of 4,419 differentially expressed (DE) mRNAs and 2,713 lncRNAs were identified (p < 0.05, fold change > 2) and a coexpression network was constructed to further investigate their regulatory interactions. The DE lncRNAs were predicted to interact with mRNAs in both cis and trans manners. Functional prediction found that the lncRNA-targeted genes may function in SAPHO syndrome by participating in biological process such as adipocytokine signaling pathway, ErbB signaling pathway, FoxO signaling pathway, as well as production and function of miRNAs. The expression levels of three pairs of coexpressed lncRNA-mRNAs were validated by qRT-PCR, and their relative expression levels were consistent with the RNA-seq data. The deregulated RNAs GAS7 and lnc-CLLU1.1-1:2 may serve as potential diagnostic biomarkers, and the combined receiver operating characteristic (ROC) curve of the two showed more reliable diagnostic ability with an AUC value of 0.871 in distinguishing SAPHO patients from healthy controls. In conclusion, this study provides a first insight into long noncoding RNA transcriptome profile changes associated with SAPHO syndrome and inspiration for further investigation on clinical biomarkers and molecular regulators of this inadequately understood clinical entity.
Collapse
Affiliation(s)
- Yuxiu Sun
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Li
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengmeng Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Yu SL, Kim TH, Han YH, Kang Y, Jeong DU, Lee DC, Kang J, Park SR. Transcriptomic analysis and competing endogenous RNA network in the human endometrium between proliferative and mid-secretory phases. Exp Ther Med 2021; 21:660. [PMID: 33968190 PMCID: PMC8097233 DOI: 10.3892/etm.2021.10092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Successful embryo implantation is the first step for establishing natural pregnancy and is dependent on the crosstalk between the embryo and a receptive endometrium. However, the molecular signaling events for successful embryo implantation are not entirely understood. To identify differentially expressed transcripts [long-noncoding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs] and competing endogenous RNA (ceRNA) networks associated with endometrial receptivity, the current study analyzed gene expression profiles between proliferative and mid-secretory endometria in fertile women. A total of 247 lncRNAs, 67 miRNAs and 2,154 mRNAs were identified as differentially expressed between proliferative and mid-secretory endometria. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that these differentially expressed genes were significantly enriched for 'cell adhesion molecules.' Additionally, 98 common mRNAs were significantly involved in tryptophan metabolism, metabolic pathways and FoxO signaling. From the differentially expressed lncRNA/miRNA/mRNA ceRNA network, hub RNAs that formed three axes were identified: The DLX6-AS1/miR-141 or miR-200a/OLFM1 axis, the WDFY3-AS2/miR-135a or miR-183/STC1 axis, and the LINC00240/miR-182/NDRG1 axis. These may serve important roles in the regulation of endometrial receptivity. The hub network of the current study may be developed as a candidate marker for endometrial receptivity.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Tae-Hyun Kim
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Republic of Korea
| | - Young-Hyun Han
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Yujin Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Da-Un Jeong
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Seok-Rae Park
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
- Department of Microbiology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
27
|
Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin Epigenetics 2021; 13:116. [PMID: 34034824 PMCID: PMC8146649 DOI: 10.1186/s13148-021-01103-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human endometrium is a highly dynamic tissue whose function is mainly regulated by the ovarian steroid hormones estradiol and progesterone. The serum levels of these and other hormones are associated with three specific phases that compose the endometrial cycle: menstrual, proliferative, and secretory. Throughout this cycle, the endometrium exhibits different transcriptional networks according to the genes expressed in each phase. Epigenetic mechanisms are crucial in the fine-tuning of gene expression to generate such transcriptional networks. The present review aims to provide an overview of current research focused on the epigenetic mechanisms that regulate gene expression in the cyclical endometrium and discuss the technical and clinical perspectives regarding this topic. MAIN BODY The main epigenetic mechanisms reported are DNA methylation, histone post-translational modifications, and non-coding RNAs. These epigenetic mechanisms induce the expression of genes associated with transcriptional regulation, endometrial epithelial growth, angiogenesis, and stromal cell proliferation during the proliferative phase. During the secretory phase, epigenetic mechanisms promote the expression of genes associated with hormone response, insulin signaling, decidualization, and embryo implantation. Furthermore, the global content of specific epigenetic modifications and the gene expression of non-coding RNAs and epigenetic modifiers vary according to the menstrual cycle phase. In vitro and cell type-specific studies have demonstrated that epithelial and stromal cells undergo particular epigenetic changes that modulate their transcriptional networks to accomplish their function during decidualization and implantation. CONCLUSION AND PERSPECTIVES Epigenetic mechanisms are emerging as key players in regulating transcriptional networks associated with key processes and functions of the cyclical endometrium. Further studies using next-generation sequencing and single-cell technology are warranted to explore the role of other epigenetic mechanisms in each cell type that composes the endometrium throughout the menstrual cycle. The application of this knowledge will definitively provide essential information to understand the pathological mechanisms of endometrial diseases, such as endometriosis and endometrial cancer, and to identify potential therapeutic targets and improve women's health.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Ixchel Nayeli González-García
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico.
| |
Collapse
|
28
|
Ahmadi M, Pashangzadeh S, Moraghebi M, Sabetian S, Shekari M, Eini F, Salehi E, Mousavi P. Construction of circRNA-miRNA-mRNA network in the pathogenesis of recurrent implantation failure using integrated bioinformatics study. J Cell Mol Med 2021; 26:1853-1864. [PMID: 33960101 PMCID: PMC8918409 DOI: 10.1111/jcmm.16586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
This research attempted to elucidate the molecular components are involved in the pathogenesis of recurrent implantation failure (RIF). We initially identified that 386 mRNAs, 144 miRNAs and 2548 circRNAs were differentially expressed (DE) in RIF and then investigated the genetic cause of the observed abnormal expression by constructing a circRNA‐miRNA‐mRNA network considering the competing endogenous RNA theory. We further analysed the upstream transcription factors and related kinases of DEmRNAs (DEMs) and demonstrated that SUZ12, AR, TP63, NANOG, and TCF3 were the top five TFs binding to these DEMs. Besides, protein‐protein interaction analysis disclosed that ACTB, CXCL10, PTGS2, CXCL12, GNG4, AGT, CXCL11, SST, PENK, and FOXM1 were the top 10 hub genes in the acquired network. Finally, we performed the functional enrichment analysis and found that arrhythmogenic right ventricular cardiomyopathy (ARVC), hypertrophic cardiomyopathy (HCM), pathways in cancer, TNF signalling pathway and steroid hormone biosynthesis were the potentially disrupted pathways in RIF patients. Optimistically, our findings may deepen our apprehensions about the underlying molecular and biological causes of RIF and provide vital clues for future laboratory and clinical experiments that will ultimately bring a better outcome for patients with RIF.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Division of Medical Genetics, Booali Medical Diagnostic Laboratory, Qom, Iran
| | - Salar Pashangzadeh
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Moraghebi
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Shekari
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Eini
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ensieh Salehi
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
29
|
RNA-Seq analysis reveals critical transcriptome changes caused by sodium butyrate in DN mouse models. Biosci Rep 2021; 41:228173. [PMID: 33779731 PMCID: PMC8035627 DOI: 10.1042/bsr20203005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN)—a common complication of diabetes—is the primary cause of end-stage renal disease. Sodium butyrate (NaB) is a short-chain fatty acid (SCFA) that is a metabolic product of intestinal bacterium, and its protective effect on the kidney has been reported in cases of DN. However, its underlying mechanism remains unclear. The aim of the present study was to investigate the effect of NaB on globe transcriptome changes in DN. In our study, 8-week-old male db/db mice suffering from DN were randomly divided into two groups: the DN+NaB group (DN mice treated with NaB, 5 g/kg/day) and the DN group (DN mice treated with saline). Further, normal db/m mice were used as the normal control (NC) group. The blood glucose, body weight, urinary microalbumin and urinary creatinine of mice were measured for all three groups. Whole-transcriptome analysis was performed by RNA sequencing (RNA-Seq) to evaluate the profiling of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs). Bioinformatics analysis was performed to predict the potential NaB-related lncRNAs and genes in DN. The expressions of lncRNAs and mRNAs were tested using the quantitative real-time polymerase chain reactions (qRT-PCRs) in renal tissues and mesangial cells treated with NaB. The results of the present study demonstrated that NaB ameliorated renal dysfunction in DN mice. Moreover, RNA-Seq results identified that some lncRNAs and mRNAs were reversely changed in the DN+NaB group in comparison to those in the DN group. Additionally, the integrated co-expression networks of NaB-related lncRNAs revealed that these lncRNAs interacted with 155 key mRNAs. Furthermore, the co-expression network of inflammation-related lncRNAs and mRNAs demonstrated that those reversed lncRNAs and mRNAs also play essential roles in the inflammatory response. In summary, the present study suggests that NaB ameliorates diabetes-induced renal dysfunction and regulates transcriptome changes in DN.
Collapse
|
30
|
Aljubran F, Nothnick WB. Long non-coding RNAs in endometrial physiology and pathophysiology. Mol Cell Endocrinol 2021; 525:111190. [PMID: 33549604 PMCID: PMC7946759 DOI: 10.1016/j.mce.2021.111190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
The endometrium is an essential component of the female uterus which provides the environment for pregnancy establishment and maintenance. Abnormalities of the endometrium not only lead to difficulties in establishing and maintaining pregnancy but also play a causative role in diseases of endometrial origin including endometriosis and endometrial cancer. Non-coding RNAs are proposed to play a role in regulating the genome in both normal endometrial physiology and pathophysiology. In this review, we first provide a general overview of non-coding RNAs and reproductive physiology of the endometrium. We then discuss the role on non-coding RNAs in normal endometrial physiology and pathophysiology of endometrial infertility. We then conclude with non-coding RNAs in the pathophysiology of endometriosis and endometrial cancer.
Collapse
Affiliation(s)
- Fatimah Aljubran
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Warren B Nothnick
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
31
|
Ma Y, Ma L, Cao Y, Zhai J. Construction of a ceRNA-based lncRNA-mRNA network to identify functional lncRNAs in polycystic ovarian syndrome. Aging (Albany NY) 2021; 13:8481-8496. [PMID: 33714202 PMCID: PMC8034915 DOI: 10.18632/aging.202659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder in women of childbearing age. Recent studies suggest important roles for lncRNAs in PCOS development. Based on the hypothesis that lncRNAs are able to regulate mRNA functions by competitive binding to shared miRNAs, the present work sought to construct a PCOS-related lncRNA-mRNA network (PCLMN) to identify key lncRNAs with dysregulated expression and potential prognostic and therapeutic relevance. A global background network was constructed after retrieving lncRNA-miRNA and miRNA-mRNA pairs from the lncRNASNP2, miRTarBase and StarBase databases. Based on gene expression profiles from ovarian granulosa cells from PCOS patients and controls in the GEO’s GSE95728 dataset, the PCLMN was then constructed by applying hypergeometric testing. Using topological analysis, we identified 3 lncRNAs (LINC00667, AC073172.1 and H19) ranking within the top-ten gene lists for all three centrality measures. We then explored their subcellular localization, performed functional module analyses, and identified 4 sex hormone-related transcription factors as potential regulators of their expression. Significant associations with inflammation, oxidative stress, and apoptosis-related processes and pathways were revealed for the key lncRNAs in our PCMLN. Further studies verifying the mRNA/lncRNA relationships identified herein are needed to clarify their clinical significance.
Collapse
Affiliation(s)
- Yue Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linna Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yurong Cao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhai
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Zhao H, Chen L, Shan Y, Chen G, Chu Y, Dai H, Liu X, Bao H. Hsa_circ_0038383-mediated competitive endogenous RNA network in recurrent implantation failure. Aging (Albany NY) 2021; 13:6076-6090. [PMID: 33611311 PMCID: PMC7950293 DOI: 10.18632/aging.202590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inadequate endometrial receptivity contributes to recurrent implantation failure (RIF) during IVF-embryo transfer. Though multiple circRNAs have been confirmed differentially expression in RIF, the potential function of novel circRNAs needed to be detected. RESULTS The top ten DEcircRNAs were selected as initial candidates. A ceRNA network was conducted on the basis of circRNA-miRNA-mRNA potential interaction, consisting of 10 DEcircRNAs, 28 DEmiRNAs and 59 DEmRNAs. Three down-regulation circRNAs with high degree of connectivity were verified by RT-qPCR, and results suggested that only hsa_circ_0038383 was significantly downregulation in RIF compared with control group. Subsequently, three hub genes (HOXA3, HOXA9 and PBX1) were identified as hub genes. Ultimately, a subnetwork was determined based on one DEcircRNA (hsa_circ_0038383), two DEmiRNAs (has-miR-196b-5p and has-miR-424-5p), and three DEmRNAs (HOXA3, HOXA9 and PBX1). Following verification, hsa_circ_0038383/miR-196b-5p/HOXA9 axis may be a key pathway in affecting RIF. CONCLUSION In summary, a hsa_circ_0038383-mediated ceRNA network related to RIF was proposed. This network provided new insight into exploring potential biomarkers for diagnosis and clinical treatment of RIF. METHODS We retrieved the expression profiles of RIF from GEO databases (circRNA, microRNA and mRNA) and constructed a competing endogenous RNAs (ceRNA) network based on predicted circRNA-miRNA and miRNA-mRNA pairs. The expression levels of three hub DEcircRNAs identified by cytoscape were validated by RT-qPCR.
Collapse
Affiliation(s)
- Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lili Chen
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yinghua Shan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Gang Chen
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yongli Chu
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Huangguan Dai
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xuemei Liu
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hongchu Bao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
33
|
Identification of hub lncRNA ceRNAs in multiple sclerosis based on ceRNA mechanisms. Mol Genet Genomics 2021; 296:423-435. [PMID: 33507382 DOI: 10.1007/s00438-020-01750-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, and the pathogenesis is influenced by genetic susceptibility. Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) play essential roles in complex diseases, including acting as competing endogenous RNAs (ceRNAs). However, the functional roles and regulatory mechanisms of lncRNAs acting as ceRNAs in MS are still unclear. In this study, we identified hub lncRNA ceRNAs in MS based on ceRNA mechanisms and annotated their functions. The lncRNA-associated ceRNA network (LACN) was constructed by integrating the expression profiles of lncRNA/mRNA and miRNA in MS and normal samples, and the experimentally validated interactions of lncRNA-miRNA and mRNA-miRNA. We found three hub lncRNA ceRNAs (XIST, OIP5-AS1, and CTB-89H12.4) using the network analysis and obtained 96 lncRNA-mediated competing triplets (LCTs, lncRNA-miRNA-mRNA) with the hub lncRNA ceRNAs, which constituted 3 hub ceRNA modules. The functional analysis identified 12 pathways enriched by the 3 hub lncRNA ceRNAs, of which 6 were confirmed to be related to MS. For example, XIST was enriched in the 'spliceosome' and 'RNA transport' related to the typing of MS, and CTB-89H12.4 was enriched in the 'mTOR signaling pathway,' a potential therapeutic target for MS. We dissected the expression patterns of the 96 LCTs in MS individually. LCT XIST-miR-326-HNRNPA1, for which the expression pattern in MS revealed that XIST and HNRNPA1 were up-regulated and miR-326 was down-regulated, consisted of risk RNAs for MS that were validated by other research. Therefore, XIST-miR-326-HNRNPA1 might play a central role in the pathogenesis of MS. These results will contribute to the discovery of novel biomarkers and the development of new therapeutic methods for MS.
Collapse
|
34
|
Wang B, Wu J, Huang Q, Yuan X, Yang Y, Jiang W, Wen Y, Tang L, Sun H. Comprehensive Analysis of Differentially Expressed lncRNA, circRNA and mRNA and Their ceRNA Networks in Mice With Severe Acute Pancreatitis. Front Genet 2021; 12:625846. [PMID: 33584827 PMCID: PMC7876390 DOI: 10.3389/fgene.2021.625846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Severe acute pancreatitis (SAP) is an acute digestive system disease with high morbidity mortality and hospitalization rate worldwide, due to various causes and unknown pathogenesis. In recent years, a large number of studies have confirmed that non-coding RNAs (ncRNAs) play an important role in many cellular processes and disease occurrence. However, the underlying mechanisms based on the function of ncRNAs, including long noncoding RNA (lncRNA) and circular RNA (circRNA), in SAP remain unclear. In this study, we performed high-throughput sequencing on the pancreatic tissues of three normal mice and three SAP mice for the first time to describe and analyze the expression profiles of ncRNAs, including lncRNA and circRNA. Our results identified that 49 lncRNAs, 56 circRNAs and 1,194 mRNAs were differentially expressed in the SAP group, compared with the control group. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed lncRNAs and circRNAs, and found that the functions of the parental genes are enriched in the calcium-regulated signaling pathway, NF-κB signaling pathway, autophagy and protein digestion and absorption processes, which are closely related to the central events in pathogenesis of SAP. We also constructed lncRNA/circRNA-miRNA-mRNA networks to further explore their underlying mechanism and possible relationships in SAP. We found that in the competitive endogenous RNA (ceRNA) networks, differentially expressed lncRNAs and circRNAs are mainly involved in the apoptosis pathway and calcium signal transduction pathway. In conclusion, we found that lncRNAs and circRNAs play an important role in the pathogenesis of SAP, which may provide new insights in further exploring the pathogenesis of SAP and seek new targets for SAP.
Collapse
Affiliation(s)
- Bing Wang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Jun Wu
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Qilin Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xiaohui Yuan
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Yang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Wen Jiang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hongyu Sun
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China.,Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
35
|
Zhou X, Liu X, Shi W, Ye M, Chen S, Xu C. Mitochondrial DNA Content May Not Be a Reliable Screening Biomarker for Live Birth After Single Euploid Blastocyst Transfer. Front Endocrinol (Lausanne) 2021; 12:762976. [PMID: 34867804 PMCID: PMC8637898 DOI: 10.3389/fendo.2021.762976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
An increasing number of studies have related the mitochondrial DNA (mtDNA) content to embryo viability and transfer outcomes. However, previous studies have focused more on the relationship between mtDNA and embryo implantation, few studies have studied the effect of the mtDNA content on live birth. In the study, we investigated whether mtDNA content is a reliable screening biomarker for live birth after single blastocyst transfer. A total of 233 couples with 316 blastocyst stage embryos undergoing in vitro fertilization treatment and pre-implantation genetic testing analysis were included in the study. All embryos were chromosomally normal and had undergone single-embryo transfers. There was no significant difference observed in the blastocyst mtDNA content among the live birth, miscarriage and non-implanted groups (p=0.999), and the mtDNA content in blastocysts from the miscarriage and live birth groups was similar [median (interquartile range), 1.00*108(7.59*107- 1.39*108) vs 1.01*108 (7.37*107- 1.32*108)]. Similarly, no significant association was observed between mtDNA content and embryo implantation potential (p=0.965). After adjusting for multiple confounders in a logistic regression analysis with generalized estimating equations, no associations between mtDNA content and live birth were observed in all blastocysts, Day-5 and Day-6 blastocysts (p=0.567, p=0.673, p=0.165, respectively). The live birth rate was not significantly different between blastocysts with an elevated mtDNA content and blastocysts with a normal mtDNA content (26.7% vs 33.6% p=0.780). Additionally, there was no linear correlation between the mtDNA content and maternal age (p=0.570). In conclusion, the mtDNA content does not seem to be a potential biomarker for embryo transfer outcomes (i.e., implantation and live birth) based on the existing testing tools. Embryos with an elevated mtDNA content also have development potential for successful live birth.
Collapse
Affiliation(s)
- Xuanyou Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xueli Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weihui Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Mujin Ye
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Songchang Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- *Correspondence: Chenming Xu, ; Songchang Chen,
| | - Chenming Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- *Correspondence: Chenming Xu, ; Songchang Chen,
| |
Collapse
|
36
|
Wang Y, Hu S, Yao G, Zhu Q, He Y, Lu Y, Qi J, Xu R, Ding Y, Li J, Li X, Sun Y. A Novel Molecule in Human Cyclic Endometrium: LncRNA TUNAR Is Involved in Embryo Implantation. Front Physiol 2020; 11:587448. [PMID: 33329038 PMCID: PMC7710794 DOI: 10.3389/fphys.2020.587448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Embryo implantation rate remains an inefficient process in in vitro fertilization and embryo transfer (IVF-ET) cycles. The role long non-coding RNA (lncRNA) plays in embryo implantation remains unclear. We aimed to investigate the expression pattern of lncRNA TCL1 upstream neural differentiation-associated RNA (TUNAR) in human cyclic endometrium and clarify the role of TUNAR in the development of endometrial receptivity. Endometrial biopsies were collected at the late proliferative phase, luteinizing hormone (LH) + 2 and LH + 7, from patients with or without recurrent implantation failure (RIF). Real-time RT PCR was performed to detect the level of lncRNAs. After pZW1-snoVector-TUNAR transfection, multiple function of TUNAR in endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs) was investigated. The expression of TUNAR in endometrium was found down-regulated at LH + 7 and up-regulated in RIF patients. In proliferative phase, TUNAR was overwhelmingly more abundant in ESCs and regulated its proliferation. In LH + 7, the difference in the expression of TUNAR between ESCs and EECs was narrowed. Overexpression of TUNAR not only impaired spheroid attachment to EECs, but also inhibited decidualization of ESCs. TUNAR was found expressed in human endometrium for the first time, which might be involved in embryo implantation by modulating the blastocyst attachment to the endometrial epithelium and regulating the proliferation and decidualization of ESCs. Our study helps us to better understand the molecular mechanisms of embryo implantation and may provide a promising biomarker of endometrial receptivity.
Collapse
Affiliation(s)
- Yuan Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Shuanggang Hu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Guangxin Yao
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qinling Zhu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yaqiong He
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yao Lu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jia Qi
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Rui Xu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ying Ding
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiaxing Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xinyu Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
37
|
Liu H, Hu K. The Long Intergenic Noncoding RNA 00707 Sponges MicroRNA-613 (miR-613) to Promote Proliferation and Invasion of Gliomas. Technol Cancer Res Treat 2020; 19:1533033820962092. [PMID: 33107401 PMCID: PMC7607719 DOI: 10.1177/1533033820962092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Glioma is one of the most deadly malignant tumors in humans. Long non-coding RNA (lncRNA) plays a key role in the occurrence, development and invasion of tumors by regulating oncogenic and tumor suppressor pathways. However, the role and action mechanism of long intergenic non-coding RNA 00707 (LINC00707) in gliomas have not been elucidated. This study aimed to investigate the interaction between LINC00707 and miR-613 as well as its role in gliomas. Materials and Methods: The expression levels of LINC00707 and miR-613 were detected by qRT-PCR. The chi-square test was used to analyze the correlation between LINC00707 expression and clinicopathological parameters. CCK-8 and colony formation assays were used to detect glioma cell proliferation; and wound healing and transwell assays were used to detect glioma cell migration and invasion. The relationship between LINC00707 and miR-613 was predicted by Starbase, and verified by qRT-PCR and dual luciferase reporter gene assay. Results: LINC00707 was up-regulated in gliomas. Up-regulated LINC00707 increased the proliferation, migration and invasion of glioma cells, and silenced LINC00707 reduced these abilities. The increase of the expression level of LINC00707 down-regulated miR-613 in glioma cells, while the inhibition of the expression level of LINC00707 up-regulated miR-613 in glioma cells. The high expression of LINC00707 was related to the Karnofsky performance status (KPS) score and WHO staging. LINC00707 could offset the ability of miR-613 to inhibit glioma proliferation and invasion. Conclusion: LINC00707 promotes proliferation and invasion of glioma cells by sponging miR-613. The regulatory axis of LINC00707/miR-613 provides new insights into the mechanism and treatment of gliomas.
Collapse
Affiliation(s)
- Handong Liu
- Department of Neurosurgery, Xiangyang Center Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Keqi Hu
- Department of Neurosurgery, Xiangyang Center Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
38
|
Liu C, Yao W, Yao J, Li L, Yang L, Zhang H, Sui C. Endometrial extracellular vesicles from women with recurrent implantation failure attenuate the growth and invasion of embryos. Fertil Steril 2020; 114:416-425. [PMID: 32622655 DOI: 10.1016/j.fertnstert.2020.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate whether endometrial extracellular vesicles (EVs) from patients with recurrent implantation failure (RIF) attenuate the growth and invasion of embryos. DESIGN In vitro experimental study. SETTING University-affiliated hospital. PATIENT(S) Ten RIF patients and seven fertile women. INTERVENTIONS(S) Endometrial cells isolated from endometrial tissues obtained from patients with RIF and fertile women were cultured and modulated in vitro via hormones. Conditioned medium was collected for EV isolation. MAIN OUTCOME MEASURE(S) EVs secreted by endometrial cells of patients with RIF (RIF-EVs) or fertile women (FER-EVs) were characterized with the use of Western blotting, nanoparticle tracking analysis, and transmission electron microscopy. EVs from the two groups were co-cultured with 2-cell murine embryos. Fluorescence-labeled EVs were used to visualize internalization by embryos. Following co-culture, blastocyst and hatching rates were calculated. Blastocysts were stained with diamidino-2-phenylindole to count the total cell number, and the hatched embryos were used to test invasion capacity. RESULT(S) RIF-EVs and FER-EVs are bilayered vesicles ∼100 nm in size and enriched with TSG101, Alix, and CD9. EVs were internalized within 12 hours. The blastocyst rates in the RIF-EV groups were significantly decreased compared with the FER-EV groups at 5, 10, and 20 μg/mL. The hatching rates and total cell numbers of blastocysts also were decreased significantly in the RIF-EV groups compared with the FER-EV groups at 10 and 20 μg/mL. Moreover, the invasion capacity of hatched embryos decreased significantly in the RIF-EV group. CONCLUSION(S) Endometrial EVs from patients with RIF attenuate the development and invasion of embryos.
Collapse
Affiliation(s)
- Chang Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wen Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Junning Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Linshuang Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Le Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
39
|
Liu H, Huang X, Mor G, Liao A. Epigenetic modifications working in the decidualization and endometrial receptivity. Cell Mol Life Sci 2020; 77:2091-2101. [PMID: 31813015 PMCID: PMC11105058 DOI: 10.1007/s00018-019-03395-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
Decidualization is a critical event for the blastocyst implantation, placental development and fetal growth and the normal term. In mice, the embryo implantation to the uterine epithelial would trigger the endometrial stromal cells to differentiate into decidual stromal cells. However, decidualization in women takes place from the secretory phase of each menstrual cycle and continues to early pregnancy if there is conceptus. Deficient decidualization is often associated with pregnancy specific complications and reproductive disorders. Dramatic changes occur in the gene expression profiles during decidualization, which is coordinately regulated by steroid hormones, growth factors, and molecular and epigenetic mechanisms. Recently, emerging evidences showed that epigenetic modifications, mainly including DNA methylation, histone modification, and non-coding RNAs, play an important role in the decidualization process via affecting the target genes' expression. In this review, we will focus on the epigenetic modifications in decidualization and open novel avenues to predict and treat the pregnancy complications caused by abnormal decidualization.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Xiaobo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
40
|
Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, Huang L, Sun Y, Wang H, Lu J. Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci 2019; 76:4813-4828. [PMID: 31352535 PMCID: PMC11105790 DOI: 10.1007/s00018-019-03245-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Abstract
Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.
Collapse
Affiliation(s)
- Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Zhou
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhangli Ni
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Mengying Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Bo He
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Lin Huang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yang Sun
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| | - Jinhua Lu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
41
|
Competing endogenous network analysis identifies lncRNA Meg3 activates inflammatory damage in UVB induced murine skin lesion by sponging miR-93-5p/epiregulin axis. Aging (Albany NY) 2019; 11:10664-10683. [PMID: 31761787 PMCID: PMC6914409 DOI: 10.18632/aging.102483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
In this study, we obtained the RNA expression data of murine skin tissues of control, and UVB irradiated groups. After the re-annotation of lncRNAs, a gene expression similarity analysis was done by WGCNA. The target mRNA prediction of lncRNAs, miRNAs, and ceRNA regulatory networks were constructed by five lncRNAs, 14 miRNAs and 54 mRNAs, respectively. Based on the ceRNA network of UVB-induced skin lesions, it was evident that the dysregulation of Meg3 has critical effects on the UVB-induced inflammatory lesion of murine skin tissues. The overexpression of Meg3 after UVB irradiation was observed in primary murine skin fibroblasts, and the up-regulated Meg3 expression was related to the activation of the inflammatory cytokines. These functional experiments demonstrated that the RNA silencing of Meg3 in murine skin fibroblasts could suppress the expression of the cytokines (in vitro) and UVB-induced skin lesions (in vivo). Moreover, the Meg3 functioned as a competing endogenous RNA (ceRNA) that acted as a sponge for miR-93-5p and thereby modulated the expression of Epiregulin (Ereg). Our results proved that Meg3 was involved in UVB-induced skin inflammation and that the ceRNA networks, which includes miR-93-5p and Ereg, could prove to be a potential therapeutic target for UVB-induced skin damage.
Collapse
|
42
|
Xu H, Zhou M, Cao Y, Zhang D, Han M, Gao X, Xu B, Zhang A. Genome-wide analysis of long noncoding RNAs, microRNAs, and mRNAs forming a competing endogenous RNA network in repeated implantation failure. Gene 2019; 720:144056. [PMID: 31437466 DOI: 10.1016/j.gene.2019.144056] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Repeated implantation failure (RIF) was mainly due to poor endometrium receptivity. Long noncoding RNAs (lncRNAs) could regulate endometrium receptivity and act in competing endogenous RNA (ceRNA) theory. However, the regulatory mechanism of the lncRNA-miRNA-mRNA network in repeated implantation failure (RIF) is unclear. We obtained RIF-related expression profiles of lncRNAs, mRNAs, and miRNAs using mid-secretory endometrial tissue samples from 5 women with RIF and 5 controls by RNA-sequencing. Co-expression analysis revealed that three functional modules were enriched in immune response/inflammation process; two functional modules were enriched in metabolic/ biosynthetic process, and one functional module were enriched in cell cycle pathway. By adding the miRNA data, ceRNA regulatory relationship of each module was reconstructed. The ceRNA network of the whole differentially expressed RNAs revealed 10 hub lncRNAs. Among them, TRG-AS1, SIMM25, and NEAT1 were involved in the module1, module2, and module3, respectively; LNC00511 and SLC26A4-AS1 in the module4; H19 in the module5. The real-time polymerase chain reaction (RT-PCR) results of 15 randomly selected RNAs were consistent with our sequencing data. These can be used as novel potential biomarkers for RIF. Furthermore, they might be involved in endometrium receptivity by acting as ceRNA.
Collapse
Affiliation(s)
- Huihui Xu
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Mingjuan Zhou
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yi Cao
- Department of Obstetrics and Gynecology, The Minhang Hospital of Fudan University, The Central Hospital of Minhang District, 170 Xin Song Road, Shanghai 201100, China
| | - Dan Zhang
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Mi Han
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xinxing Gao
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Bufang Xu
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Aijun Zhang
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
43
|
Huang W, Zhou H, Pi L, Xu Y, Fu L, Yang Y, Che D, Gu X. Association between the rs2288947 polymorphism of the lncRNA TINCR gene and the risk of recurrent miscarriage in a Southern Chinese population. J Clin Lab Anal 2019; 33:e22919. [PMID: 31124188 PMCID: PMC6642304 DOI: 10.1002/jcla.22919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/01/2019] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
Studies have shown that many genes that regulate cell migration are associated with susceptibility to recurrent miscarriage. Terminal differentiation-induced non-coding RNA (TINCR) regulates the migration and invasion of a variety of tumor cells and is associated with susceptibility to various diseases. However, whether the lncRNA TINCR polymorphism is associated with susceptibility to recurrent miscarriage is unclear. Therefore, we investigated the relationship between the rs2288947 A > G polymorphism of the lncRNA TINCR and susceptibility to recurrent abortion. We recruited 248 recurrent spontaneous abortion patients and 392 healthy control subjects from the Southern Chinese population and used the TaqMan method for genotyping. There was no evidence that this polymorphism is associated with recurrent miscarriage (AG vs AA: adjusted OR = 0.904, 95% CI = 0.647-1.264, P = 0.5552; GG and AA: adjusted OR = 0.871, 95% CI = 0.475-1.597, P = 0.6542; dominant model: AG/GG vs AA: adjusted OR = 0.898, 95% CI = 0.653-1.236, P = 0.5101; and recessive model: GG vs AA/AG: adjusted OR = 0.910, 95% CI = 0.505-1.639, P = 0.7527). The stratified analysis also showed no significant associations. This study suggests that the rs2288947 A > G polymorphism of the lncRNA TINCR may not be associated with recurrent miscarriage in a Southern Chinese population. A larger multicenter study is needed to confirm our conclusions.
Collapse
Affiliation(s)
- Wendong Huang
- Department of Pharmacy, Maoming People's Hospital, Maoming, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - LanYan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanfang Yang
- Department of Prenatal Diagnosis, Maoming People's Hospital, Maoming, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Blood Transfusion, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
44
|
Wang CH, Shi HH, Chen LH, Li XL, Cao GL, Hu XF. Identification of Key lncRNAs Associated With Atherosclerosis Progression Based on Public Datasets. Front Genet 2019; 10:123. [PMID: 30873207 PMCID: PMC6403132 DOI: 10.3389/fgene.2019.00123] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is one of the most common type of cardiovascular disease and the prime cause of mortality in the aging population worldwide. However, the detail mechanisms and special biomarkers of atherosclerosis remain to be further investigated. Lately, long non-coding RNAs (lncRNAs) has attracted much more attention than other types of ncRNAs. In our work, we found and confirmed differently expressed lncRNAs and mRNAs in atherosclerosis by analyzing GSE28829. We performed the weighted gene co-expression network analysis (WGCNA) by analyzing GSE40231 to confirm highly correlated genes. Gene Ontology (GO) analysis were utilized to assess the potential functions of differential expressed lncRNAs in atherosclerosis. Co-expression networks were also constructed to confirm hub lncRNAs in atherosclerosis. A total of 5784 mRNAs and 654 lncRNAs were found to be dysregulated in the progression of atherosclerosis. A total of 15 lncRNA-mRNA co-expression modules were identified in this study based on WGCNA analysis. Moreover, a few lncRNAs, such as ZFAS1, LOC100506730, LOC100506691, DOCK9-AS2, RP11-6I2.3, LOC100130219, were confirmed as important lncRNAs in atherosclerosis. Taken together, bioinformatics analysis revealed these lncRNAs were involved in regulating the leukotriene biosynthetic process, gene expression, actin filament organization, t-circle formation, antigen processing, and presentation, interferon-gamma-mediated signaling pathway, and activation of GTPase activity. We believed that this study would provide potential novel therapeutic and prognostic targets for atherosclerosis.
Collapse
Affiliation(s)
- Chuan-Hui Wang
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Hua Shi
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-Hui Chen
- Department of Neurology, Zhejiang Hospital, Zhejiang University, Hangzhou, China
| | - Xiao-Li Li
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Liang Cao
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Feng Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Long noncoding RNA CYTOR sponges miR-195 to modulate proliferation, migration, invasion and radiosensitivity in nonsmall cell lung cancer cells. Biosci Rep 2018; 38:BSR20181599. [PMID: 30487160 PMCID: PMC6435535 DOI: 10.1042/bsr20181599] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/16/2023] Open
Abstract
Nonsmall cell lung cancer (NSCLC) is one of the most frequent malignancies worldwide. Long noncoding RNAs (LncRNAs) play critical roles in cancer initiation and progression. Previous studies have demonstrated that overexpression of cytoskeleton regulator RNA (CYTOR) predicates poor prognosis and promotes tumor progression. However, the functional roles and underlying mechanism of CYTOR in NSCLC remain unknown. In the present study, we found that CYTOR promoted cell proliferation, migration and invasion ability, and induced radioresistance in NSCLC cells. Mechanistically, CYTOR could directly interact with miR-195 and increase its targets. Thus, CYTOR played an oncogenic role in NSCLC progression through sponging miR-195. Together, our study elucidates the role of CYTOR as a microRNA sponge in NSCLC, and CYTOR may be used as a promising therapeutic target for NSCLC treatment.
Collapse
|