1
|
Chen PJ, Wang K, Lin MH, Sharma R, Kalajzic Z, O'Brien M, Yadav S. Alendronate partially rescues the periodontal defects in OIM mouse model of osteogenesis imperfecta. Sci Rep 2025; 15:88. [PMID: 39747677 PMCID: PMC11695738 DOI: 10.1038/s41598-024-84756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Osteogenesis imperfecta (OI) is a fairly common generalized connective disorder characterized by low bone mass, bone deformities and impaired bone quality that predisposes affected individuals to musculoskeletal fragility. Periodontal ligament (PDL)-alveolar bone and PDL-cementum entheses' roles under OI conditions during physiological loading and orthodontic forces remain largely unknown. In addition, bisphosphonates (e.g., alendronate) are commonly used therapeutics for the treatment of OI. Our knowledge, in terms of the affects of alendronate treatment on the PDL entheses in OI is also far from complete. In this study, we identified craniofacial skeletal defects in an osteogenesis imperfecta (oim) murine model of OI. Relative to wild-type littermates, oim mice were found to have decreased skull length, cranial height/width/length, nose length, nasal length, and frontal length. Next, we discovered that oim mice exhibited defects in several dental structures, including short roots and decreased volumes of the alveolar bone, dentin, and cellular cementum. Further, we specifically investigated periodontal defects in the oim mice. Alveolar bone loss in oim mice was primarily associated with elevated bone resorption due to an increased osteoclast number, along with reduced bone formation related to increased sclerostin (SOST) expression. PDL fibers in oim mice were disrupted and discontinuous, while Sharpey's fibers at the PDL-bone entheses were reduced. Mechanism-based studies showed that catabolism of the PDL was elevated in oim mice, as revealed by an increase in MMP13 and CTSK expression. Meanwhile, the quality of the collagen fibers were impaired in oim mice due to a large accumulation of uncleaved collagen I fibers. With alendronate treatment, however, we could partially rescue these phenotypes. This study, for the first time, characterized periodontal defects in oim mice, detailed craniofacial defects and demonstrated the effectiveness of alendronate in partially restoring these defects.
Collapse
Affiliation(s)
- Po-Jung Chen
- Department of Growth and Development, University of Nebraska Medical Center, 4000 East Campus Loop South, 68583-0740, Lincoln, NE, US.
| | - Ke Wang
- Division of Orthodontics, University of Connecticut Health Center, Farmington, US
| | - Meng-Hsuan Lin
- Department of Adult Restorative Dentistry, University of Nebraska Medical Center, Lincoln, US
| | | | - Zana Kalajzic
- University of Connecticut Health Center, Farmington, US
| | - Mara O'Brien
- University of Connecticut Health Center, Farmington, US
| | - Sumit Yadav
- Department of Growth and Development, University of Nebraska Medical Center, 4000 East Campus Loop South, 68583-0740, Lincoln, NE, US
| |
Collapse
|
2
|
Wang S, Tu Y, Yu H, Li Z, Feng J, Liu S. Animal models and related techniques for dentin study. Odontology 2025; 113:42-60. [PMID: 39225758 DOI: 10.1007/s10266-024-00987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
The intricate and protracted process of dentin formation has been extensively explored, thanks to the significant advancements facilitated by the use of animal models and related techniques. Despite variations in their effectiveness, taking into account factors such as sensitivity, visibility, and reliability, these models or techniques are indispensable tools for investigating the complexities of dentin formation. This article focuses on the latest advances in animal models and related technologies, shedding light on the key molecular mechanisms that are essential in dentin formation. A deeper understanding of this phenomenon enables the careful selection of appropriate animal models, considering their suitability in unraveling the underlying molecular intricacies. These insights are crucial for the advancement of clinical drugs targeting dentin-related ailments and the development of comprehensive treatment strategies throughout the duration of the disease.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Hao Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Zhen Li
- Shanghai Fengxian District Dental Disease Prevention Institute, Shanghai, 201499, People's Republic of China
| | - Jinqiu Feng
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China.
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
3
|
Dobrzyńska‐Mizera M, Dodda JM, Liu X, Knitter M, Oosterbeek RN, Salinas P, Pozo E, Ferreira AM, Sadiku ER. Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications. Adv Healthc Mater 2024; 13:e2401674. [PMID: 39233521 PMCID: PMC11616265 DOI: 10.1002/adhm.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Herein, the recent advances in the development of resorbable polymeric-based biomaterials, their geometrical forms, resorption mechanisms, and their capabilities in various biomedical applications are critically reviewed. A comprehensive discussion of the engineering approaches for the fabrication of polymeric resorbable scaffolds for tissue engineering, drug delivery, surgical, cardiological, aesthetical, dental and cardiovascular applications, are also explained. Furthermore, to understand the internal structures of resorbable scaffolds, representative studies of their evaluation by medical imaging techniques, e.g., cardiac computer tomography, are succinctly highlighted. This approach provides crucial clinical insights which help to improve the materials' suitable and viable characteristics for them to meet the highly restrictive medical requirements. Finally, the aspects of the legal regulations and the associated challenges in translating research into desirable clinical and marketable materials of polymeric-based formulations, are presented.
Collapse
Affiliation(s)
| | - Jagan Mohan Dodda
- New Technologies – Research Centre (NTC)University of West BohemiaUniverzitní 8Pilsen30100Czech Republic
| | - Xiaohua Liu
- Chemical and Biomedical Engineering DepartmentUniversity of Missouri1030 Hill StreetColumbiaMissouri65211USA
| | - Monika Knitter
- Institute of Materials TechnologyPolymer DivisionPoznan University of TechnologyPoznanPoland
| | - Reece N. Oosterbeek
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Pablo Salinas
- Department of CardiologyHospital Clínico San CarlosMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Eduardo Pozo
- Department of CardiologyHospital Clínico San CarlosMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Ana Marina Ferreira
- School of EngineeringNewcastle UniversityNewcastle upon TyneNewcastleNE1 7RUUK
| | - Emmanuel Rotimi Sadiku
- Tshwane University of TechnologyDepartment of ChemicalMetallurgical and Materials EngineeringPolymer Division & Institute for Nano Engineering Research (INER)Pretoria West CampusPretoriaSouth Africa
| |
Collapse
|
4
|
Wölfel EM, von Kroge S, Matthies L, Koehne T, Petz K, Beikler T, Schmid-Herrmann CU, Kahl-Nieke B, Tsiakas K, Santer R, Muschol NM, Herrmann J, Busse B, Amling M, Rolvien T, Jandl NM, Barvencik F. Effects of Infantile Hypophosphatasia on Human Dental Tissue. Calcif Tissue Int 2023; 112:308-319. [PMID: 36414794 PMCID: PMC9968273 DOI: 10.1007/s00223-022-01041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022]
Abstract
Hypophosphatasia (HPP) is an inherited, systemic disorder, caused by loss-of-function variants of the ALPL gene encoding the enzyme tissue non-specific alkaline phosphatase (TNSALP). HPP is characterized by low serum TNSALP concentrations associated with defective bone mineralization and increased fracture risk. Dental manifestations have been reported as the exclusive feature (odontohypophosphatasia) and in combination with skeletal complications. Enzyme replacement therapy (asfotase alfa) has been shown to improve respiratory insufficiency and skeletal complications in HPP patients, while its effects on dental status have been understudied to date. In this study, quantitative backscattered electron imaging (qBEI) and histological analysis were performed on teeth from two patients with infantile HPP before and during asfotase alfa treatment and compared to matched healthy control teeth. qBEI and histological methods revealed varying mineralization patterns in cementum and dentin with lower mineralization in HPP. Furthermore, a significantly higher repair cementum thickness was observed in HPP compared to control teeth. Comparison before and during treatment showed minor improvements in mineralization and histological parameters in the patient when normalized to matched control teeth. HPP induces heterogeneous effects on mineralization and morphology of the dental status. Short treatment with asfotase alfa slightly affects mineralization in cementum and dentin. Despite HPP being a rare disease, its mild form occurs at higher prevalence. This study is of high clinical relevance as it expands our knowledge of HPP and dental involvement. Furthermore, it contributes to the understanding of dental tissue treatment, which has hardly been studied so far.
Collapse
Affiliation(s)
- Eva Maria Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Lottestr. 55A, Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Levi Matthies
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Department of Orthodontics, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Karin Petz
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Carmen Ulrike Schmid-Herrmann
- Department of Orthodontics, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Nicole Maria Muschol
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jochen Herrmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Section of Pediatric Radiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Lottestr. 55A, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Nico Maximilian Jandl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany.
| |
Collapse
|
5
|
Weerakoon AT, Meyers IA, Thomson DH, Cooper C, Ford PJ, Symons AL. Coronal dentin differs between young and mature adult humans: A systematic review. Arch Oral Biol 2022; 144:105553. [DOI: 10.1016/j.archoralbio.2022.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022]
|
6
|
Weerakoon AT, Condon N, Cox TR, Sexton C, Cooper C, Meyers IA, Thomson D, Ford PJ, Roy S, Symons AL. Dynamic dentin: A quantitative microscopic assessment of age and spatial changes to matrix architecture, peritubular dentin, and collagens types I and III. J Struct Biol 2022; 214:107899. [PMID: 36208858 DOI: 10.1016/j.jsb.2022.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022]
Abstract
To investigate age and site-related changes to human dentin collagen, sound human teeth collected from donors aged 13-29 (young) and 50-74 (aged) years (n = 9/group) were cut to shallow and deep sites. Dentin collagen orientation and fibril bundling was investigated using the Picrosirius Red (PSR) stain observed under cross-polarized light microscopy (Pol), and collagen distribution was investigated using Confocal Laser Scanning Microscopy (CLSM). Collagen types III to I distribution in peritubular dentin (PTD) was revealed using Herovici stain and brightfield microscopy. Image analysis software and linear mixed modelling quantified outcomes. In situ dentin collagen was observed using Xenon Plasma Focussed Ion Beam Scanning Electron Microscopy (Xe PFIB-SEM). The PSR-Pol analysis revealed less coherently aligned and more bundled collagen fibrils in aged dentin (P = 0.005). Deep inner dentin collagen in both groups were less coherently aligned with reduced bundling. Regardless of age, CLSM showed collagen distribution remained stable; and more collagen type III was detectable in PTD located in inner dentin (Young: P = 0.006; Aged: P = 0.008). Observations following Xe PFIB-SEM cross-sectioning showed apatite-like deposits surrounding large intratubular collagen fibers, and evidence of smaller intertubular dentin collagen fibrils in situ. In conclusion, aging changes collagen network architecture, but not distribution or content.
Collapse
Affiliation(s)
- Arosha T Weerakoon
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia.
| | - Nicholas Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research & School of Clinical Medicine, UNSW, Sydney, Australia
| | - Christopher Sexton
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Crystal Cooper
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia, Australia
| | - Ian A Meyers
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - David Thomson
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Pauline J Ford
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Sandrine Roy
- Translational Research Institute, Brisbane, Queensland, Australia; Olympus Life Science, Australia
| | - Anne L Symons
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Jing D, Chen Z, Men Y, Yi Y, Wang Y, Wang J, Yi J, Wan L, Shen B, Feng JQ, Zhao Z, Zhao H, Li C. Response of Gli1 + Suture Stem Cells to Mechanical Force Upon Suture Expansion. J Bone Miner Res 2022; 37:1307-1320. [PMID: 35443291 DOI: 10.1002/jbmr.4561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023]
Abstract
Normal development of craniofacial sutures is crucial for cranial and facial growth in all three dimensions. These sutures provide a unique niche for suture stem cells (SuSCs), which are indispensable for homeostasis, damage repair, as well as stress balance. Expansion appliances are now routinely used to treat underdevelopment of the skull and maxilla, stimulating the craniofacial sutures through distraction osteogenesis. However, various treatment challenges exist due to a lack of full understanding of the mechanism through which mechanical forces stimulate suture and bone remodeling. To address this issue, we first identified crucial steps in the cycle of suture and bone remodeling based on the established standard suture expansion model. Observed spatiotemporal morphological changes revealed that the remodeling cycle is approximately 3 to 4 weeks, with collagen restoration proceeding more rapidly. Next, we traced the fate of the Gli1+ SuSCs lineage upon application of tensile force in three dimensions. SuSCs were rapidly activated and greatly contributed to bone remodeling within 1 month. Furthermore, we confirmed the presence of Wnt activity within Gli1+ SuSCs based on the high co-expression ratio of Gli1+ cells and Axin2+ cells, which also indicated the homogeneity and heterogeneity of two cell groups. Because Wnt signaling in the sutures is highly upregulated upon tensile force loading, conditional knockout of β-catenin largely restricted the activation of Gli1+ SuSCs and suppressed bone remodeling under physiological and expansion conditions. Thus, we concluded that Gli1+ SuSCs play essential roles in suture and bone remodeling stimulated by mechanical force and that Wnt signaling is crucial to this process. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.,State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zexi Chen
- Chinese Institute for Brain Research, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi Men
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yating Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuhong Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Wan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Shen
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Chaoyuan Li
- Department of Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
8
|
The Modified Shields Classification and 12 Families with Defined DSPP Mutations. Genes (Basel) 2022; 13:genes13050858. [PMID: 35627243 PMCID: PMC9141616 DOI: 10.3390/genes13050858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in Dentin Sialophosphoprotein (DSPP) are known to cause, in order of increasing severity, dentin dysplasia type-II (DD-II), dentinogenesis imperfecta type-II (DGI-II), and dentinogenesis imperfecta type-III (DGI-III). DSPP mutations fall into two groups: a 5′-group that affects protein targeting and a 3′-group that shifts translation into the −1 reading frame. Using whole-exome sequence (WES) analyses and Single Molecule Real-Time (SMRT) sequencing, we identified disease-causing DSPP mutations in 12 families. Three of the mutations are novel: c.53T>C/p.(Val18Ala); c.3461delG/p.(Ser1154Metfs*160); and c.3700delA/p.(Ser1234Alafs*80). We propose genetic analysis start with WES analysis of proband DNA to identify mutations in COL1A1 and COL1A2 causing dominant forms of osteogenesis imperfecta, 5′-DSPP mutations, and 3′-DSPP frameshifts near the margins of the DSPP repeat region, and SMRT sequencing when the disease-causing mutation is not identified. After reviewing the literature and incorporating new information showing distinct differences in the cell pathology observed between knockin mice with 5′-Dspp or 3′-Dspp mutations, we propose a modified Shields Classification based upon the causative mutation rather than phenotypic severity such that patients identified with 5′-DSPP defects be diagnosed as DGI-III, while those with 3′-DSPP defects be diagnosed as DGI-II.
Collapse
|
9
|
Demineralized Dentin Matrix for Dental and Alveolar Bone Tissues Regeneration: An Innovative Scope Review. Tissue Eng Regen Med 2022; 19:687-701. [PMID: 35429315 PMCID: PMC9294090 DOI: 10.1007/s13770-022-00438-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Dentin is a permeable tubular composite and complex structure, and in weight, it is composed of 20% organic matrix, 10% water, and 70% hydroxyapatite crystalline matrix. Demineralization of dentin with gradient concentrations of ethylene diamine tetraacetic acid, 0.6 N hydrochloric acid, or 2% nitric acid removes a major part of the crystalline apatite and maintains a majority of collagen type I and non-collagenous proteins, which creates an osteoinductive scaffold containing numerous matrix elements and growth factors. Therefore, demineralized dentin should be considered as an excellent naturally-derived bioactive material to enhance dental and alveolar bone tissues regeneration. Method: The PubMed and Midline databases were searched in October 2021 for the relevant articles on treated dentin matrix (TDM)/demineralized dentin matrix (DDM) and their potential roles in tissue regeneration. Results: Several studies with different study designs evaluating the effect of TDM/DDM on dental and bone tissues regeneration were found. TDM/DDM was obtained from human or animal sources and processed in different forms (particles, liquid extract, hydrogel, and paste) and different shapes (sheets, slices, disc-shaped, root-shaped, and barrier membranes), with variable sizes measured in micrometers or millimeters, demineralized with different protocols regarding the concentration of demineralizing agents and exposure time, and then sterilized and preserved with different techniques. In the act of biomimetic acellular material, TDM/DDM was used for the regeneration of the dentin-pulp complex through direct pulp capping technique, and it was found to possess the ability to activate the odontogenic differentiation of stem cells resident in the pulp tissues and induce reparative dentin formation. TDM/DDM was also considered for alveolar ridge and maxillary sinus floor augmentations, socket preservation, furcation perforation repair, guided bone, and bioroot regenerations as well as bone and cartilage healing. Conclusion: To our knowledge, there are no standard procedures to adopt a specific form for a specific purpose; therefore, future studies are required to come up with a well-characterized TDM/DDM for each specific application. Likely as decellularized dermal matrix and prospectively, if the TDM/DDM is supplied in proper consistency, forms, and in different sizes with good biological properties, it can be used efficiently instead of some widely-used regenerative biomaterials. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-022-00438-4.
Collapse
|
10
|
Murshid SA. Bone permeability and mechanotransduction: Some current insights into the function of the lacunar-canalicular network. Tissue Cell 2022; 75:101730. [PMID: 35032785 DOI: 10.1016/j.tice.2022.101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Lacunar-canalicular (LC) permeability involves the passage of fluids, nutrients, oxygen, ions, and signalling molecules through bone tissue, facilitating the maintenance of bone vitality and function and responses to various physiological conditions and diseases. LC permeability and fluid flow-shear stress/drag force play important roles in mechanotransduction in bone tissue by inducing mechanical stimuli in osteocytes, modulating cellular functions, and determining bone adaptation. Alterations in LC structure may therefore influence the fluid flow pattern through the LC network, thereby affecting the ability of osteocytes to sense and translate mechanical signals and possibly contributing to bone remodelling. Several bone-health conditions are associated with changes in LC structure and function and may affect mechanotransduction and responses, although the mechanisms underlying these associations are still not fully understood. In this review, recent studies of LC networks, their formation and transfer mechanical stimuli, and changes in structure, functional permeability, and mechanotransduction that result from age, pathology, and mechanical loading are discussed. Additionally, applications of vibration and low-intensity pulsed ultrasound in bone healthcare and regeneration fields are also presented.
Collapse
Affiliation(s)
- Sakhr Ahmed Murshid
- Institute for Globally Distributed Open Research and Education (IGDORE); Ilmajoki Health Public Dental Clinics, Social and Health Care Services in Jalasjärvi, Ilmajoki, Kurikka, Finland.
| |
Collapse
|
11
|
Weerakoon AT, Cooper C, Meyers IA, Condon N, Sexton C, Thomson D, Ford PJ, Symons AL. Does dentine mineral change with anatomical location, microscopic site and patient age? J Struct Biol X 2022; 6:100060. [PMID: 35146411 PMCID: PMC8818708 DOI: 10.1016/j.yjsbx.2022.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
The SEM BSE micrographs show dentine tubules penetrating intertubular dentine. SEM BSE micrographs illustrates mineral to fill mature not young dentine tubules and branches. Mineral density varies with the ratio of tubular to intertubular dentine. Dentine composition remains stable for age, anatomical location and microscopic site. Xe PFIB-SEM cross-sections show structural integration between peritubular and intertubular dentine.
Objective To determine the effect of patient age (young or mature), anatomical location (shallow/deep and central/peripheral) and microscopic site (intertubular/peritubular) on dentine mineral density, distribution and composition. Methods Extracted posterior teeth from young (aged 19–20 years, N = 4) and mature (aged 54–77 years, N = 4) subjects were prepared to shallow and deep slices. The dentine surface elemental composition was investigated in a SEM using Backscattered Electron (BSE) micrographs, Energy Dispersive X-ray Spectroscopy, and Integrated Mineral Analysis. Qualitative comparisons and quantitative measures using machine learning were used to analyse the BSE images. Quantitative outcomes were compared using quantile or linear regression models with bootstrapping to account for the multiple measures per sample. Subsequently, a Xenon Plasma Focussed Ion Beam Scanning Electron Microscopy (Xe PFIB-SEM) was used to mill large area (100 µm) cross-sections to investigate morphology through the dentine tubules using high resolution secondary electron micrographs. Results With age, dentine mineral composition remains stable, but density changes with anatomical location and microscopic site. Microscopically, accessory tubules spread into intertubular dentine (ITD) from the main tubule lumens. Within the lumens, mineral deposits form calcospherites in the young that eventually coalesce in mature tubules and branches. The mineral occlusion in mature dentine increases overall ITD density to reflect peritubular dentine (PTD) infiltrate. The ITD observed in micrographs remained consistent for age and observation plane to suggest tubule deposition affects overall dentine density. Mineral density depends on the relative distribution of PTD to ITD that varies with anatomical location. Significance Adhesive materials may interact differently within a tooth as well as in different age groups.
Collapse
Key Words
- Age
- Apatite
- BSE
- BSE, Backscatter Electron
- Ca, Calcium
- Cl, Chloride
- DEJ, Dentine-enamel junction
- DT, Dentine Tubule
- Dentine
- EPMA, Electron Probe Microanalyser
- Ga, Gallium
- H, Hydrogen
- Human
- ITD, Intertubular Dentine
- Intertubular dentine
- LA-ICP-MS, Laser Ablation Induction Coupled Plasma Mass Spectroscopy
- Mg, Magnesium
- Mineral
- Na, Sodium
- O, Oxygen
- Odontoblasts
- P, Phosporus
- PTD, Peritubular Dentine
- Peritubular dentine
- SEM, Scanning Electron Microscope
- SEM-EDS
- SEM-EDS, Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy
- TEM, Transmission Electron Microscope
- TIMA, Integrated Mineral Analysis
- XE PFIB-SEM, Xenon Plasma Focussed Ion Beam Scanning Electron Microscope
- Xe PFIB-SEM
- β-TCMP, Magnesium-whitlockite
Collapse
Affiliation(s)
- Arosha T Weerakoon
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Crystal Cooper
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ian A Meyers
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher Sexton
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - David Thomson
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Pauline J Ford
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Anne L Symons
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Lavicky J, Kolouskova M, Prochazka D, Rakultsev V, Gonzalez-Lopez M, Steklikova K, Bartos M, Vijaykumar A, Kaiser J, Pořízka P, Hovorakova M, Mina M, Krivanek J. The Development of Dentin Microstructure Is Controlled by the Type of Adjacent Epithelium. J Bone Miner Res 2022; 37:323-339. [PMID: 34783080 PMCID: PMC9300090 DOI: 10.1002/jbmr.4471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Considerable amount of research has been focused on dentin mineralization, odontoblast differentiation, and their application in dental tissue engineering. However, very little is known about the differential role of functionally and spatially distinct types of dental epithelium during odontoblast development. Here we show morphological and functional differences in dentin located in the crown and roots of mouse molar and analogous parts of continuously growing incisors. Using a reporter (DSPP-cerulean/DMP1-cherry) mouse strain and mice with ectopic enamel (Spry2+/- ;Spry4-/- ), we show that the different microstructure of dentin is initiated in the very beginning of dentin matrix production and is maintained throughout the whole duration of dentin growth. This phenomenon is regulated by the different inductive role of the adjacent epithelium. Thus, based on the type of interacting epithelium, we introduce more generalized terms for two distinct types of dentins: cementum versus enamel-facing dentin. In the odontoblasts, which produce enamel-facing dentin, we identified uniquely expressed genes (Dkk1, Wisp1, and Sall1) that were either absent or downregulated in odontoblasts, which form cementum-facing dentin. This suggests the potential role of Wnt signalling on the dentin structure patterning. Finally, we show the distribution of calcium and magnesium composition in the two developmentally different types of dentins by utilizing spatial element composition analysis (LIBS). Therefore, variations in dentin inner structure and element composition are the outcome of different developmental history initiated from the very beginning of tooth development. Taken together, our results elucidate the different effects of dental epithelium, during crown and root formation on adjacent odontoblasts and the possible role of Wnt signalling which together results in formation of dentin of different quality. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Magdalena Kolouskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Prochazka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Vladislav Rakultsev
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcos Gonzalez-Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Klara Steklikova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jozef Kaiser
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Pavel Pořízka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mina Mina
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
13
|
Wang K, Ren Y, Lin S, Jing Y, Ma C, Wang J, Yuan XB, Han X, Zhao H, Wang Z, Zheng M, Xiao Y, Chen L, Olsen BR, Feng JQ. Osteocytes but not osteoblasts directly build mineralized bone structures. Int J Biol Sci 2021; 17:2430-2448. [PMID: 34326685 PMCID: PMC8315029 DOI: 10.7150/ijbs.61012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
Bone-forming osteoblasts have been a cornerstone of bone biology for more than a century. Most research toward bone biology and bone diseases center on osteoblasts. Overlooked are the 90% of bone cells, called osteocytes. This study aims to test the hypothesis that osteocytes but not osteoblasts directly build mineralized bone structures, and that defects in osteocytes lead to the onset of hypophosphatemia rickets. The hypothesis was tested by developing and modifying multiple imaging techniques, including both in vivo and in vitro models plus two types of hypophosphatemia rickets models (Dmp1-null and Hyp, Phex mutation mice), and Dmp1-Cre induced high level of β-catenin models. Our key findings were that osteocytes (not osteoblasts) build bone similar to the construction of a high-rise building, with a wire mesh frame (i.e., osteocyte dendrites) and cement (mineral matrices secreted from osteocytes), which is a lengthy and slow process whose mineralization direction is from the inside toward the outside. When osteoblasts fail to differentiate into osteocytes but remain highly active in Dmp-1-null or Hyp mice, aberrant and poor bone mineralization occurs, caused by a sharp increase in Wnt-β-catenin signaling. Further, the constitutive expression of β-catenin in osteocytes recaptures a similar osteomalacia phenotype as shown in Dmp1 null or Hyp mice. Thus, we conclude that osteocytes directly build bone, and osteoblasts with a short life span serve as a precursor to osteocytes, which challenges the existing dogma.
Collapse
Affiliation(s)
- Ke Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Yinshi Ren
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219 USA
| | - Shuxian Lin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, 200092, China
| | - Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Chi Ma
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219 USA
| | - Jun Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - X Baozhi Yuan
- Angitia Biopharmaceuticals, Guangzhou, 510000, China
| | - Xianglong Han
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hu Zhao
- Department of Restorative Dentistry, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Minghao Zheng
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, 6009, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Bjorn Reino Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
14
|
Chen S, Jing J, Yuan Y, Feng J, Han X, Wen Q, Ho TV, Lee C, Chai Y. Runx2+ Niche Cells Maintain Incisor Mesenchymal Tissue Homeostasis through IGF Signaling. Cell Rep 2021; 32:108007. [PMID: 32783935 PMCID: PMC7461627 DOI: 10.1016/j.celrep.2020.108007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023] Open
Abstract
Stem cell niches provide a microenvironment to support the self-renewal and multi-lineage differentiation of stem cells. Cell-cell interactions within the niche are essential for maintaining tissue homeostasis. However, the niche cells supporting mesenchymal stem cells (MSCs) are largely unknown. Using single-cell RNA sequencing, we show heterogeneity among Gli1+ MSCs and identify a subpopulation of Runx2+/Gli1+ cells in the adult mouse incisor. These Runx2+/Gli1+ cells are strategically located between MSCs and transit-amplifying cells (TACs). They are not stem cells but help to maintain the MSC niche via IGF signaling to regulate TAC proliferation, differentiation, and incisor growth rate. ATAC-seq and chromatin immunoprecipitation reveal that Runx2 directly binds to Igfbp3 in niche cells. This Runx2-mediated IGF signaling is crucial for regulating the MSC niche and maintaining tissue homeostasis to support continuous growth of the adult mouse incisor, providing a model for analysis of the molecular regulation of the MSC niche.
Collapse
Affiliation(s)
- Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Chelsea Lee
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
15
|
Jing D, Li C, Yao K, Xie X, Wang P, Zhao H, Feng JQ, Zhao Z, Wu Y, Wang J. The vital role of Gli1 + mesenchymal stem cells in tissue development and homeostasis. J Cell Physiol 2021; 236:6077-6089. [PMID: 33533019 DOI: 10.1002/jcp.30310] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 02/05/2023]
Abstract
The hedgehog (Hh) signaling pathway plays an essential role in both tissue development and homeostasis. Glioma-associated oncogene homolog 1 (Gli1) is one of the vital transcriptional factors as well as the direct target gene in the Hh signaling pathway. The cells expressing the Gli1 gene (Gli1+ cells) have been identified as mesenchymal stem cells (MSCs) that are responsible for various tissue developments, homeostasis, and injury repair. This review outlines some recent discoveries on the crucial roles of Gli1+ MSCs in the development and homeostasis of varieties of hard and soft tissues.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Zhao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Wang J, Jiang Y, Xie X, Zhang S, Xu C, Zhou Y, Feng JQ. The identification of critical time windows of postnatal root elongation in response to Wnt/β-catenin signaling. Oral Dis 2020; 28:442-451. [PMID: 33314501 DOI: 10.1111/odi.13753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES In this study, we attempted to define the precise window of time for molar root elongation using a gain-of-function mutation of β-catenin model. MATERIALS AND METHODS Both the control and constitutively activated β-catenin (CA-β-cat) mice received a one-time tamoxifen administration (for activation of β-catenin at newborn, postnatal day 3, or 5, or 7, or 9) and were harvested at the same stage of P21. Multiple approaches were used to define the window of time of postnatal tooth root formation. RESULTS In the early activation groups (tamoxifen induction at newborn, or P3 or P5), there was a lack of molar root elongation in the CA-β-cat mice. When induced at P7, the root length was slightly reduced at P21. However, the root length was essentially the same as that in the control when β-cat activated at P9. This study indicates that root elongation occurs in a narrow time of window, which is highly sensitive to a change of β-catenin levels. Molecular studies showed a drastic decrease in the levels of nuclear factor I-C (NFIC) and osterix (OSX), plus sharp reductions of odontoblast differentiation markers, including Nestin, dentin sialoprotein (DSP), and dentin matrix protein 1 (DMP1) at both mRNA and protein levels. CONCLUSIONS Murine molar root elongation is precisely regulated by the Wnt/β-catenin signaling within a narrow window of time (newborn to day 5).
Collapse
Affiliation(s)
- Jun Wang
- Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yong Jiang
- Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xudong Xie
- Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunmei Xu
- Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yinghong Zhou
- Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Jian Q Feng
- Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
17
|
Stem cell properties of Gli1-positive cells in the periodontal ligament. J Oral Biosci 2020; 62:299-305. [DOI: 10.1016/j.job.2020.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/14/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
|
18
|
Shuhaibar N, Hand AR, Terasaki M. Odontoblast processes of the mouse incisor are plates oriented in the direction of growth. Anat Rec (Hoboken) 2020; 304:1820-1827. [PMID: 33190419 PMCID: PMC8359275 DOI: 10.1002/ar.24570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
Odontoblast processes are thin cytoplasmic projections that extend from the cell body at the periphery of the pulp toward the dentin-enamel junction. The odontoblast processes function in the secretion, assembly and mineralization of dentin during development, participate in mechanosensation, and aid in dentin repair in mature teeth. Because they are small and densely arranged, their three-dimensional organization is not well documented. To gain further insight into how odontoblast processes contribute to odontogenesis, we used serial section electron microscopy and three-dimensional reconstructions to examine these processes in the predentin region of mouse molars and incisors. In molars, the odontoblast processes are tubular with a diameter of ~1.8 μm. The odontoblast processes near the incisor tip are similarly shaped, but those midway between the tip and apex are shaped like plates. The plates are radially aligned and longitudinally oriented with respect to the growth axis of the incisor. The thickness of the plates is approximately the same as the diameter of molar odontoblast processes. The plates have an irregular edge; the average ratio of width (midway in the predentin) to thickness is 2.3 on the labial side and 3.6 on the lingual side. The plate geometry seems likely to be related to the continuous growth of the incisor and may provide a clue as to the mechanisms by which the odontoblast processes are involved in tooth development.
Collapse
Affiliation(s)
- Ninna Shuhaibar
- Department of Cell Biology, University of Connecticut Health, Farmington, Connecticut, USA
| | - Arthur R Hand
- Department of Cell Biology, University of Connecticut Health, Farmington, Connecticut, USA.,Division of Craniofacial Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
19
|
Hosoya A, Shalehin N, Takebe H, Shimo T, Irie K. Sonic Hedgehog Signaling and Tooth Development. Int J Mol Sci 2020; 21:ijms21051587. [PMID: 32111038 PMCID: PMC7084732 DOI: 10.3390/ijms21051587] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is a secreted protein with important roles in mammalian embryogenesis. During tooth development, Shh is primarily expressed in the dental epithelium, from initiation to the root formation stages. A number of studies have analyzed the function of Shh signaling at different stages of tooth development and have revealed that Shh signaling regulates the formation of various tooth components, including enamel, dentin, cementum, and other soft tissues. In addition, dental mesenchymal cells positive for Gli1, a downstream transcription factor of Shh signaling, have been found to have stem cell properties, including multipotency and the ability to self-renew. Indeed, Gli1-positive cells in mature teeth appear to contribute to the regeneration of dental pulp and periodontal tissues. In this review, we provide an overview of recent advances related to the role of Shh signaling in tooth development, as well as the contribution of this pathway to tooth homeostasis and regeneration.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
- Correspondence: ; Tel.: +81-133-23-1938; Fax: +81-133-23-1236
| | - Nazmus Shalehin
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| |
Collapse
|