1
|
Kravitz MB, Annadata V, Ilyaev B, Tong CCL, Fastenburg JH, Chaskes MB. Recurrent Sinonasal Squamous Cell Carcinoma: Current Insights and Treatment Advances. Cancers (Basel) 2024; 17:4. [PMID: 39796633 PMCID: PMC11718787 DOI: 10.3390/cancers17010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Squamous cell carcinoma is the most common malignancy affecting the sinonasal tract. Local recurrence is the main pattern of treatment failure, affecting nearly half of patients treated for primary sinonasal squamous cell carcinoma (SNSCC). Due to disease rarity and heterogeneity of practices, there are limited guidelines for how to diagnose and care for these patients. This paper reviews current evidence regarding etiology, pathophysiology, diagnosis, prognostic factors, and treatment modalities of recurrent SNSCC (rSNSCC). Currently, salvage surgery offers the only durable approach for eligible patients. These resections often require robust reconstructive options due to prior surgery or radiation. Chemoradiation is offered as an adjuvant or palliative approach when surgery is not a feasible option. Emerging options such as immunotherapy and particle therapy remain an area of ongoing investigation.
Collapse
Affiliation(s)
- Meryl B. Kravitz
- Department of Otolaryngology/Head & Neck Surgery, Zucker School of Medicine, Hofstra University, New York, NY 11040, USA; (C.C.L.T.); (J.H.F.); (M.B.C.)
- Department of Otolaryngology/Head & Neck Surgery, Montefiore Medical Center, New York, NY 10467, USA
| | - Vivek Annadata
- Donald and Barbara Zucker School of Medicine, Hofstra University, New York, NY 11549, USA; (V.A.); (B.I.)
| | - Benjamin Ilyaev
- Donald and Barbara Zucker School of Medicine, Hofstra University, New York, NY 11549, USA; (V.A.); (B.I.)
| | - Charles C. L. Tong
- Department of Otolaryngology/Head & Neck Surgery, Zucker School of Medicine, Hofstra University, New York, NY 11040, USA; (C.C.L.T.); (J.H.F.); (M.B.C.)
| | - Judd H. Fastenburg
- Department of Otolaryngology/Head & Neck Surgery, Zucker School of Medicine, Hofstra University, New York, NY 11040, USA; (C.C.L.T.); (J.H.F.); (M.B.C.)
| | - Mark B. Chaskes
- Department of Otolaryngology/Head & Neck Surgery, Zucker School of Medicine, Hofstra University, New York, NY 11040, USA; (C.C.L.T.); (J.H.F.); (M.B.C.)
| |
Collapse
|
2
|
Li HX, Gong YW, Yan PJ, Xu Y, Qin G, Wen WP, Teng FY. Revolutionizing head and neck squamous cell carcinoma treatment with nanomedicine in the era of immunotherapy. Front Immunol 2024; 15:1453753. [PMID: 39676875 PMCID: PMC11638222 DOI: 10.3389/fimmu.2024.1453753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignant tumor globally. Despite advancements in treatment methods, the overall survival rate remains low due to limitations such as poor targeting and low bioavailability, which result in the limited efficacy of traditional drug therapies. Nanomedicine is considered to be a promising strategy in tumor therapy, offering the potential for maximal anti-tumor effects. Nanocarriers can overcome biological barriers, enhance drug delivery efficiency to targeted sites, and minimize damage to normal tissues. Currently, various nano-carriers for drug delivery have been developed to construct new nanomedicine. This review aims to provide an overview of the current status of HNSCC treatment and the necessity of nanomedicine in improving treatment outcomes. Moreover, it delves into the research progress of nanomedicine in HNSCC treatment, with a focus on enhancing radiation sensitivity, improving the efficacy of tumor immunotherapy, effectively delivering chemotherapy drugs, and utilizing small molecule inhibitors. Finally, this article discussed the challenges and prospects of applying nanomedicine in cancer treatment.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yu-Wen Gong
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pi-Jun Yan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei-Ping Wen
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang-Yuan Teng
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Zhai Q, Wang Z, Tang H, Hu S, Chen M, Ji P. Identification of ferroptosis-associated tumor antigens as the potential targets to prevent head and neck squamous cell carcinoma. Genes Dis 2024; 11:101212. [PMID: 39286654 PMCID: PMC11403004 DOI: 10.1016/j.gendis.2024.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 09/19/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) represents nearly 90% of all head and neck tumors. The current treatment modality for HNSC patients primarily involves surgical intervention and radiotherapy, but its therapeutic efficacy remains limited. The mRNA vaccine based on tumor antigens seems promising for cancer treatment. Ferroptosis, a novel form of cell death, is linked to tumor progression and cancer immunotherapy. Nevertheless, the effectiveness of ferroptosis-associated tumor antigens in treating HNSC remains uncertain. In this study, we identified three ferroptosis-associated tumor antigens, namely caveolin1 (CAV1), ferritin heavy chain (FTH1), and solute carrier 3A2 (SLC3A2), as being overexpressed and mutated based on data obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. These antigens were strongly associated with poor prognosis and infiltration of antigen-presenting cells in HNSC. We further identified two ferroptosis subtypes (FS1 and FS2) with distinct molecular, cellular, and clinical properties to identify antigen-sensitive individuals. Our findings indicate that FS1 exhibits an immune "hot" phenotype, whereas FS2 displays an immune "cold" phenotype. Additionally, differential expression of immunogenic cell death modulators and immune checkpoints was observed between these two immune subtypes. Further exploration of the HNSC's immune landscape revealed significant heterogeneity among individual patients. Our findings suggest that CAV1, FTH1, and SLC3A2 are potential targets to prevent HNSC in FS2 patients. Overall, our research reveals the potential of ferroptosis-associated mRNA vaccines for HNSC and identifies an effective patient population for vaccine treatment.
Collapse
Affiliation(s)
- Qiming Zhai
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Zhiwei Wang
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Shanshan Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Meihua Chen
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
4
|
Wang R, Li X, Wang J. Butein inhibits oral squamous cell carcinoma growth via promoting MCL-1 ubiquitination. J Cancer 2024; 15:3173-3182. [PMID: 38706892 PMCID: PMC11064257 DOI: 10.7150/jca.94546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 05/07/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant head and neck carcinoma type. Myeloid cell leukemia-1 (MCL-1), an anti-apoptotic BCL-1 protein, has been verified to be among the most highly upregulated pathologic proteins in human cancers linked to tumor relapse, poor prognosis and therapeutic resistance. Herein, therapeutic targeting MCL-1 is an attractive focus for cancer treatment. The present study found that butein, a potential phytochemical compound, exerted profound antitumor effects on OSCC cells. Butein treatment significantly inhibited cell viability, proliferation capacity and colony formation ability, and activated cell apoptotic process. Further potential mechanism investigation showed that promoting MCL-1 ubiquitination and degradation is the major reason for butein-mediated OSCC cell cytotoxicity. Our results uncovered that butein could facilitate E3 ligase FBW7 combined with MCL-1, which contributed to an increase in the ubiquitination of MCL-1 Ub-K48 and degradation. The results of both in vitro cell experiments and in vivo xenograft models imply a critical antitumor function of butein with the well-tolerated feature, and it might be an attractive and promising agent for OSCC treatment.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jidong Wang
- Department of Oral and Maxillofacial Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde City), Changde, Hunan 415000, China
| |
Collapse
|
5
|
Andrade LM, Costa GMJ. Insights into Gold Nanoparticles Possibilities for Diagnosis and Treatment of the Head and Neck Upper Aerodigestive Tract Cancers. Cancers (Basel) 2023; 15:2080. [PMID: 37046740 PMCID: PMC10093449 DOI: 10.3390/cancers15072080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer affecting people and accounts for more than 300,000 deaths worldwide. Improvements in treatment modalities, including immunotherapy, have demonstrated promising prognoses for eligible patients. Nevertheless, the five-year overall survival rate has not increased significantly, and the tumor recurrence ratio remains at 50% or higher, except for patients with HPV-positive HNSCC. Over the last decades, nanotechnology has provided promising tools, especially for biomedical applications, due to some remarkable physicochemical properties of numerous nanomaterials, particularly gold nanoparticles. This review addresses the features and some applications of gold nanoparticles reported in the literature over the last five years regarding the diagnosis and treatment of head and neck cancer, highlighting the exciting possibilities of this nanomaterial in oncology. METHODS The scientific papers selected for this review were obtained from the PubMed Advanced, Web of Science, Scopus, ClinicalTrials.gov, and Google Scholar platforms. CONCLUSIONS Results from papers applying gold nanoparticles have suggested that their application is a feasible approach to diagnostics, prognostics, and the treatment of HNC. Moreover, phase I clinical trials suggest that gold nanoparticles are safe and can potentially become theranostic agents for humans.
Collapse
Affiliation(s)
- Lídia M. Andrade
- Laboratory of Cell Biology, Department of Morphology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
- Nanobiomedical Research Group, Department of Physics, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Guilherme M. J. Costa
- Laboratory of Cell Biology, Department of Morphology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| |
Collapse
|
6
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
7
|
Xu Q, Chen Y, Jin Y, Wang Z, Dong H, Kaufmann AM, Albers AE, Qian X. Advanced Nanomedicine for High-Risk HPV-Driven Head and Neck Cancer. Viruses 2022; 14:v14122824. [PMID: 36560828 PMCID: PMC9788019 DOI: 10.3390/v14122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The incidence of high-risk Human Papillomavirus (HR-HPV)-driven head and neck squamous cell carcinoma (HNSCC) is on the rise globally. HR-HPV-driven HNSCC displays molecular and clinical characteristics distinct from HPV-uninvolved cases. Therapeutic strategies for HR-HPV-driven HNSCC are under investigation. HR-HPVs encode the oncogenes E6 and E7, which are essential in tumorigenesis. Meanwhile, involvement of E6 and E7 provides attractive targets for developing new therapeutic regimen. Here we will review some of the recent advancements observed in preclinical studies and clinical trials on HR-HPV-driven HNSCC, focusing on nanotechnology related methods. Materials science innovation leads to great improvement for cancer therapeutics including HNSCC. This article discusses HPV-E6 or -E7- based vaccines, based on plasmid, messenger RNA or peptide, at their current stage of development and testing as well as how nanoparticles can be designed to target and access cancer cells and activate certain immunology pathways besides serving as a delivery vehicle. Nanotechnology was also used for chemotherapy and photothermal treatment. Short interference RNA targeting E6/E7 showed some potential in animal models. Gene editing by CRISPR-CAS9 combined with other treatments has also been assessed. These advancements have the potential to improve the outcome in HR-HPV-driven HNSCC, however breakthroughs are still to be awaited with nanomedicine playing an important role.
Collapse
Affiliation(s)
- Qiang Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ye Chen
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Yuan Jin
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Zhiyu Wang
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Haoru Dong
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Andreas M. Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Andreas E. Albers
- Department of Clinical Medicine, Oto-Rhino-Laryngology, Medical School Berlin, 14197 Berlin, Germany
| | - Xu Qian
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
- Correspondence:
| |
Collapse
|
8
|
Damasio MPS, Nascimento CS, Andrade LM, de Oliveira VL, Calzavara-Silva CE. The role of T-cells in head and neck squamous cell carcinoma: From immunity to immunotherapy. Front Oncol 2022; 12:1021609. [PMID: 36338731 PMCID: PMC9632296 DOI: 10.3389/fonc.2022.1021609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) encompass a group of complex entities of tumours affecting the aerodigestive upper tract. The main risk factors are strongly related to tobacco and alcohol consumption, but also HPV infection is often associated. Surgery, radiotherapy and/or chemotherapy are the standard treatments, though the 5-year overall survival is less than 50%. The advances in genomics, molecular medicine, immunology, and nanotechnology have shed a light on tumour biology which helps clinical researchers to obtain more efficacious and less toxic therapies. Head and neck tumours possess different immune escape mechanisms including diminishing the immune response through modulating immune checkpoints, in addition to the recruitment and differentiation of suppressive immune cells. The insights into the HNSCC biology and its strong interaction with the tumour microenvironment highlights the role of immunomodulating agents. Recently, the knowledge of the immunological features of these tumours has paved the way for the discovery of effective biomarkers that allow a better selection of patients with odds of improving overall survival through immunotherapy. Specially biomarkers regarding immune checkpoint inhibitors antibodies, such as anti-PD-1/PD-L1 and anti-CTLA-4 in combination with standard therapy or as monotherapy. New immunotherapies to treat head and neck cancer carcinomas, such as CAR T cells and nanoparticles have been the center of attention and in this review, we discuss the necessity of finding targets for the T cell in the cancer cells to generate CAR T cells, but also the relevance of evaluating specificity and safety of those therapies.
Collapse
Affiliation(s)
- Marcos Paulo S. Damasio
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Camila Sales Nascimento
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| | - Lidia M. Andrade
- Departamento de Genética, Ecologia e Evolução, Departamento de Física, Nanobiomedical Research Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian L. de Oliveira
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Paulo, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Carlos Eduardo Calzavara-Silva
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Insights into Nanomedicine for Head and Neck Cancer Diagnosis and Treatment. MATERIALS 2022; 15:ma15062086. [PMID: 35329542 PMCID: PMC8951645 DOI: 10.3390/ma15062086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Head and neck cancers rank sixth among the most common cancers today, and the survival rate has remained virtually unchanged over the past 25 years, due to late diagnosis and ineffective treatments. They have two main risk factors, tobacco and alcohol, and human papillomavirus infection is a secondary risk factor. These cancers affect areas of the body that are fundamental for the five senses. Therefore, it is necessary to treat them effectively and non-invasively as early as possible, in order to do not compromise vital functions, which is not always possible with conventional treatments (chemotherapy or radiotherapy). In this sense, nanomedicine plays a key role in the treatment and diagnosis of head and neck cancers. Nanomedicine involves using nanocarriers to deliver drugs to sites of action and reducing the necessary doses and possible side effects. The main purpose of this review is to give an overview of the applications of nanocarrier systems to the diagnosis and treatment of head and neck cancer. Herein, several types of delivery strategies, radiation enhancement, inside-out hyperthermia, and theragnostic approaches are addressed.
Collapse
|
10
|
Dong H, Shu X, Xu Q, Zhu C, Kaufmann AM, Zheng ZM, Albers AE, Qian X. Current Status of Human Papillomavirus-Related Head and Neck Cancer: From Viral Genome to Patient Care. Virol Sin 2021. [PMID: 34152564 DOI: 10.1007/s12250-021-00413-8/figures/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Human papillomavirus (HPV) infection identified as a definitive human carcinogen is increasingly being recognized for its role in carcinogenesis of human cancers. Up to 38%-80% of head and neck squamous cell carcinoma (HNSCC) in oropharyngeal location (OPSCC) and nearly all cervical cancers contain the HPV genome which is implicated in causing cancer through its oncoproteins E6 and E7. Given by the biologically distinct HPV-related OPSCC and a more favorable prognosis compared to HPV-negative tumors, clinical trials on de-escalation treatment strategies for these patients have been studied. It is therefore raised the questions for the patient stratification if treatment de-escalation is feasible. Moreover, understanding the crosstalk of HPV-mediated malignancy and immunity with clinical insights from the proportional response rate to immune checkpoint blockade treatments in patients with HNSCC is of importance to substantially improve the treatment efficacy. This review discusses the biology of HPV-related HNSCC as well as successful clinically findings with promising candidates in the pipeline for future directions. With the advent of various sequencing technologies, further biomolecules associated with HPV-related HNSCC progression are currently being identified to be used as potential biomarkers or targets for clinical decisions throughout the continuum of cancer care.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinhua Shu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Chen Zhu
- Department of Cancer Prevention, Cancer Hospital University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 12203, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 13353, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
11
|
Ruiz-Pulido G, Medina DI, Barani M, Rahdar A, Sargazi G, Baino F, Pandey S. Nanomaterials for the Diagnosis and Treatment of Head and Neck Cancers: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3706. [PMID: 34279276 PMCID: PMC8269895 DOI: 10.3390/ma14133706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Head and neck cancer (HNC) is a category of cancers that typically arise from the nose-, mouth-, and throat-lining squamous cells. The later stage of HNC diagnosis significantly affects the patient's survival rate. This makes it mandatory to diagnose this cancer with a suitable biomarker and imaging techniques at the earlier stages of growth. There are limitations to traditional technologies for early detection of HNC. Furthermore, the use of nanocarriers for delivering chemo-, radio-, and phototherapeutic drugs represents a promising approach for improving the outcome of HNC treatments. Several studies with nanostructures focus on the development of a targeted and sustained release of anticancer molecules with reduced side effects. Besides, nanovehicles could allow co-delivering of anticancer drugs for synergistic activity to counteract chemo- or radioresistance. Additionally, a new generation of smart nanomaterials with stimuli-responsive properties have been developed to distinguish between unique tumor conditions and healthy tissue. In this light, the present article reviews the mechanisms used by different nanostructures (metallic and metal oxide nanoparticles, polymeric nanoparticles, quantum dots, liposomes, nanomicelles, etc.) to improve cancer diagnosis and treatment, provides an up-to-date picture of the state of the art in this field, and highlights the major challenges for future improvements.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-14115, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Science, Bam 76617-71967, Iran
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
12
|
Stern PL, Dalianis T. Oropharyngeal Squamous Cell Carcinoma Treatment in the Era of Immune Checkpoint Inhibitors. Viruses 2021; 13:1234. [PMID: 34202255 PMCID: PMC8310271 DOI: 10.3390/v13071234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
While head and neck squamous cell carcinomas (HNSCC) are marginally decreasing due to the reduction in exposure to the major risk factors, tobacco and alcohol, the incidence of high-risk human papillomavirus (HPV)-positive oropharynx squamous cell carcinomas (OPSCC), especially those in the tonsil and base of tongue subsites, are increasing. Patients with the latter are younger, display a longer overall survival, and show a lower recurrence rate after standard-of-care treatment than those with HPV-negative OPSCC. This may reflect an important role for immune surveillance and control during the natural history of the virally driven tumour development. Immune deviation through acquisition of immune-suppressive factors in the tumour microenvironment (TME) is discussed in relation to treatment response. Understanding how the different immune factors are integrated in the TME battleground offers opportunities for identifying prognostic biomarkers as well as novel therapeutic strategies. OPSCC generally receive surgery or radiotherapy for early-stage tumour treatment, but many patients present with locoregionally advanced disease requiring multimodality therapies which can involve considerable complications. This review focuses on the utilization of newly emerged immune checkpoint inhibitors (PD-1/PD-L1 pathway) for treatment of HNSCC, in particular HPV-positive OPSCC, since they could be less toxic and more efficacious. PD-1/PD-L1 expression in the TME has been extensively investigated as a biomarker of patient response but is yet to provide a really effective means for stratification of treatment. Extensive testing of combinations of therapeutic approaches by types and sequencing will fuel the next evolution of treatment for OPSCC.
Collapse
Affiliation(s)
- Peter L. Stern
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden;
| |
Collapse
|
13
|
Dong H, Shu X, Xu Q, Zhu C, Kaufmann AM, Zheng ZM, Albers AE, Qian X. Current Status of Human Papillomavirus-Related Head and Neck Cancer: From Viral Genome to Patient Care. Virol Sin 2021; 36:1284-1302. [PMID: 34152564 PMCID: PMC8692589 DOI: 10.1007/s12250-021-00413-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) infection identified as a definitive human carcinogen is increasingly being recognized for its role in carcinogenesis of human cancers. Up to 38%–80% of head and neck squamous cell carcinoma (HNSCC) in oropharyngeal location (OPSCC) and nearly all cervical cancers contain the HPV genome which is implicated in causing cancer through its oncoproteins E6 and E7. Given by the biologically distinct HPV-related OPSCC and a more favorable prognosis compared to HPV-negative tumors, clinical trials on de-escalation treatment strategies for these patients have been studied. It is therefore raised the questions for the patient stratification if treatment de-escalation is feasible. Moreover, understanding the crosstalk of HPV-mediated malignancy and immunity with clinical insights from the proportional response rate to immune checkpoint blockade treatments in patients with HNSCC is of importance to substantially improve the treatment efficacy. This review discusses the biology of HPV-related HNSCC as well as successful clinically findings with promising candidates in the pipeline for future directions. With the advent of various sequencing technologies, further biomolecules associated with HPV-related HNSCC progression are currently being identified to be used as potential biomarkers or targets for clinical decisions throughout the continuum of cancer care.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinhua Shu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Chen Zhu
- Department of Cancer Prevention, Cancer Hospital University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 12203, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 13353, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
14
|
Venkatas J, Singh M. Nanomedicine-mediated optimization of immunotherapeutic approaches in cervical cancer. Nanomedicine (Lond) 2021; 16:1311-1328. [PMID: 34027672 DOI: 10.2217/nnm-2021-0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer shows immense complexity at the epigenetic, genetic and cellular levels, limiting conventional treatment. Immunotherapy has revolutionized nanomedicine and rejuvenated the field of tumor immunology. Although several immunotherapeutic approaches have shown favorable clinical responses, their efficacies vary, with subsets of patients benefitting. The success of cancer immunotherapy requires the enhancement of cytokines and antitumor effector cell production and activation. Recently, the feasibility of nanoparticle-based cytokine approaches in tumor immunotherapy has been highlighted. Immunotherapeutic nanoparticle-based platforms form a novel strategy enabling researchers to co-deliver immunomodulatory agents, target tumors, improve pharmacokinetics and minimize collateral toxicity to healthy cells. This review looks at the potential of immunotherapy and nanotechnologically enhanced immunotherapeutic approaches for cervical cancer.
Collapse
Affiliation(s)
- Jeaneen Venkatas
- Nano-Gene & Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, KwaZulu-Natal, South Africa
| | - Moganavelli Singh
- Nano-Gene & Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, KwaZulu-Natal, South Africa
| |
Collapse
|