1
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Song Y, Kelava L, Kiss I. MiRNAs in Lung Adenocarcinoma: Role, Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2023; 24:13302. [PMID: 37686110 PMCID: PMC10487838 DOI: 10.3390/ijms241713302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has emerged as a significant public health challenge and remains the leading cause of cancer-related mortality worldwide. Among various types of lung malignancies, lung adenocarcinoma (LUAD) stands as the most prevalent form. MicroRNAs (miRNAs) play a crucial role in gene regulation, and their involvement in cancer has been extensively explored. While several reviews have been published on miRNAs and lung cancer, there remains a gap in the review regarding miRNAs specifically in LUAD. In this review, we not only highlight the potential diagnostic, prognostic, and therapeutic implications of miRNAs in LUAD, but also present an inclusive overview of the extensive research conducted on miRNAs in this particular context.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti Str. 12, 7624 Pécs, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Ortega-Campos SM, García-Heredia JM. The Multitasker Protein: A Look at the Multiple Capabilities of NUMB. Cells 2023; 12:333. [PMID: 36672267 PMCID: PMC9856935 DOI: 10.3390/cells12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
NUMB, a plasma membrane-associated protein originally described in Drosophila, is involved in determining cell function and fate during early stages of development. It is secreted asymmetrically in dividing cells, with one daughter cell inheriting NUMB and the other inheriting its antagonist, NOTCH. NUMB has been proposed as a polarizing agent and has multiple functions, including endocytosis and serving as an adaptor in various cellular pathways such as NOTCH, Hedgehog, and the P53-MDM2 axis. Due to its role in maintaining cellular homeostasis, it has been suggested that NUMB may be involved in various human pathologies such as cancer and Alzheimer's disease. Further research on NUMB could aid in understanding disease mechanisms and advancing the field of personalized medicine and the development of new therapies.
Collapse
Affiliation(s)
- Sara M. Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Mayani H, Chávez-González A, Vázquez-Santillan K, Contreras J, Guzman ML. Cancer Stem Cells: Biology and Therapeutic Implications. Arch Med Res 2022; 53:770-784. [PMID: 36462951 DOI: 10.1016/j.arcmed.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
It is well recognized that most cancers derive and progress from transformation and clonal expansion of a single cell that possesses stem cell properties, i.e., self-renewal and multilineage differentiation capacities. Such cancer stem cells (CSCs) are usually present at very low frequencies and possess properties that make them key players in tumor development. Indeed, besides having the ability to initiate tumor growth, CSCs drive tumor progression and metastatic dissemination, are resistant to most cancer drugs, and are responsible for cancer relapse. All of these features make CSCs attractive targets for the development of more effective oncologic treatments. In the present review article, we have summarized recent advances in the biology of CSCs, including their identification through their immunophenotype, and their physiology, both in vivo and in vitro. We have also analyzed some molecular markers that might become targets for developing new therapies aiming at hampering CSCs regeneration and cancer relapse.
Collapse
Affiliation(s)
- Hector Mayani
- Unidad de Investigaci..n en Enfermedades Oncol..gicas, Hospital de Oncolog.ía, Centro M..dico Nacional SXXI, Instituto Mexicano del Seguro Social. Ciudad de M..xico, M..xico.
| | - Antonieta Chávez-González
- Unidad de Investigaci..n en Enfermedades Oncol..gicas, Hospital de Oncolog.ía, Centro M..dico Nacional SXXI, Instituto Mexicano del Seguro Social. Ciudad de M..xico, M..xico
| | | | - Jorge Contreras
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Monica L Guzman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Lan H, Zou M, Zhu F, Chen H, Wang T, Huang X. Pro‐angiogenic role of
ZEB1
in skin wound healing by upregulating
VEGFA
via
microRNA
‐206 suppression. Exp Dermatol 2022; 31:1392-1401. [PMID: 35570385 DOI: 10.1111/exd.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Hongwei Lan
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| | - Meilin Zou
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| | - Furong Zhu
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| | - Hongping Chen
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| | - Tingting Wang
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| | - Xinling Huang
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| |
Collapse
|
6
|
Luo J, Liu Y, Liu P, Lai Z, Wu H. Data Integration Using Tensor Decomposition for The Prediction of miRNA-Disease Associations. IEEE J Biomed Health Inform 2021; 26:2370-2378. [PMID: 34748505 DOI: 10.1109/jbhi.2021.3125573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dysfunction of miRNAs has an important relationship with diseases by impacting their target genes. Identifying disease-related miRNAs is of great significance to prevent and treat diseases. Integrating information of genes related miRNAs and/or diseases in calculational methods for miRNA-disease association studies is meaningful because of the complexity of biological mechanisms. Therefore, in this study, we propose a novel method based on tensor decomposition, termed TDMDA, to integrate multi-type data for identifying pathogenic miRNAs. First, we construct a three-order association tensor to express the associations of miRNA-disease pairs, the associations of miRNA-gene pairs, and the associations of gene-disease pairs simultaneously. Then, a tensor decomposition-based method with auxiliary information is applied to reconstruct the association tensor for predicting miRNA-disease associations, and the auxiliary information includes biological similarity information and adjacency information. The performance of TDMDA is compared with other advanced methods under 5-fold cross-validations. The experimental results indicate the TDMDA is a competitive method.
Collapse
|
7
|
Li X, Gao Y, Tian F, Du R, Yuan Y, Li P, Liu F, Wang C. miR-31 promotes neural stem cell proliferation and restores motor function after spinal cord injury. Exp Biol Med (Maywood) 2021; 246:1274-1286. [PMID: 33715531 PMCID: PMC8371310 DOI: 10.1177/1535370221997071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/01/2021] [Indexed: 01/17/2023] Open
Abstract
This study aims to examine whether miR-31 promotes endogenous NSC proliferation and be used for spinal cord injury management. In the present study, the morpholino knockdown of miR-31 induced abnormal neuronal apoptosis in zebrafish, resulting in impaired development of the tail. miR-31 agomir transfection in NSCs increased Nestin expression and decreased ChAT and GFAP expression levels. miR-31 induced the proliferation of mouse NSCs by upregulating the Notch signaling pathway, and more NSCs entered G1; Notch was inhibited by miR-31 inactivation. Injection of a miR-31 agomir into mouse models of spinal cord injury could effectively restore motor functions after spinal cord injury, which was achieved by promoting the proliferation of endogenous NSCs. After the injection of a miR-31 agomir in spinal cord injury mice, the expression of Nestin and GFAP increased, while GFAP expression decreased. In conclusion, the zebrafish experiments prove that a lack of miR-31 will block nervous system development. In spinal cord injury mouse models, miR-31 overexpression might promote spinal cord injury repair.
Collapse
Affiliation(s)
- Xiao Li
- Laboratory Animal Research Center of Shanxi Medical University, Shanxi Key Laboratory of Animal and Animal Model of Human Diseases, Taiyuan 030001, China
| | - Yuantao Gao
- Queen Mary School, Nanchang University, Nanchang 330000, China
| | - Feng Tian
- Laboratory Animal Research Center of Shanxi Medical University, Shanxi Key Laboratory of Animal and Animal Model of Human Diseases, Taiyuan 030001, China
| | - Ruochen Du
- Laboratory Animal Research Center of Shanxi Medical University, Shanxi Key Laboratory of Animal and Animal Model of Human Diseases, Taiyuan 030001, China
| | - Yitong Yuan
- Laboratory Animal Research Center of Shanxi Medical University, Shanxi Key Laboratory of Animal and Animal Model of Human Diseases, Taiyuan 030001, China
| | - Pengfei Li
- Laboratory Animal Research Center of Shanxi Medical University, Shanxi Key Laboratory of Animal and Animal Model of Human Diseases, Taiyuan 030001, China
| | - Fang Liu
- Laboratory Animal Research Center of Shanxi Medical University, Shanxi Key Laboratory of Animal and Animal Model of Human Diseases, Taiyuan 030001, China
| | - Chunfang Wang
- Laboratory Animal Research Center of Shanxi Medical University, Shanxi Key Laboratory of Animal and Animal Model of Human Diseases, Taiyuan 030001, China
| |
Collapse
|
8
|
Zheng L, Song J, Tang R, Chen X, Wang L, Wu D, Cen H, Shi L. MicroRNA‑524‑5p regulates the proliferation and invasion of HTR‑8/SVneo trophoblasts by targeting NUMB in the Notch signaling pathway. Mol Med Rep 2021; 23:436. [PMID: 33846809 PMCID: PMC8060792 DOI: 10.3892/mmr.2021.12075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Preeclampsia is a pregnancy disorder that is primarily associated with maternal and neonatal or fetal morbidity and mortality. The discovery of dysregulated microRNAs (miRs) and their roles in preeclampsia has provided new insight into the mechanisms involved in pregnancy‑related disorders. In the present study, quantitative PCR demonstrated that the expression levels of miR‑524‑5p were lower in patients with preeclampsia than those in normal pregnant women. Cell Counting Kit‑8 and Transwell assays indicated that overexpression of miR‑524‑5p promoted the proliferation and invasion of HTR‑8/SVneo cells, whereas inhibition of miR‑524‑5p suppressed HTR‑8/SVneo cell proliferation and invasion. Furthermore, NUMB endocytic adaptor protein (NUMB), a negative regulator of the Notch signaling pathway and a target gene of miR‑524‑5p, limited the effects of miR‑524‑5p on HTR‑8/SVneo cell invasion and migration. The present study demonstrated that miR‑524‑5p regulated the proliferation and invasion of HTR‑8/SVneo cells at least partly by targeting NUMB to regulate the Notch signaling pathway.
Collapse
Affiliation(s)
- Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Jie Song
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Rong Tang
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Xiaoju Chen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Li Wang
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Dongcai Wu
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Hui Cen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Lei Shi
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
9
|
Autophagy augments the self-renewal of lung cancer stem cells by the degradation of ubiquitinated p53. Cell Death Dis 2021; 12:98. [PMID: 33468994 PMCID: PMC7815724 DOI: 10.1038/s41419-021-03392-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
It has been postulated that cancer stem cells (CSCs) are involved in all aspects of human cancer, although the mechanisms governing the regulation of CSC self-renewal in the cancer state remain poorly defined. In the literature, both the pro- and anti-oncogenic activities of autophagy have been demonstrated and are context-dependent. Mounting evidence has shown augmentation of CSC stemness by autophagy, yet mechanistic characterization and understanding are lacking. In the present study, by generating stable human lung CSC cell lines with the wild-type TP53 (A549), as well as cell lines in which TP53 was deleted (H1229), we show, for the first time, that autophagy augments the stemness of lung CSCs by degrading ubiquitinated p53. Furthermore, Zeb1 is required for TP53 regulation of CSC self-renewal. Moreover, TCGA data mining and analysis show that Atg5 and Zeb1 are poor prognostic markers of lung cancer. In summary, this study has elucidated a new CSC-based mechanism underlying the oncogenic activity of autophagy and the tumor suppressor activity of p53 in cancer, i.e., CSCs can exploit the autophagy-p53-Zeb1 axis for self-renewal, oncogenesis, and progression.
Collapse
|
10
|
Li P, Gao Y, Li X, Tian F, Wang F, Wang Y, Zhao B, Zhang R, Wang C. mRNA and miRNA expression profile reveals the role of miR-31 overexpression in neural stem cell. Sci Rep 2020; 10:17537. [PMID: 33067542 PMCID: PMC7568549 DOI: 10.1038/s41598-020-74541-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
A detailed understanding of the character and differentiation mechanism of neural stem cells (NSCs) will help us to effectively utilize their transplantation to treat spinal cord injury. In previous studies, we found that compared with motor neurons (MNs), miR-31 was significantly high-expressed in NSCs and might play an important role in the proliferation of NSCs and the differentiation into MNs. To better understand the role of miR-31, we characterized the mRNA and miRNAs expression profiles in the early stage of spinal cord-derived NSCs after miR-31 overexpression. There were 35 mRNAs and 190 miRNAs differentially expressed between the miR-31 overexpression group and the control group. Compared with the control group, both the up-regulated mRNAs and miRNAs were associated with the stemness maintenance of NSCs and inhibited their differentiation, especially to MNs, whereas the down-regulated had the opposite effect. Further analysis of the inhibition of miR-31 in NSCs showed that interfering with miR-31 could increase the expression of MNs-related genes and produce MNs-like cells. All these indicated that miR-31 is a stemness maintenance gene of NSCs and has a negative regulatory role in the differentiation of NSCs into MNs. This study deepens our understanding of the role of miR-31 in NSCs, provides an effective candidate target for effectively inducing the differentiation of NSCs into MNs, and lays a foundation for the effective application of NSCs in clinic.
Collapse
Affiliation(s)
- Pengfei Li
- Translational Medicine Research Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China.,Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yuantao Gao
- Nanchang University, Nanchang, 330000, People's Republic of China
| | - Xiao Li
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Feng Tian
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fei Wang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yali Wang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bichun Zhao
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ruxin Zhang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Chunfang Wang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
11
|
Wu Z, Li C, Li Q, Li J, Lu X. Puerarin alleviates cisplatin-induced acute renal damage and upregulates microRNA-31-related signaling. Exp Ther Med 2020; 20:3122-3129. [PMID: 32855680 PMCID: PMC7444337 DOI: 10.3892/etm.2020.9081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cisplatin (DDP) is a commonly used chemotherapy drug; however, the side effects associated with its use, particularly acute kidney injury (AKI), limit its clinical application. Puerarin is a natural flavonoid extracted from the Chinese medical herb Radix puerariae, which has been reported to alleviate DDP-induced nephrotoxicity. However, the mechanisms underlying puerarin regulation on microRNA (miR)-31-mediated signaling pathways in AKI remain unknown. Thus, the present study aimed to investigate the function of puerarin in a DDP-induced AKI rat model via reverse transcription-quantitative PCR and western blot analyses. The results demonstrated that DDP upregulated the levels of miR-31 in a concentration-dependent manner, both in vitro and in vivo. Furthermore, DDP significantly increased blood urea nitrogen and malondialdehyde content, serum creatinine and histopathological changes, while significantly decreasing the expression levels of superoxide dismutase, catalase and glutathione S-transferase in kidney tissues. TUNEL and western blot analyses indicated that DDP increased the expression levels of apoptotic proteins and affected the Numb/Notch1 signaling pathway, which is downstream of miR-31. The effects induced by DDP were counteracted following treatment with puerarin. Taken together, the results of the present study suggest that puerarin exhibits a renal protective effect against DDP-induced AKI by upregulating miR-31 expression and inhibiting the Numb/Notch1 signaling pathway.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chunfeng Li
- Department of Blood Transfusion, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qiang Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250033, P.R. China
| | - Jing Li
- Department of Blood Transfusion, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xin Lu
- Department of Blood Transfusion, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
12
|
Ye T, Li J, Sun Z, Liu D, Zeng B, Zhao Q, Wang J, Xing HR. Cdh1 functions as an oncogene by inducing self-renewal of lung cancer stem-like cells via oncogenic pathways. Int J Biol Sci 2020; 16:447-459. [PMID: 32015681 PMCID: PMC6990901 DOI: 10.7150/ijbs.38672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
The mortality rate of lung cancer remains the highest amongst all cancers despite of new therapeutic developments. While cancer stem cells (CSCs) may play a pivotal role in cancer, mechanisms underlying CSCs self-renewal and their relevance to cancer progression have not been clearly elucidated due to the lack of reliable and stable CSC cellular models. In the present study, we unveiled the novel oncogene function of cadherin 1 (Cdh1) via bioinformatic analysis in a broad spectrum of human cancers including lung adenocarcinoma (LUAD), adding a new dimension to the widely reported tumor suppressor function of Cdh1. Experimentally, we show for the first time that Cdh1 promotes the self-renewal of lung CSCs, consistent with its function in embryonic and normal stem cells. Using the LLC-Symmetric Division (LLC-SD) model, we have revealed an intricate cross-talk between the oncogenic pathway and stem cell pathway in which Cdh1 functions as an oncogene by promoting lung CSC renewal via the activation of the Phosphoinositide 3-kinase (PI3K) and inhibition of Mitogen-activated protein kinase (MAPK) pathways, respectively. In summary, this study has provided evidence demonstrating effective utilization of the normal stem cell renewal mechanisms by CSCs to promote oncogenesis and progression.
Collapse
Affiliation(s)
- Ting Ye
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyuan Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Zhiwei Sun
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Doudou Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Bin Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Qiting Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - H Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China.,College of Biomedical Engineering, State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Li J, Ye T, Liu Y, Kong L, Sun Z, Liu D, Wang J, Xing HR. Transcriptional Activation of Gstp1 by MEK/ERK Signaling Confers Chemo-Resistance to Cisplatin in Lung Cancer Stem Cells. Front Oncol 2019; 9:476. [PMID: 31263672 PMCID: PMC6584806 DOI: 10.3389/fonc.2019.00476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Lung cancer management remains a challenge due to its asymptomatic and late presentation when it is metastatic. The clinical response to the first-line platinum-based chemotherapy in patients with advanced lung cancer is disappointing due to the development of chemoresistance. Chemoresistance is a complex phenomenon. Mechanistic research using experimental models has yielded limited clinical results to help increase understanding for overcoming resistance. While the role of lung CSCs in conferring multidrug resistance has been postulated, experimental evidence remains associative and lacks in depth mechanistic inquisition. In the present study, using mouse and human lung adenocarcinoma cell lines and their respective paired CSC derivative cell lines that we generated, we identified cancer stem cell component of lung adenocarcinoma as the source that confers multidrug resistance phenotype. Mechanistically, Gstp1 confers cisplatin resistance in mouse and human lung CSC models, both in vitro and in vivo. Further, transcriptional activation of Gstp1 expression by MEK/ERK signaling underlies cisplatin resistance in lung CSC cells. Moreover, we show that GSTP1 expression is a poor diagnostic and prognostic marker for human lung adenocarcinoma, thus is of high clinical relevance. Taken together, we have provided mechanistic understanding of the lung CSC in mediating chemoresistance.
Collapse
Affiliation(s)
- Jingyuan Li
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ting Ye
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yongli Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangsheng Kong
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhiwei Sun
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Doudou Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - H Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Medical University and the Ministry of Science and Technology, Chongqing, China
| |
Collapse
|
14
|
Liu D, Xing HR, Liu Y, Sun Z, Ye T, Li J, Wang J. Asymmetric Division Gene Neurl2 Mediates Twist2 Regulation of Self-Renewal of Mouse Lewis Lung Cancer Stem Cells. J Cancer 2019; 10:3381-3388. [PMID: 31293641 PMCID: PMC6603408 DOI: 10.7150/jca.31553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) play an important role in tumor development. While Epithelial-Mesenchymal Transition (EMT) has been shown to promote CSC self-renewal, underlying mechanisms are unclear. Here we identified and characterized the requirement of twist2, the EMT transcription factor, for the regulation of self-renewal thus stemness of mouse Lewis lung CSCs both in vitro and in vivo. Further, we elucidated the role of neurl2, an asymmetric division gene for normal stem cells, in mediating the self-renewal promoting activity of twist2. Moreover, analysis of TCGA showed a positive correlation between the expression of twist2 and the development of lung adenocarcinoma, and a negative correlation between neurl2 and lung adenocarcinoma development. In summary, our study provides a new mechanistic insight of regulation of CSC self-renewal by EMT.
Collapse
Affiliation(s)
- Doudou Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - H Rosie Xing
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing, China
| | - Yongli Liu
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Zhiwei Sun
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ting Ye
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jingyuan Li
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|