1
|
Shi Z, Wang R, Huang J, Qian Q, Hu M, Zhang H, Feng L, Gu H, Wang Y. Super-enhancer-driven ameboidal-type cell migration-related MMP14 expression in tongue squamous cell carcinoma switched by BATF and ATF3. J Pharm Pharmacol 2025; 77:64-75. [PMID: 38836550 DOI: 10.1093/jpp/rgae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) exhibits an aggressive biological behavior of lymph node and distant metastasis, which contributes to poorer prognosis and results in tongue function loss or death. In addition to known regulators and pathways of cell migration in TSCC, it is important to uncover pivotal switches governing tumor metastasis. METHODS Cancer cell migration-associated transcriptional and epigenetic characteristics were profiled in TSCC, and the specific super-enhancers (SEs) were identified. Molecular function and mechanism studies were used to investigate the pivotal switches in TSCC metastasis. RESULTS Ameboidal-type cell migration-related genes accompanied by transcriptional and epigenetic activity were enriched in TSCC. Meanwhile, the higher-ranked SE-related genes showed significant differences between 43 paired tumor and normal samples from the TCGA TSCC cohort. In addition, key motifs were detected in SE regions, and transcription factor-related expression levels were significantly associated with TSCC survival status. Notably, BATF and ATF3 regulated the expression of ameboidal-type cell migration-related MMP14 by switching the interaction with the SE region. CONCLUSION SEs and related key motifs transcriptional regulate tumor metastasis-associated MMP14 and might be potential therapeutic targets for TSCC.
Collapse
Affiliation(s)
- Zhimin Shi
- Department of Immunology, the School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Rui Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Jie Huang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Qian Qian
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230022, China
| | - Menglin Hu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
- Department of Dental, Tongling Traditional Chinese Medicine Hospital, Taipinghu Road, Tongling 244000, China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hao Gu
- Department of Immunology, the School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Ran Y, Han S, Gao D, Chen X, Liu C. Interference of FZD2 suppresses proliferation, vasculogenic mimicry and stemness in glioma cells via blocking the Notch/NF‑κB signaling pathway. Exp Ther Med 2024; 28:373. [PMID: 39091630 PMCID: PMC11292164 DOI: 10.3892/etm.2024.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/22/2024] [Indexed: 08/04/2024] Open
Abstract
Frizzled family protein 2 (FZD2) is widely associated with tumor development and metastasis. The present study aimed to gain an insight into the role and regulatory mechanism of FZD2 in glioma. The expression level of FZD2 in normal astrocyte and glioma cells was determined by reverse transcription-quantitative PCR and western blotting, and cell transfection was conducted for FZD2 expression knockdown. Malignant behaviors including cell proliferation, migration and invasion, vasculogenic mimicry (VM) and cell stemness were determined using Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine (EdU) staining, colony formation, wound healing, Transwell, 3D culturing and sphere formation assays. The expression levels of proteins related to stemness, epithelial-mesenchymal transition (EMT) and Notch/NF-κB signaling were measured by western blotting. Then, the Notch agonist, Jagged-1 (JAG), was adopted for rescue experiments. The results demonstrated that FZD2 was highly expressed in glioma cells. Interference of FZD2 expression suppressed the proliferation of glioma cells, as evidenced by the reduced cell viability and the number of EdU+ cells and colonies. Meanwhile, the reduced sphere formation ability and decreased protein expression of Nanog, Sox2 and Oct4 following FZD2 knockdown confirmed that FZD2 repressed cell stemness in glioma. Additionally, FZD2 knockdown suppressed the migration, invasion, EMT and VM formation capabilities of glioma cells, and also blocked the Notch/NF-κB signaling pathway. Furthermore, activation of Notch by JAG treatment partially reversed the aforementioned FZD2 knockdown-mediated changes in glioma cell malignant behaviors. In conclusion, FZD2 may contribute to glioma progression through activating the Notch/NF-κB signaling pathway, providing a plausible therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Yuge Ran
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Shuai Han
- Department of Medicine, Batai Biopharmaceutical Co., Ltd., Beijing 102600, P.R. China
| | - Dongxue Gao
- Proton Therapy Center, Cancer Hospital Chinese Academy of Medical Sciences, Langfang, Hebei 065000, P.R. China
| | - Xiaobo Chen
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chan Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
3
|
Li Z, Zhao Q, Liu X, Zhou X, Wang Y, Zhao M, Wu F, Zhao G, Guo X. Capsaicin combined with cisplatin inhibits TGF-β1-induced EMT and TSCC cells migration via the Claudin-1/PI3K/AKT/mTOR signaling pathway. Cancer Cell Int 2024; 24:300. [PMID: 39198820 PMCID: PMC11360848 DOI: 10.1186/s12935-024-03485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumors among oral cancers, and its treatment is based on radio-chemotherapy and surgery, which always produces more serious side effects and sequelae. Traditional medicine can compensate for the shortcomings of modern medical treatments and play a better therapeutic role. Currently, active ingredients derived from plants are attracting the attention of researchers and clinical professionals. We examined capsaicin (CAP), an active ingredient isolated from Capsicum annuum (family Solanaceae), and explored the effect of CAP combined with cisplatin (DDP) on epithelial-mesenchymal transition (EMT) and TSCC cells migration. Our results demonstrated that Transforming growth factor-β1(TGF-β1) induced EMT and promoted cell migration in TSCC cells. CAP combined with DDP inhibits non-TGF-β1-induced or TGF-β1-induced EMT and migration. Mechanistically, the inhibition of non-TGF-β1-induced EMT and migration by CAP combined with DDP was mediated by the AMPK/mTOR pathway, whereas TGF-β1-induced EMT and migration were regulated by the Claudin-1/PI3K/AKT/mTOR pathway. A nude lung metastasis mouse model was established for in vivo validation. These results support our hypothesis that the combination of CAP and DDP inhibits TSCC metastasis. These data set the stage for further studies aimed at validating CAP as an effective active ingredient for enhancing chemotherapy efficacy and reducing the dosage and toxicity of chemotherapeutic drugs, ultimately paving the way for translational research and clinical trials for TSCC eradication.
Collapse
Affiliation(s)
- Zhuang Li
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Qiwei Zhao
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Xiayang Liu
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Xinyue Zhou
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Yu Wang
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Min Zhao
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Fenghua Wu
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Gang Zhao
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
| | - Xiaohong Guo
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China.
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China.
| |
Collapse
|
4
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
5
|
Liu Y, Cai X, Hu S, Wang Z, Tian H, Wang H. Suppression of N-Glycosylation of Zinc Finger Protein 471 Affects Proliferation, Invasion, and Docetaxel Sensitivity of Tongue Squamous Cell Carcinoma via Regulation of c-Myc. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1106-1125. [PMID: 38749608 DOI: 10.1016/j.ajpath.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 08/09/2024]
Abstract
Zinc finger protein 471 (ZNF471) is a member of the Krüppel-related domain zinc finger protein family, and has recently attracted attention because of its anti-cancer effects. N-glycosylation regulates expression and functions of the protein. This study aimed to investigate the effects of ZNF471 N-glycosylation on the proliferation, invasion, and docetaxel sensitivity of tongue squamous cell carcinoma (TSCC). It analyzed the expression, function, and prognostic significance of ZNF471 in TSCC using bioinformatics techniques such as gene differential expression analysis, univariate Cox regression analysis, functional enrichment analysis, and gene set enrichment analysis. Using site-specific mutagenesis, this study generated three mutant sites for ZNF471 N-glycosylation to determine the effect of N-glycosylation on ZNF471 protein levels and function. Quantitative real-time PCR, Western blot analysis, and immunohistochemistry tests confirmed the down-regulation of ZNF471 expression in TSCC. Low expression of ZNF471 is associated with poor prognosis of patients with TSCC. Overexpression of ZNF471 in vitro retarded the proliferation of TSCC cells and suppressed cell invasion and migration ability. Asparagine 358 was identified as a N-glycosylation site of ZNF471. Suppressing N-glycosylation of ZNF471 enhanced the protein stability and promoted the translocation of protein to the cell nucleus. ZNF471 binding to c-Myc gene promoter suppressed oncogene c-Myc expression, thereby playing the anti-cancer effect and enhancing TSCC sensitivity to docetaxel. In all, N-glycosylation of ZNF471 affects the proliferation, invasion, and docetaxel sensitivity of TSCC via regulation of c-Myc.
Collapse
Affiliation(s)
- Yan Liu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xu Cai
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shousen Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Wang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Tian
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Honghan Wang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
6
|
Sun Y, Li Y, Zhou W, Liu Z. MicroRNA expression as a prognostic biomarker of tongue squamous cell carcinoma (TSCC): a systematic review and meta-analysis. BMC Oral Health 2024; 24:406. [PMID: 38556858 PMCID: PMC10981818 DOI: 10.1186/s12903-024-04182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Recent studies have indicated that microRNA (miRNA) expression in tumour tissues has prognostic significance in Tongue squamous cell carcinoma (TSCC) patients. This study explored the possible prognostic value of miRNAs for TSCC based on published research. METHODS A comprehensive literature search of multiple databases was conducted according to predefined eligibility criteria. Data were extracted from the included studies by two researchers, and HR results were determined based on Kaplan‒Meier curves according to the Tierney method. The Newcastle‒Ottawa Scale (NOS) and GRADE (Grading of Recommendations Assessment, Development, and Evaluation) pro-GDT were applied to assess the quality of all studies. Publication bias was estimated by funnel plot, Egger's rank correlation test and sensitivity analysis. RESULTS Eleven studies (891patients) were included, of which 6 reported up-regulated miRNAs and 7 mentioned down-regulated miRNAs. The pooled hazard ratio (HR) from the prognostic indicator overall survival (OS) was 1.34 (1.25-1.44), p < 0.00001, indicating a significant difference in miRNA expression between TSCC patients with better or worse prognosis. CONCLUSION MiRNAs may have high prognostic value and could be used as prognostic biomarkers of TSCC.
Collapse
Affiliation(s)
- Yiwei Sun
- School of Stomatology, Binzhou Medical University, No. 346 The Guanhai Road Yantai, Yantai, Shandong Province, 264003, China
| | - Yuxiao Li
- The Second School of Clinical Medicine, Binzhou Medical University, No. 346 The Guanhai Road Yantai, Yantai, Shandong Province, 264003, China
| | - Wenjuan Zhou
- The affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, 264000, China.
- Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, 264000, China.
- Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, 264003, China.
| | - Zhonghao Liu
- The affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, 264000, China.
- Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, 264000, China.
- Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, 264003, China.
| |
Collapse
|
7
|
Kao TW, Chen HH, Lin J, Wang TL, Shen YA. PBX1 as a novel master regulator in cancer: Its regulation, molecular biology, and therapeutic applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189085. [PMID: 38341110 DOI: 10.1016/j.bbcan.2024.189085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
PBX1 is a critical transcription factor at the top of various cell fate-determining pathways. In cancer, PBX1 stands at the crossroads of multiple oncogenic signaling pathways and mediates responses by recruiting a broad repertoire of downstream targets. Research thus far has corroborated the involvement of PBX1 in cancer proliferation, resisting apoptosis, tumor-associated neoangiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, immune evasion, genome instability, and dysregulating cellular metabolism. Recently, our understanding of the functional regulation of the PBX1 protein has advanced, as increasing evidence has depicted a regulatory network consisting of transcriptional, post-transcriptional, and post-translational levels of control mechanisms. Furthermore, accumulating studies have supported the clinical utilization of PBX1 as a prognostic or therapeutic target in cancer. Preliminary results showed that PBX1 entails vast potential as a targetable master regulator in the treatment of cancer, particularly in those with high-risk features and resistance to other therapeutic strategies. In this review, we will explore the regulation, protein-protein interactions, molecular pathways, clinical application, and future challenges of PBX1.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiao-Han Chen
- Department of General Medicine, National Taiwan University Hospital, Taipei 100224, Taiwan
| | - James Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
8
|
Lv X, Yu X. Signatures and prognostic values of related immune targets in tongue cancer. Front Surg 2023; 9:952389. [PMID: 36684241 PMCID: PMC9848309 DOI: 10.3389/fsurg.2022.952389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Background Tongue cancer, as one of the most malignant oral cancers, is highly invasive and has a high risk of recurrence. At present, tongue cancer is not obvious and easy to miss the opportunity for early diagnosis when in the advanced stage. It is important to find markers that can predict the occurrence and progression of tongue cancer. Methods Bioinformatics analysis plays an important role in the acquisition of marker genes. GEO and TCGA data are very important public databases. In addition to expression data, the TCGA database also contains corresponding clinical data. In this study, we screened three GEO data sets that met the standard, which included GSE13601, GSE34105, and GSE34106. These data sets were combined using the SVA package to prepare the data for differential expression analysis, and then the limma package was used to set the standard to p < 0.05 and |log2 (FC)| ≥ 1.5. Results A total of 170 differentially expressed genes (DEGs) were identified. In addition, the DEseq package was used for differential expression analysis using the same criteria for samples in the TCGA database. It ended up with 1,589 DEGs (644 upregulated, 945 downregulated). By merging these two sets of DEGs, 5 common upregulated DEGs (CCL20, SCG5, SPP1, KRT75, and FOLR3) and 15 common downregulated DEGs were obtained. Conclusions Further functional analysis of the DEGs showed that CCL20, SCG5, and SPP1 are closely related to prognosis and may be a therapeutic target of TSCC.
Collapse
Affiliation(s)
- Xiaofei Lv
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xi Yu
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin, China,Correspondence: Xi Yu
| |
Collapse
|
9
|
Ma Y, Chen K, Xia F, Atwal R, Wang H, Ahmed SU, Cardarelli L, Lui I, Duong B, Wang Z, Wells JA, Sidhu SS, Kelley SO. Phage-Based Profiling of Rare Single Cells Using Nanoparticle-Directed Capture. ACS NANO 2021; 15:19202-19210. [PMID: 34813293 DOI: 10.1021/acsnano.1c03935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advances in single-cell level profiling of the proteome require quantitative and versatile platforms, especially for rare cell analyses such as circulating tumor cell (CTC) profiling. Here we demonstrate an integrated microfluidic chip that uses magnetic nanoparticles to capture single tumor cells with high efficiency, permits on-chip incubation, and facilitates in situ cell-surface protein expression analysis. Combined with phage-based barcoding and next-generation sequencing technology, we were able to monitor changes in the expression of multiple surface markers stimulated in response to CTC adherence. Interestingly, we found fluctuations in the expression of Frizzled2 (FZD2) that reflected the microenvironment of the single cells. This platform has a high potential for in-depth screening of multiple surface antigens simultaneously in rare cells with single-cell resolution, which will provide further insights regarding biological heterogeneity and human disease.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China
| | - Kangfu Chen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Randy Atwal
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Lia Cardarelli
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Bill Duong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Zongjie Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Sachdev S Sidhu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
10
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
11
|
Jin X, Yin J, Zhu H, Li W, Yu K, Liu M, Zhang X, Lu M, Wan Z, Huang X. SMG9 Serves as an Oncogene to Promote the Tumor Progression via EMT and Wnt/β-Catenin Signaling Pathway in Hepatocellular Carcinoma. Front Pharmacol 2021; 12:701454. [PMID: 34456727 PMCID: PMC8397484 DOI: 10.3389/fphar.2021.701454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023] Open
Abstract
Background/Aims: SMG9 participates in the nonsense-mediated mRNA decay process that degrades mRNA harboring nonsense mutations introduced either at the level of transcription or RNA processing. However, little is known about the role of SMG9 in hepatocellular carcinoma (HCC). The objective of this research was to clarify the effects of SMG9 expression on HCC progression. Methods: Microarray data were acquired from NCBI Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database to bioinformatically analyze the differential expression of SMG9 between HCC patients and normal controls. SMG9 mRNA level was measured in sixteen sets of fresh tumor tissues and adjacent non-cancerous liver tissues (ANLTs) via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SMG9 protein expression was analyzed in ninety-five sets of paired formalin-fixed and paraffin-embedded tissue specimens by immunohistochemistry (IHC). In addition, clinicopathological features of SMG9 in HCC were checked. For in vitro studies, small interfering RNA (siRNA) was used to silence SMG9 expression for exploring biological functions and underlying mechanisms of SMG9 in SMMC-7721 and HepG2. Results: We found that SMG9 was upregulated in HCC tissues and SMG9 levels were closely related to TNM stage, tumor number and tumor size. Cox regression and Kaplan–Meier proportional hazards analyses showed that high expression of SMG9 was associated with poor patient survival. Furthermore, proliferation, apoptosis resistance, migration and invasion of both SMMC-7721 and HepG2 cells were suppressed by SMG9 inhibition. In addition, EMT and the Wnt/β-catenin signaling pathway were involved in SMG9-mediated HCC progression. Conclusions: SMG9 may serve as a potential novel prognostic biomarker and therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Xing Jin
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Yin
- Department of Nuclear Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hongling Zhu
- Department of Gynecology, Shanghai Armed Police Corps Hospital, Shanghai, China
| | - Weikang Li
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kewei Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiujuan Zhang
- Department of Liver Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaolian Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zemin Wan
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianzhang Huang
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Kleszcz R, Paluszczak J. The combinatorial inhibition of Wnt signaling and Akt kinase is beneficial for reducing the survival and glycolytic activity of tongue cancer cells. J Oral Pathol Med 2021; 51:231-239. [PMID: 34358376 DOI: 10.1111/jop.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Wnt signaling is important in the development of head and neck squamous cell carcinomas (HNSCC); however, Wnt pathway inhibitors lack satisfactory potency when used in monotherapy. The aim of this study was to assess the effects of the combinations of Wnt-signaling inhibitors and the inhibitor of Akt kinase on the survival and glycolytic activity of tongue carcinoma cells. METHODS CAL27, SCC-25, and BICR22 tongue cancer cell lines were used. Cells were treated with Wnt signaling (PRI-724 and IWP-O1) and Akt-kinase inhibitors. The effect of the chemicals on cell viability and cytotoxicity were evaluated by MTS and CellTox Green assays, respectively. Cell cycle distribution was analyzed cytometrically after propidium iodide staining. Annexin V binding to externalized phosphatidylserine and analysis of mitochondrial potential allowed the assessment of apoptosis. Glucose uptake and lactate release were evaluated luminometrically. Additionally, the viability of cells in spheroids was analyzed based on ATP content. RESULTS The Akt-kinase inhibitor showed significant cytotoxicity toward primary cancer cells. Moreover, its pro-apoptotic effects were enhanced by Wnt-pathway inhibitors. The activity of Akt inhibitor was even higher (by twofold) in 3D spheroids in comparison to cells grown in monolayer. The synergistic reduction in the growth of spheroids was observed between Akt inhibitor and IWP-O1. Reduced glucose consumption may play a part in the combinatorial effects of these chemicals. CONCLUSION The results point to the therapeutic potential of the combinatorial use of Wnt inhibitors together with Akt inhibitors in HNSCC.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
13
|
de Falco A, Dezso Z, Ceccarelli F, Cerulo L, Ciaramella A, Ceccarelli M. Adaptive one-class Gaussian processes allow accurate prioritization of oncology drug targets. Bioinformatics 2021; 37:1420-1427. [PMID: 33165571 DOI: 10.1093/bioinformatics/btaa968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The cost of drug development has dramatically increased in the last decades, with the number new drugs approved per billion US dollars spent on R&D halving every year or less. The selection and prioritization of targets is one the most influential decisions in drug discovery. Here we present a Gaussian Process model for the prioritization of drug targets cast as a problem of learning with only positive and unlabeled examples. RESULTS Since the absence of negative samples does not allow standard methods for automatic selection of hyperparameters, we propose a novel approach for hyperparameter selection of the kernel in One Class Gaussian Processes. We compare our methods with state-of-the-art approaches on benchmark datasets and then show its application to druggability prediction of oncology drugs. Our score reaches an AUC 0.90 on a set of clinical trial targets starting from a small training set of 102 validated oncology targets. Our score recovers the majority of known drug targets and can be used to identify novel set of proteins as drug target candidates. AVAILABILITY AND IMPLEMENTATION The matrix of features for each protein is available at: https://bit.ly/3iLgZTa. Source code implemented in Python is freely available for download at https://github.com/AntonioDeFalco/Adaptive-OCGP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Antonio de Falco
- BIOGEM Istituto di Ricerche Genetiche "G. Salvatore", 83031 Ariano Irpino, Italy
| | - Zoltan Dezso
- ABBVIE Biotherapeutics, Redwood City, CA 94063, USA
| | - Francesco Ceccarelli
- Donald Bren School of Information and Computer Sciences (ICS), Irvine, CA 92697, USA
| | - Luigi Cerulo
- BIOGEM Istituto di Ricerche Genetiche "G. Salvatore", 83031 Ariano Irpino, Italy.,Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Angelo Ciaramella
- Department Science and Technology, University of Naples Parthenope, 80133 Naples, Italy
| | - Michele Ceccarelli
- BIOGEM Istituto di Ricerche Genetiche "G. Salvatore", 83031 Ariano Irpino, Italy.,Department of Electrical Engineering and Information Technology (DIETI), University of Naples" Federico II", 80128 Naples, Italy
| |
Collapse
|
14
|
Yang S, Wang Y, Ren J, Zhou X, Cai K, Guo L, Wu S. Identification of diagnostic and prognostic lncRNA biomarkers in oral squamous carcinoma by integrated analysis and machine learning. Cancer Biomark 2021; 29:265-275. [PMID: 32716346 DOI: 10.3233/cbm-191215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients with oral squamous carcinoma (OSCC) present difficulty in precise diagnosis and poor prognosis. OBJECTIVE We aimed to identify the diagnostic and prognostic indicators in OSCC and provide basis for molecular mechanism investigation of OSCC. METHODS We collected sequencing data and clinical data from TCGA database and screened the differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) in OSCC. Machine learning and modeling were performed to identify the optimal diagnostic markers. In order to determine lncRNAs with prognostic value, survival analysis was performed through combing the expression profiles with the clinical data. Finally, co-expressed DEmRNAs of lncRNAs were identified by interacted network construction and functional annotated by GO and KEGG analysis. RESULTS A total of 1114 (345 up- and 769 down-regulated) DEmRNAs and 156 (86 up- and 70 down-regulated) DElncRNAs were obtained in OSCC. Following the machine learning and modeling, 15 lncRNAs were identified to be the optimal diagnostic indicators of OSCC. Among them, FOXD2.AS1 was significantly associated with survival rate of patients with OSCC. In addition, Focal adhesion and ECM-receptor interaction pathways were found to be involved in OSCC. CONCLUSIONS FOXD2.AS1 might be a prognostic marker for OSCC and our study may provide more information to the further study in OSCC.
Collapse
Affiliation(s)
- Sen Yang
- Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China.,Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Yingshu Wang
- Department of Oral Medicine, Tianjin Binhai New Area Tanggu Stomatology Hospital, Tianjin, China.,Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Jun Ren
- Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Xueqin Zhou
- Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Kaizhi Cai
- Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Lijuan Guo
- Medical Beauty Department, Suining Central Hospital, Suining, Sichuan, China
| | - Shichao Wu
- Prosthodontics, Tianjin Binhai New Area Tanggu Stomatology Hospital, Tianjin, China
| |
Collapse
|
15
|
Tuluhong D, Chen T, Wang J, Zeng H, Li H, Dunzhu W, Li Q, Wang S. FZD2 promotes TGF-β-induced epithelial-to-mesenchymal transition in breast cancer via activating notch signaling pathway. Cancer Cell Int 2021; 21:199. [PMID: 33832493 PMCID: PMC8033683 DOI: 10.1186/s12935-021-01866-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/06/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the commonest female cancers, which is characterized with high incidence. Although treatments have been improved, the prognosis of BC patients in advanced stages remains unsatisfactory. Thus, exploration of the molecular mechanisms underneath BC progression is necessary to find novel therapeutic methods. Frizzled class receptor 2 (FZD2) belongs to Frizzled family, which has been proven to promote cell growth and invasion in various human cancers. The purpose of our current study was to detect the functions of FZD2 in BC and explore its underlying molecular mechanism. METHODS The level of FZD2 was measured in BC tissues by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC), respectively. Cell Counting Kit-8 (CCK-8), colony formation assay, transwell assays, wound healing assay and flow cytometry analyses were separately conducted to detect cell viability, invasion, migration, apoptosis and cell cycle distribution. The levels of Epithelial-mesenchymal transition (EMT) biomarkers were examined by using Immunofluorescence assay. Xenograft tumorigenicity assay was performed to assess the effect of FZD2 on tumor growth in vivo. RESULTS FZD2 mRNA and protein expression was abundant in BC tissues. Moreover, high level of FZD2 had significant correlation with poor prognosis in BC patients. In vitro functional assays revealed that silencing of FZD2 had suppressive effects on BC cell growth, migration and invasion. Animal study further demonstrated that FZD2 silencing inhibited BC cell growth in vivo. In addition, FZD2 induced EMT process in BC cells in a transforming growth factor (TGF)-β1-dependent manner. Mechanistically, knockdown of FZD2 led to the inactivation of Notch signaling pathway. CONCLUSION FZD2 facilitates BC progression and promotes TGF-β1-inudced EMT process through activating Notch signaling pathway.
Collapse
Affiliation(s)
- Dilihumaer Tuluhong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Tao Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Jingjie Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Huijuan Zeng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hanjun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Wangmu Dunzhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Qiurong Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Shaohua Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
16
|
Zhou M, Sun X, Zhu Y. Analysis of the role of Frizzled 2 in different cancer types. FEBS Open Bio 2021; 11:1195-1208. [PMID: 33565732 PMCID: PMC8016138 DOI: 10.1002/2211-5463.13111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/02/2023] Open
Abstract
Frizzled 2 (FZD2) is an important receptor in the Wnt pathway, which is highly expressed in malignant tumors and helps regulate multiple tumor behaviors. Its expression level is related to prognosis. Here, bioinformatic analysis was performed to understand the expression of FZD2 in different tumors. We examined FZD2 expression using pan‐cancer data of 33 cancer types from The Cancer Genome Atlas (TCGA). Differential expression analysis (Wilcoxon's test) was used to compare tumor and normal tissues. Univariate Cox proportional hazard regression was performed to compare gene expression and overall patient survival. COSMIC, cBioPortal, and CCLE were used to examine FZD2 mutations in human cancers. Dryness index was calculated using one‐class logistic regression (OCLR). Spearman's correlation was performed based on gene expression and dryness score and used to analyze the correlation between gene expression and stemness score, matrix score, immune score, estimated score, tumor mutation burden (TMB), microsatellite instability (MSI), and drug sensitivity. STRING website was used to construct an FZD2 protein interaction network and identify genes that interact with FZD2. We report that FZD2 is highly expressed in most tumors, differing between cancer types. Expression was related to patient overall survival (OS), disease‐specific survival, disease‐free interval (DFI), mutations, drug sensitivity, tumor microenvironment, immune cell infiltration, immune checkpoint gene expression, immunotherapy indicators (TMB, MSI), and tumor cell stemness. FZD2 influenced drug sensitivities, including cobimetinib (r = −0.553, P < 0.001), selumetinib (r = −0.539, P < 0.001), bafetinib (r = −0.538, P < 0.001), tamoxifen (r = −0.523, P < 0.001), alvespimycin (r = −0.520, P < 0.001), and nilotinib (r = −0.502, P < 0.001). FZD2 has the most significant correlation with ROR2 (r = 0.4, P < 0.001), Wnt2 (r = 0.37, P < 0.001), and Wnt4A (r = 0.34, P < 0.001). The results confirm the importance of FZD2 expression in cancer prognosis and treatment, and provide new clues for treatment strategies.
Collapse
Affiliation(s)
| | - Xuezhu Sun
- West Anhui Health Vocational College, Anhui, China
| | - Yunhao Zhu
- West Anhui Health Vocational College, Anhui, China
| |
Collapse
|
17
|
Li Y, Liu Z, Zhang Y. Expression and prognostic impact of FZDs in pancreatic adenocarcinoma. BMC Gastroenterol 2021; 21:79. [PMID: 33618667 PMCID: PMC7901191 DOI: 10.1186/s12876-021-01643-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
Background Despite the high number of researches on pancreatic adenocarcinoma (PAAD) over past decades, little progress had been made due to lack of effective treatment regimens. We aimed to investigate the expression level, mutation, and clinical significance of the Frizzled (FZD) family in PAAD so as to establish a sufficient scientific evidence for clinical decisions and risk management. Methods PAAD samples were extracted from The Cancer Genome Atlas (TCGA). Oncomine, Gene expression profiling interactive analysis (GEPIA), human protein atlas (HPA), Kaplan–Meier Plotter, cBioPortal, LinkedOmics, DAVID database, and R software (× 64 3.6.2) were used to comprehensively analyze the roles of FZDs. p value below to 0.05 was considered as significant difference. Results In total, 179 PAAD tissues and 171 paracancerous tissues were included. The expression levels of FZD1, 2, 6, 7, and 8 were higher in PAAD tissues than those in normal pancreatic tissue. The higher the expression levels of FZD2 and FZD7, the higher the clinical stage. The overall survival (OS) time was significantly different between low FZD3, 4, 5, 6, and 9 expression group and high expression group. Multivariable analysis showed that FZD3 and FZD6 were independent prognostic factors. The recurrence free survival (RFS) time was significantly different between low FZD4 and FZD8 expression group and high expression group. The RFS difference between low FZD6 expression group and high expression group had not reached statistical significance (p = 0.067), which might be due to the small sample size. However, multivariable analysis showed that FZD6 was the only independent factor for RFS. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that FZDs played a critical role in the Wnt signaling pathway, which was further confirmation that FZDs were transmembrane receptors of Wnt signaling pathway. Conclusions Our results strongly indicated a crucial role of the FZD family in PAAD. FZD3 and FZD6 could be potential prognostic and predictive markers, and FZD6 might also function as a potential therapeutic target in PAAD by blocking Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yang Li
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
18
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
19
|
Fu Y, Zheng Q, Mao Y, Jiang X, Chen X, Liu P, Lv B, Huang T, Yang J, Cheng Y, Dai X, Dai C, Wang X, Yin Y, Song T, Jin W, Zou C, Chen T, Fu L, Chen Z. WNT2-Mediated FZD2 Stabilization Regulates Esophageal Cancer Metastasis via STAT3 Signaling. Front Oncol 2020; 10:1168. [PMID: 32766155 PMCID: PMC7379028 DOI: 10.3389/fonc.2020.01168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer micro environment factor WNT2 was critical in cancer metastasis. However, very little is known about WNT2 receptors and their role in the malignant progression of ESCC. The clinical significance and underlying molecular mechanisms of FZD2, one of the receptors of WNT2, was further investigated in ESCC. We found that FZD2 expression was positively correlated with WNT2 levels in clinical ESCC specimens through database analysis. Upregulated FZD2 expression was detected in 69% (69/100) of the primary ESCC cases examined, and increased FZD2 expression was significantly correlated with poor prognosis (P < 0.05). Mechanistically, FZD2 induced the migration and invasion of ESCC cells by regulating the FZD2/STAT3 signaling. In vivo xenograft experiments further revealed the metastasis-promoting role of FZD2 in ESCC. Moreover, we found that the WNT2 ligand could stabilize and phosphorylate the FZD2 receptor by attenuating FZD2 ubiquitination, leading to the activation of STAT3 signaling and the initiation of ESCC cell metastasis. Collectively, our data revealed that a novel non-canonical WNT2/FZD2/STAT3 signaling axis is critical for ESCC progression. Strategies targeting this specific signaling axis might be developed to treat patients with ESCC.
Collapse
Affiliation(s)
- Yufei Fu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yingying Mao
- Department of Epidemiology and Biostatistics, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiyi Jiang
- Group of Molecular Epidemiology & Cancer Precision Prevention, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Pei Liu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tuxiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiao Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, China
| | - Yongran Cheng
- Group of Molecular Epidemiology & Cancer Precision Prevention, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Xiaoyi Dai
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chunyan Dai
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifei Yin
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tengjiao Song
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weiyang Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chang Zou
- Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Tianhui Chen
- Department of Cancer Prevention, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|