1
|
Chen X, Song Y, Tian Y, Dong X, Chang Y, Wang W. miR-149-3p Enhances Drug Sensitivity of AML Cells by Inhibiting Warburg Effect Through PI3K/AKT Pathway. Cell Biochem Biophys 2024; 82:3287-3296. [PMID: 39154128 DOI: 10.1007/s12013-024-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/19/2024]
Abstract
Acute myeloid leukemia (AML) is a kind of heterogeneous hematologic malignancy with high incidence, which is usually treated by intensive and maintenance treatment with large dose of conventional chemotherapy drugs. However, cell resistance is still an unsolved problem. The abnormal expression of miRNAs is closely related to the pathogenesis and progression of AML, and affects the drug resistance of cancer cells. miR-149-3p plays an important role in the resistance of cancer cells to cisplatin, and plays an excellent anti-tumor activity. By studying the function of miR-149-3p, it is expected to find new therapeutic methods to reverse chemotherapy resistance. In order to explore the mechanism of action of miR-149-3p on AML chemotherapeutic drug sensitivity, we explored the relationship between the Warburg effect and AML chemotherapeutic drug resistance. Based on AML cells, transfection of miR-149-3p inhibitor/NC and Warburg effect inhibitor (2DG) and PI3K/AKT pathway inhibitor (LY294002) were used to investigate the mechanism of IFN-γ regulating chemotherapy resistance of AML cells through Warburg effect. Down-regulation of miR-149-3p significantly inhibited drug sensitivity of AML cells. Down-regulation of miR-149-3p significantly promoted proliferation and invasion of AML cells while inhibiting apoptosis by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax. Down-regulation of miR-149-3p significantly promoted the expression of Warburg effect-related proteins hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), and Glucose transporter 1 (GLUT1), glucose consumption, lactic acid, and intracellular ATP production. After inhibiting the Warburg effect with 2DG, the effect of miR-149-3p was inhibited, suggesting that upregulation of miR-149-3p reversed AML cell resistance by inhibiting the Warburg effect. In addition, miR-149-3p interacted with AKT1. Down-regulation of miR-149-3p increased the expression of inosine phosphate 3 kinase (PI3K), protein kinase B (AKT), and multi-drug resistance protein (MDR1). LY294002 inhibited the expression of these proteins, and down-regulation of miR-149-3p reversed the effect of LY294002 and improved the drug resistance of cells. Upregulation of miR-149-3p expression may potentially be a therapeutic target for AML resistance. It has been shown to inhibit PI3K/AKT pathway activation, thereby inhibiting the Warburg effect, and affecting cell proliferation, apoptosis, and drug resistance.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Signal Transduction/drug effects
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Apoptosis/drug effects
- Antineoplastic Agents/pharmacology
- Cisplatin/pharmacology
- Warburg Effect, Oncologic/drug effects
- Morpholines/pharmacology
- Hexokinase/metabolism
- Hexokinase/genetics
- Chromones/pharmacology
- HL-60 Cells
Collapse
Affiliation(s)
- Xi Chen
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Song
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaoyao Tian
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiushuai Dong
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuying Chang
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Wang
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Rahmati A, Mafi A, Vakili O, Soleymani F, Alishahi Z, Yahyazadeh S, Gholinezhad Y, Rezaee M, Johnston TP, Sahebkar A. Non-coding RNAs in leukemia drug resistance: new perspectives on molecular mechanisms and signaling pathways. Ann Hematol 2024; 103:1455-1482. [PMID: 37526673 DOI: 10.1007/s00277-023-05383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Alishahi
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
| |
Collapse
|
3
|
Wang R, Li X, Wang J. Butein inhibits oral squamous cell carcinoma growth via promoting MCL-1 ubiquitination. J Cancer 2024; 15:3173-3182. [PMID: 38706892 PMCID: PMC11064257 DOI: 10.7150/jca.94546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 05/07/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant head and neck carcinoma type. Myeloid cell leukemia-1 (MCL-1), an anti-apoptotic BCL-1 protein, has been verified to be among the most highly upregulated pathologic proteins in human cancers linked to tumor relapse, poor prognosis and therapeutic resistance. Herein, therapeutic targeting MCL-1 is an attractive focus for cancer treatment. The present study found that butein, a potential phytochemical compound, exerted profound antitumor effects on OSCC cells. Butein treatment significantly inhibited cell viability, proliferation capacity and colony formation ability, and activated cell apoptotic process. Further potential mechanism investigation showed that promoting MCL-1 ubiquitination and degradation is the major reason for butein-mediated OSCC cell cytotoxicity. Our results uncovered that butein could facilitate E3 ligase FBW7 combined with MCL-1, which contributed to an increase in the ubiquitination of MCL-1 Ub-K48 and degradation. The results of both in vitro cell experiments and in vivo xenograft models imply a critical antitumor function of butein with the well-tolerated feature, and it might be an attractive and promising agent for OSCC treatment.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jidong Wang
- Department of Oral and Maxillofacial Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde City), Changde, Hunan 415000, China
| |
Collapse
|
4
|
Gao J, Li P. Targeting eIF5A2 reduces invasion and reverses chemoresistance in SCC-9 cells in vitro. Histol Histopathol 2024; 39:463-470. [PMID: 37334930 DOI: 10.14670/hh-18-637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND AIMS Eukaryotic translation initiation factor 5A2 (EIF5A2) has been reported to be involved in metastasis and chemotherapy resistance in many human cancers. However, the effect and mechanism of EIF5A2 in oral cancer cells are unknown. Here, we investigated the effects of targeting EIF5A2 on chemotherapy resistance in oral cancer cells in vitro. METHODS By using a lentiviral system, we investigated the effects of targeting EIF5A2 on the invasion, migration, growth, and chemosensitivity of SCC-9 cells to CDDP in vitro. Through the method of gene intervention, we explore the role of pro-apoptotic Bim and epithelial and mesenchymal marker E-cadherin protein in this process and the regulation of EIF5A2 on Bim and E-cadherin. RESULTS Targeting EIF5A2 reduces invasion and migration in SCC-9 cells partly through upregulation of E-cadherin expression; Targeting EIF5A2 promotes cell apoptosis and inhibits cell survival as well as increasing chemosensitivity in SCC-9 cells through upregulation of Bim expression. CONCLUSION EIF5A2 may be a novel potential therapeutic target for oral cancer by upregulation of Bim and E-cadherin.
Collapse
Affiliation(s)
- Jinbo Gao
- Department of Stomatology, Tianjin Third Central Hospital, Hedong District, Tianjin, PR China.
| | - Peng Li
- Department of Stomatology, Tianjin Third Central Hospital, Hedong District, Tianjin, PR China
| |
Collapse
|
5
|
Nopora A, Weidle UH. CircRNAs as New Therapeutic Entities and Tools for Target Identification in Acute Myeloid Leukemia. Cancer Genomics Proteomics 2024; 21:118-136. [PMID: 38423599 PMCID: PMC10905271 DOI: 10.21873/cgp.20434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a genetically extremely heterogeneous disease. Drug resistance after induction therapy is a very frequent event resulting in poor medium survival times. Therefore, the identification of new targets and treatment modalities is a medical high priority issue. We addressed our attention to circular RNAs (circRNAs), which can act as oncogenes or tumor suppressors in AML. We searched the literature (PubMed) and identified eight up-regulated and two down-regulated circ-RNAs with activity in preclinical in vivo models. In addition, we identified twenty-two up-regulated and four down-regulated circRNAs with activity in preclinical in vitro systems, but pending in vivo activity. Up-regulated RNAs are potential targets for si- or shRNA-based approaches, and down-regulated circRNAs can be reconstituted by replacement therapy to achieve a therapeutic benefit in preclinical systems. The up-regulated targets can be tackled with small molecules, antibody-based entities, or other modes of intervention. For down-regulated targets, up-regulators must be identified. The ranking of the identified circRNAs with respect to therapy of AML will depend on further target validation experiments.
Collapse
Affiliation(s)
- Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
6
|
Zhang T, Zhou Y, Guan J, Cheng H. Circ_0058058 Knockdown Inhibits Acute Myeloid Leukemia Progression by Sponging miR-4319 to Regulate EIF5A2 Expression. Cancer Biother Radiopharm 2023; 38:738-748. [PMID: 33470895 DOI: 10.1089/cbr.2020.4170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Circular RNAs (circRNAs) participate in the deterioration of many hominine cancers, including AML. In this study, the authors investigated the role and potential mechanism of circ_0058058 in AML progression. Methods: The expression of circ_0058058, microRNA-4319 (miR-4319), and eukaryotic initiation factor 5A2 (EIF5A2) was determined by quantitative real-time polymerase chain reaction. Cell proliferation, apoptosis, migration, and invasion were evaluated by cell counting kit-8 (CCK-8), cell colony formation, flow cytometry, and transwell assay, respectively. Levels of the relative proteins were detected by Western blot. The connection among circ_0058058, miR-4319, and EIF5A2 was verified by dual-luciferase reporter assay. Results: Circ_0058058 and EIF5A2 were enhanced, whereas miR-4319 was declined in AML. Circ_0058058 knockdown inhibited cell proliferation, migration, and invasion, and facilitated cell apoptosis by targeting miR-4319 in AML cells. Moreover, as a target of miR-4319, EIF5A2 overexpression overturned the inhibitory effects of miR-4319 upregulation on AML progression. Besides, circ_0058058 sponged miR-4319 to upregulate EIF5A2 expression in AML cells. Conclusion: Circ_0058058 knockdown inhibited cell proliferation, migration, and invasion, but accelerated cell apoptosis by reducing EIF5A2 expression by targeting miR-4319, suggesting that circ_0058058 could be a therapeutic target for the treatment of AML.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Ying Zhou
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Jun Guan
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Hui Cheng
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
7
|
Xie Y, Tan L, Wu K, Li D, Li C. MiR-455-3p mediates PPARα through UBN2 to promote apoptosis and autophagy in acute myeloid leukemia cells. Exp Hematol 2023; 128:77-88. [PMID: 37805161 DOI: 10.1016/j.exphem.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Acute myeloid leukemia (AML) is one of the deadliest hematologic malignancies, and its targeted therapy has developed slowly. The molecular mechanism of the pathophysiology of the disease remains to be clarified. The aim of our study was to probe the specific regulatory mechanism of miR-455-3p in AML. This study measured the levels of miR-455-3p and ubinuclein-2 (UBN2) in AML cell lines, evaluated cell viability with CCK-8, used flow cytometry to estimate the cell cycle and apoptosis, detected cell apoptosis and autophagy-related protein levels by Western blotting, and added 50 μM chloroquine (CQ) to evaluate the relationship between autophagy and AML. In animal experiments, HL-60 cells were injected into male non-obese diabetic/severe combined immunodeficiency disease (NOD/SCID) mice through the tail vein to determine survival time and observe the degree of liver and spleen damage in the mice. miR-455-3p was prominently reduced in the peripheral blood and AML cell lines, and UBN2 showed high expression. The transfected miR-455-3p mimic effectively restrained the activity of AML cells, whereas overexpression of UBN2 or the addition of the autophagy inhibitor CQ reversed the effect of miR-455-3p. The interaction between UBN2 and peroxisome proliferator-activated receptor alpha (PPARα) was confirmed by coimmunoprecipitation, and overexpression of PPARα reversed the promoting effect of UBN2 knockdown on apoptosis and autophagy in AML cells. In conclusion, miR-455-3p mediates PPARα protein expression through UBN2, exacerbating AML cell apoptosis and autophagy. This study found that miR-455-3p plays an important role in AML cell apoptosis and autophagy, which may provide novel insights for the treatment of AML diseases.
Collapse
Affiliation(s)
- Yu Xie
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lin Tan
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kun Wu
- Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Deyun Li
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chengping Li
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
8
|
Chen K, Xu J, Tong YL, Yan JF, Pan Y, Wang WJ, Zheng L, Zheng XX, Hu C, Hu X, Shen X, Chen W. Rab31 promotes metastasis and cisplatin resistance in stomach adenocarcinoma through Twist1-mediated EMT. Cell Death Dis 2023; 14:115. [PMID: 36781842 PMCID: PMC9925739 DOI: 10.1038/s41419-023-05596-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023]
Abstract
Stomach adenocarcinoma (STAD) is one of the leading causes of cancer-related death globally. Metastasis and drug resistance are two major causes of failures in current chemotherapy. Here, we found that the expression of Ras-related protein 31 (Rab31) is upregulated in human STAD tissues and high expression of Rab31 is closely associated with poor survival time. Furthermore, we revealed that Rab31 promotes cisplatin resistance and metastasis in human STAD cells. Reduced Rab31 expression induces tumor cell apoptosis and increases cisplatin sensitivity in STAD cells; Rab31 overexpression yielded the opposite result. Rab31 silencing prevented STAD cell migration, whereas the overexpression of Rab31 increased the metastatic potential. Further work showed that Rab31 mediates cisplatin resistance and metastasis via epithelial-mesenchymal transition (EMT) pathway. In addition, we found that both Rab31 overexpression and cisplatin treatment results in increased Twist1 expression. Depletion of Twist1 enhances sensitivity to cisplatin in STAD cells, which cannot be fully reversed by Rab31 overexpression. Rab31 could activate Twist1 by activating Stat3 and inhibiting Mucin 1 (MUC-1). The present study also demonstrates that Rab31 knockdown inhibited tumor growth in mice STAD models. These findings indicate that Rab31 is a novel and promising biomarker and potential therapeutic target for diagnosis, treatment and prognosis prediction in STAD patients. Our data not only identifies a novel Rab31/Stat3/MUC-1/Twist1/EMT pathway in STAD metastasis and drug resistance, but it also provides direction for the exploration of novel strategies to predict and treat STAD in the future.
Collapse
Affiliation(s)
- Ke Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China
| | - Ji Xu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Yu-Ling Tong
- Department of General Practice, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jia-Fei Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China
| | - Yu Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China
| | - Wei-Jia Wang
- Department of Pharmacy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, Zhejiang Province, China
| | - Li Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Xiao-Xiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Can Hu
- Department of Gastric Surgery, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang Province, China
| | - Xiu Hu
- Department of Pharmacy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, Zhejiang Province, China.
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China.
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China.
| |
Collapse
|
9
|
Sucha S, Sorf A, Svoren M, Vagiannis D, Ahmed F, Visek B, Ceckova M. ABCB1 as a potential beneficial target of midostaurin in acute myeloid leukemia. Biomed Pharmacother 2022; 150:112962. [PMID: 35462331 DOI: 10.1016/j.biopha.2022.112962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Low curability of patients diagnosed with acute myeloid leukemia (AML) must be seen as a call for better understanding the disease's mechanisms and improving the treatment strategy. Therapeutic outcome of the crucial anthracycline-based induction therapy often can be compromised by a resistant phenotype associated with overexpression of ABCB1 transporters. Here, we evaluated clinical relevance of ABCB1 in a context of the FMS-like tyrosine kinase 3 (FLT3) inhibitor midostaurin in a set of 28 primary AML samples. ABCB1 gene expression was absolutely quantified, confirming its association with CD34 positivity, adverse cytogenetic risk, and unachieved complete remission (CR). Midostaurin, identified as an ABCB1 inhibitor, increased anthracycline accumulation in peripheral blood mononuclear cells (PBMC) of CD34+ AML patients and those not achieving CR. This effect was independent of FLT3 mutation, indicating even FLT3- AML patients might benefit from midostaurin therapy. In line with these data, midostaurin potentiated proapoptotic processes in ABCB1-overexpressing leukemic cells when combined with anthracyclines. Furthermore, we report a direct linkage of miR-9 to ABCB1 efflux activity in the PBMC and propose miR-9 as a useful prognostic marker in AML. Overall, we highlight the therapeutic value of midostaurin as more than just a FLT3 inhibitor, suggesting its maximal therapeutic outcomes might be very sensitive to proper timing and well-optimized dosage schemes based upon patient's characteristics, such as CD34 positivity and ABCB1 activity. Moreover, we suggest miR-9 as a predictive ABCB1-related biomarker that could be immensely helpful in identifying ABCB1-resistant AML phenotype to enable optimized therapeutic regimen and improved treatment outcome.
Collapse
Affiliation(s)
- Simona Sucha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Ales Sorf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Martin Svoren
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Dimitrios Vagiannis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Fahda Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Benjamin Visek
- 4th Department of Internal Medicine - Hematology, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Implication of microRNAs in Carcinogenesis with Emphasis on Hematological Malignancies and Clinical Translation. Int J Mol Sci 2022; 23:ijms23105838. [PMID: 35628648 PMCID: PMC9143361 DOI: 10.3390/ijms23105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs, that are involved in the multistep process of carcinogenesis, contributing to all established hallmarks of cancer. In this review, implications of miRNAs in hematological malignancies and their clinical utilization fields are discussed. As components of the complex regulatory network of gene expression, influenced by the tissue microenvironment and epigenetic modifiers, miRNAs are “micromanagers” of all physiological processes including the regulation of hematopoiesis and metabolic pathways. Dysregulated miRNA expression levels contribute to both the initiation and progression of acute leukemias, the metabolic reprogramming of malignantly transformed hematopoietic precursors, and to the development of chemoresistance. Since they are highly stable and can be easily quantified in body fluids and tissue specimens, miRNAs are promising biomarkers for the early detection of hematological malignancies. Besides novel opportunities for differential diagnosis, miRNAs can contribute to advanced chemoresistance prediction and prognostic stratification of acute leukemias. Synthetic oligonucleotides and delivery vehicles aim the therapeutic modulation of miRNA expression levels. However, major challenges such as efficient delivery to specific locations, differences of miRNA expression patterns between pediatric and adult hematological malignancies, and potential side effects of miRNA-based therapies should be considered.
Collapse
|
11
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
12
|
Wang W, Liu J, Chen K, Wang J, Dong Q, Xie J, Yuan Y. Vitamin D promotes autophagy in AML cells by inhibiting miR-17-5p-induced Beclin-1 overexpression. Mol Cell Biochem 2021; 476:3951-3962. [PMID: 34185245 DOI: 10.1007/s11010-021-04208-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/14/2021] [Indexed: 11/24/2022]
Abstract
MicroRNA (miR)-17-5p has been investigated in many diseases as a regulator of disease progression and is highly expressed in acute myeloid leukemia (AML). However, potential mechanisms underlying the function of miR-17-5p in AML need more elucidation. MiR-17-5p expression was augmented, while 25(OH)D3 and Beclin-1 levels were decreased in AML patients with the highest risk for disease progression. MiR-17-5p, 25(OH)D3 and Beclin-1 were determined to be clinically important in AML based on ROC curve analysis. Higher miR-17-5p expression as well as lower 25(OH)D3 and Beclin-1 expression were relevant with poor prognosis in AML. In addition, miR-17-5p was negatively correlated with and bound to BECN1. Vitamin D was found to diminish cell proliferation and enhance autophagy. Finally, through rescue assays, miR-17-5p facilitated the ability of cell proliferation, inhibited autophagy and apoptosis by modulating Beclin-1 in HL-60 cells following the treatment of 4 μM vitamin D. Vitamin D promoted autophagy in AML cells by modulating miR-17-5p and Beclin-1.
Collapse
Affiliation(s)
- Weijia Wang
- Department of Laboratory Diagnosis, Zhongshan People's Hospital, No. 2, Sunwen East Road, Zhongshan City, 528403, Guangdong, China
| | - Jing Liu
- Ethics Committee, Zhongshan People's Hospital, Zhongshan City, 528403, Guangdong, China
| | - Kang Chen
- Department of Laboratory Diagnosis, Zhongshan People's Hospital, No. 2, Sunwen East Road, Zhongshan City, 528403, Guangdong, China
| | - Juan Wang
- Department of Laboratory Diagnosis, Zhongshan People's Hospital, No. 2, Sunwen East Road, Zhongshan City, 528403, Guangdong, China
| | - Qian Dong
- Department of Laboratory Diagnosis, Zhongshan People's Hospital, No. 2, Sunwen East Road, Zhongshan City, 528403, Guangdong, China
| | - Jinye Xie
- Department of Laboratory Diagnosis, Zhongshan People's Hospital, No. 2, Sunwen East Road, Zhongshan City, 528403, Guangdong, China
| | - Yong Yuan
- Department of Laboratory Diagnosis, Zhongshan People's Hospital, No. 2, Sunwen East Road, Zhongshan City, 528403, Guangdong, China.
| |
Collapse
|
13
|
Wang G, Yu X, Xia J, Sun J, Huang H, Liu Y. MicroRNA-9 restrains the sharp increase and boost apoptosis of human acute myeloid leukemia cells by adjusting the Hippo/YAP signaling pathway. Bioengineered 2021; 12:2906-2914. [PMID: 34167441 PMCID: PMC8806226 DOI: 10.1080/21655979.2021.1915727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) play a very important role in the development of acute myeloid leukemia (AML). This study focuses on the effects of miR-9 on the regulation of AML cells and their related signaling pathways. We found that the expression of miR-9 was significantly decreased in four AML cell lines (THP-1, HL-60, TF-1 and KG-1) compared with the human normal bone marrow cells (HS-5). Moreover, miR-9 overexpression inhibited HL-60 cell proliferation ability, and promoted apoptosis. However, interfering with miR-9 expression promoted the proliferation of HL-6 cells and inhibited apoptosis. Western blotting results subsequently showed that overexpression of miR-9 could elevate the expression of MAT1, LATS1, and LATS2 in HL-60 cells, and inhibit the expression of YAP, while the interference with miR-9 had the opposite result. Taken together, miR-9 may act as a tumor suppressor by activating the Hippo/YAP signaling pathway of AML cells, which in this way supply ideas for the clinical remedy of AML patients.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Xiuwen Yu
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Jiajia Xia
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Jie Sun
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Haiyan Huang
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| | - Yeqiong Liu
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated to Shanghai Health Medical College, Shanghai, China
| |
Collapse
|
14
|
Panina SB, Pei J, Kirienko NV. Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer Metab 2021; 9:17. [PMID: 33883040 PMCID: PMC8058979 DOI: 10.1186/s40170-021-00253-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to metabolic vulnerabilities in AML cells that may present viable treatment targets. These include mtDNA, dependency on oxidative phosphorylation, mitochondrial metabolism, and pro-survival signaling, as well as reactive oxygen species generation and mitochondrial dynamics. Moreover, some mitochondria-targeting chemotherapeutics and their combinations with other compounds have been FDA-approved for AML treatment. Here, we review recent studies that illuminate the effects of drugs and synergistic drug combinations that target diverse biomolecules and metabolic pathways related to mitochondria and their promise in experimental studies, clinical trials, and existing chemotherapeutic regimens.
Collapse
Affiliation(s)
| | - Jingqi Pei
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
15
|
Li ZJ, Cheng J, Song Y, Li HH, Zheng JF. LncRNA SNHG5 upregulation induced by YY1 contributes to angiogenesis via miR-26b/CTGF/VEGFA axis in acute myelogenous leukemia. J Transl Med 2021; 101:341-352. [PMID: 33318617 DOI: 10.1038/s41374-020-00519-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/09/2022] Open
Abstract
Acute myelogenous leukemia (AML) is the most common acute leukemia in adults. Despite great progress has been made in this field, the pathogenesis of AML is still not fully understood. We report here the biological role of lncRNA small nucleolar RNA host gene 5 (SNHG5) in the pathogenesis of AML and the underlying mechanisms. The results showed that lncRNA SNHG5 was highly expressed in AML cancer cell lines. In vitro studies displayed that inhibition of SNHG5 with shRNA resulted in suppression of survival, cell cycle progression, migration/invasion of AML and capacity of adhesion and angiogenesis in human umbilical vein endothelial cells. Mechanistic studies revealed a SNHG5/miR-26b/connective tissue growth factor (CTGF)/vascular endothelial growth factor A (VEGFA) axis in the regulation of AML angiogenesis. Finally, Yin Yang 1 (YY1) was found to transactivate and interact with SNHG5 promoter, leading to the upregulation of SNHG5 in AML. Collectively, upregulation of lncRNA SNHG5 mediated by YY1, activates CTGF/VEGFA via targeting miR-26b to regulate angiogenesis of AML. Our work provides new insights into the molecular mechanisms of AML.
Collapse
Affiliation(s)
- Zhen-Jiang Li
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Jing Cheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Hui-Hui Li
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Ji-Fu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China.
| |
Collapse
|
16
|
Wang S, Cheng M, Zheng X, Zheng L, Liu H, Lu J, Liu Y, Chen W. Interactions Between lncRNA TUG1 and miR-9-5p Modulate the Resistance of Breast Cancer Cells to Doxorubicin by Regulating eIF5A2. Onco Targets Ther 2020; 13:13159-13170. [PMID: 33380806 PMCID: PMC7767720 DOI: 10.2147/ott.s255113] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Breast cancer (BC) is one of the leading causes of cancer-related deaths. Chemoresistance of BC remains a major unmet clinical obstacle. TUG1 (taurine-upregulated gene 1), a long noncoding RNA (lncRNA), and microRNAs (miRNA) are implicated in therapeutic resistance. However, the interactions between TUG1 and miRNAs that regulate doxorubicin (Dox) resistance in BC remain elusive. Materials and Methods Expression of TUG1 and miR-9 was measured by real-time PCR. EIF5A2 (eukaryotic translation initiation factor 5A-2) was detected by Western blot. Transfection of siRNAs or miRNA inhibitors was applied to silence lncRNA TUG1, eIF5A2 or miR-9. Cell viability, proliferation, and apoptosis were determined by CCK-8 (cell counting kit-8), flow cytometry, and EdU (5-ethynyl-2ʹ-deoxyuridine) assays, respectively. The regulatory relationship between TUG1 and miR-9 was determined by a luciferase assay. Results LncRNA TUG1 was highly expressed in BC tissues and positively associated with Dox resistance in BC cell lines. SiRNA knockdown of TUG1 reversed Dox resistance in MCF-7/ADR cells. Mechanistically, TUG1 acted as a “sponge” for miR-9 and downregulated miR-9. Treatment with a miR-9 inhibitor blocked the effect of TUG1 siRNA, and knockdown of TUG1 inhibited the effects of miR-9. Furthermore, TUG1 inhibition of apoptosis induced by Dox involved miR-9 targeting of eIF5A2. Conclusion TUG1 modulates the susceptibility of BC cells to Dox by regulating the expression of eIF5A2 via interacting with miR-9. These results indicate that the lncRNA TUG1 may be a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Shuqian Wang
- Department of Breast Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Mengjing Cheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, People's Republic of China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, People's Republic of China
| | - Li Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, People's Republic of China
| | - Hao Liu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, People's Republic of China
| | - Jianju Lu
- Department of Breast Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing College, Jiaxing 314000, People's Republic of China
| | - Yu Liu
- Department of Breast Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, People's Republic of China
| |
Collapse
|
17
|
Negi A, Murphy PV. Development of Mcl-1 inhibitors for cancer therapy. Eur J Med Chem 2020; 210:113038. [PMID: 33333396 DOI: 10.1016/j.ejmech.2020.113038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The myeloid leukemia cell differentiation protein (Mcl-1) is an anti-apoptotic protein of the B-cell lymphoma 2 (Bcl-2) family, which regulates cellular apoptosis. Mcl-1 expression plays a key role in survival of cancer cells and therefore serves as a promising target in cancer therapy. Besides, its importance as a cancer target, various peptides and small-molecule inhibitors have been successfully designed and synthesized, yet no Mcl-1 inhibitor is approved for clinical use. However, recent development on the understanding of Mcl-1's role in key cellular processes in cancer and an upsurge of reports highlighting its association in various anticancer drug resistance supports the view that Mcl-1 is a key target in various cancers, especially hematological cancers. This review compiles structures of a variety of inhibitors of Mcl-1 reported to date. These include inhibitors based on a diverse range of heterocycles (e.g. indole, imidazole, thiophene, nicotinic acid, piperazine, triazine, thiazole, isoindoline), oligomers (terphenyl, quaterpyridine), polyphenol, phenalene, anthranilic acid, anthraquinone, macrocycles, natural products, and metal-based complexes. In addition, an effort has been made to summarize the structure activity relationships, based on a variety of assays, of some important classes of Mcl-1 inhibitors, giving affinities and selectivities for Mcl-1 compared to other Bcl-2 family members. A focus has been placed on categorizing the inhibitors based on their core frameworks (scaffolds) to appeal to the chemical biologist or medicinal chemist.
Collapse
Affiliation(s)
- Arvind Negi
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
18
|
Yi L, Zhou L, Luo J, Yang Q. Circ-PTK2 promotes the proliferation and suppressed the apoptosis of acute myeloid leukemia cells through targeting miR-330-5p/FOXM1 axis. Blood Cells Mol Dis 2020; 86:102506. [PMID: 33126007 DOI: 10.1016/j.bcmd.2020.102506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is characterized by malignant clonal disorder of blood cells with high relapse rate and low survival rate. Circular RNAs (circRNAs) have shown their important regulatory roles in AML progression. Here, we intended to disclose the role of circular RNA protein tyrosine kinase 2 (circ-PTK2) in the progression of AML and illustrate the potential working mechanisms. METHODS 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and colony formation assay were conducted to analyze cell proliferation ability, and the apoptosis rate was assessed by flow cytometry. Dual-luciferase reporter assay was used to validate the direct interaction between microRNA-330-5p (miR-330-5p) and circ-PTK2 or forkhead box M1 (FOXM1). RESULTS Circ-PTK2 was highly expressed in AML. Circ-PTK2 interference suppressed the proliferation and triggered the apoptosis of AML cells. Circ-PTK2 directly bound to miR-330-5p. Si-circ-PTK2-mediated inhibition on the malignant behaviors of AML cells was partly counteracted by the addition of anti-miR-330-5p. MiR-330-5p directly interacted with FOXM1 messenger RNA (mRNA), and FOXM1 overexpression partly reversed miR-330-5p-induced influence in AML cells. Circ-PTK2 up-regulated FOXM1 expression through sponging miR-330-5p in AML cells. CONCLUSION Circ-PTK2 promoted the proliferation and hampered the apoptosis of AML cells through targeting miR-330-5p/FOXM1 axis.
Collapse
Affiliation(s)
- Lai Yi
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Libo Zhou
- Department of Nephrology, Zhuzhou No. 2 Hospital, Zhuzhou, China
| | - Jinxia Luo
- Department of Dermatology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Qiuhong Yang
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China.
| |
Collapse
|
19
|
Kania EE, Carvajal-Moreno J, Hernandez VA, English A, Papa JL, Shkolnikov N, Ozer HG, Yilmaz AS, Yalowich JC, Elton TS. hsa-miR-9-3p and hsa-miR-9-5p as Post-Transcriptional Modulators of DNA Topoisomerase II α in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. Mol Pharmacol 2020; 97:159-170. [PMID: 31836624 PMCID: PMC6978698 DOI: 10.1124/mol.119.118315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
DNA topoisomerase IIα protein (TOP2α) 170 kDa (TOP2α/170) is an important target for anticancer agents whose efficacy is often attenuated by chemoresistance. Our laboratory has characterized acquired resistance to etoposide in human leukemia K562 cells. The clonal resistant subline K/VP.5 contains reduced TOP2α/170 mRNA and protein levels compared with parental K562 cells. The aim of this study was to determine whether microRNA (miRNA)-mediated mechanisms play a role in drug resistance via decreased expression of TOP2α/170. miRNA-sequencing revealed that human miR-9-3p and miR-9-5p were among the top six of those overexpressed in K/VP.5 compared with K562 cells; validation by quantitative polymerase chain reaction demonstrated overexpression of both miRNAs. miRNA recognition elements (MREs) for both miRNAs are present in the 3'-untranslated region (UTR) of TOP2α/170. Transfecting K562 cells with a reporter plasmid harboring the TOP2α/170 3'-UTR together with either miR-9-3p or miR-9-5p mimics resulted in a statistically significant decrease in luciferase expression. Mutating the miR-9-3p or miR-9-5p MREs prevented this decrease, demonstrating direct interaction between these miRNAs and TOP2α/170 mRNA. Transfection of K562 cells with miR-9-3p or miR-9-5p mimics led to decreased TOP2α/170 protein levels without a change in TOP2α/170 mRNA and resulted in attenuated etoposide-induced DNA damage (gain-of-miRNA-inhibitory function). Conversely, transfection of miR-9-3p or miR-9-5p inhibitors in K/VP.5 cells (overexpressed miR-9 and low TOP2α/170) led to increased TOP2α/170 protein expression without a change in TOP2α/170 mRNA levels and resulted in enhancement of etoposide-induced DNA damage (loss-of-miRNA-inhibitory function). Taken together, these results strongly suggest that these miRNAs play a role in and are potential targets for circumvention of acquired resistance to etoposide. SIGNIFICANCE STATEMENT: Results presented here indicate that miR-9-3p and miR-9-5p decrease DNA topoisomerase IIα protein 170 kDa expression levels in acquired resistance to etoposide. These findings contribute new information about and potential strategies for circumvention of drug resistance by modulation of microRNA levels. Furthermore, increased expression of miR-9-3p and miR-9-5p in chemoresistant cancer cells may support their validation as biomarkers of responsiveness to DNA topoisomerase II-targeted therapy.
Collapse
Affiliation(s)
- Evan E Kania
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Anthony English
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jonathan L Papa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Nicholas Shkolnikov
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Hatice Gulcin Ozer
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Ayse Selen Yilmaz
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| |
Collapse
|
20
|
Bao Y, Zhang Y, Lu Y, Guo H, Dong Z, Chen Q, Zhang X, Shen W, Chen W, Wang X. Overexpression of microRNA-9 enhances cisplatin sensitivity in hepatocellular carcinoma by regulating EIF5A2-mediated epithelial-mesenchymal transition. Int J Biol Sci 2020; 16:827-837. [PMID: 32071552 PMCID: PMC7019138 DOI: 10.7150/ijbs.32460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/17/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated the role of microRNA (miR)-9 in modulating chemoresistance in hepatocellular carcinoma (HCC) cells. MiR-9 was overexpressed or knocked down in HCC cell lines. Cell viability, cell proliferation, the expression of EIF5A2 and the epithelial-mesenchymal transition (EMT)-related proteins were examined. HCC cells overexpressing miR-9 were more sensitive to cisplatin; miR-9 knockdown yielded the opposite result. The in vivo nude mouse HCC xenograft tumors yielded the same results. EIF5A2 was identified as a potential target of miR-9, where miR-9 regulated EIF5A2 expression at mRNA and protein level. EIF5A2 knockdown reversed miR-9 inhibition-mediated cisplatin resistance. Altering miR-9 and EIF5A2 expression changed E-cadherin and vimentin expression. Furthermore, EIF5A2 mediated miR-9 EMT pathway regulation, indicating that miR-9 can enhance cisplatin sensitivity by targeting EIF5A2 and inhibiting the EMT pathway. Targeting miR-9 may be useful for overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Ying Bao
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Yibo Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yongliang Lu
- Department of medicine,Huzhou University, huzhou 313000,China
| | - Huihui Guo
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Zhaohuo Dong
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Qiuqiang Chen
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Xilin Zhang
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Weiyun Shen
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| | - Wei Chen
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Key laboratory of cancer prevention and therapy combining traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310012, China
- Department of Medical Oncology, Tongde hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Xiang Wang
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, the First People's Hospital of Huzhou, huzhou 313000,China
| |
Collapse
|
21
|
Ziogas IA, Sioutas G, Mylonas KS, Tsoulfas G. Role of MicroRNA in the Diagnosis and Management of Hepatocellular Carcinoma. Microrna 2020; 9:25-40. [PMID: 31218966 DOI: 10.2174/2211536608666190619155406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors in the world and comes third in cancer-induced mortality. The need for improved and more specific diagnostic methods that can detect early-stage disease is immense, as it is amenable to curative modalities, while advanced HCC is associated with low survival rates. microRNA (miRNA) expression is deregulated in HCC and this can be implemented both diagnostically and therapeutically. OBJECTIVE To provide a concise review on the role of miRNA in diagnosis, prognosis, and treatment of HCC. METHODS We conducted a comprehensive review of the PubMed bibliographic database. RESULTS Multiple miRNAs are involved in the pathogenesis of HCC. Measurement of the levels of these miRNAs either in tumor tissue or in the blood constitutes a promising diagnostic, as well as prognostic tool. OncomiRs are miRNAs that promote tumorigenesis, thus inhibiting them by administering antagomiRs is a promising treatment option. Moreover, replacement of the depleted miRNAs is another potential therapeutic approach for HCC. Modification of miRNA levels may also regulate sensitivity to chemotherapeutic agents. CONCLUSION miRNA play a pivotal role in HCC pathogenesis and once the underlying mechanisms are elucidated, they will become part of everyday clinical practice against HCC.
Collapse
Affiliation(s)
- Ioannis A Ziogas
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
| | - Georgios Sioutas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos S Mylonas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsoulfas
- 1st Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
22
|
Li X, Zeng Z, Wang J, Wu Y, Chen W, Zheng L, Xi T, Wang A, Lu Y. MicroRNA-9 and breast cancer. Biomed Pharmacother 2019; 122:109687. [PMID: 31918267 DOI: 10.1016/j.biopha.2019.109687] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide and seriously impairs patients' physical and mental health. Its incidence has been predicted to rise further. Mounting evidence indicates that microRNAs (miRNAs) play key roles in tumorigenesis and development. It is worth noting that miR-9 exerts critical functions in the initiation and progression of breast cancer, and the present research displays opposite roles of miR-9 in breast cancer. This article mainly reviews the roles of miR-9 in breast cancer progression.
Collapse
Affiliation(s)
- Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhu Zeng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaer Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
23
|
RETRACTED ARTICLE: Chrysophanol suppresses growth and metastasis
of T cell acute lymphoblastic leukemia via miR-9/PD-L1 axis. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:273-286. [DOI: 10.1007/s00210-019-01778-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
|
24
|
Chen L, Zhou H, Guan Z. CircRNA_000543 knockdown sensitizes nasopharyngeal carcinoma to irradiation by targeting miR-9/platelet-derived growth factor receptor B axis. Biochem Biophys Res Commun 2019; 512:786-792. [DOI: 10.1016/j.bbrc.2019.03.126] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/19/2019] [Indexed: 01/22/2023]
|