1
|
Limonta P, Chiaramonte R, Casati L. Unveiling the Dynamic Interplay between Cancer Stem Cells and the Tumor Microenvironment in Melanoma: Implications for Novel Therapeutic Strategies. Cancers (Basel) 2024; 16:2861. [PMID: 39199632 PMCID: PMC11352669 DOI: 10.3390/cancers16162861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous melanoma still represents a significant health burden worldwide, being responsible for the majority of skin cancer deaths. Key advances in therapeutic strategies have significantly improved patient outcomes; however, most patients experience drug resistance and tumor relapse. Cancer stem cells (CSCs) are a small subpopulation of cells in different tumors, including melanoma, endowed with distinctive capacities of self-renewal and differentiation into bulk tumor cells. Melanoma CSCs are characterized by the expression of specific biomarkers and intracellular pathways; moreover, they play a pivotal role in tumor onset, progression and drug resistance. In recent years, great efforts have been made to dissect the molecular mechanisms underlying the protumor activities of melanoma CSCs to provide the basis for novel CSC-targeted therapies. Herein, we highlight the intricate crosstalk between melanoma CSCs and bystander cells in the tumor microenvironment (TME), including immune cells, endothelial cells and cancer-associated fibroblasts (CAFs), and its role in melanoma progression. Specifically, we discuss the peculiar capacities of melanoma CSCs to escape the host immune surveillance, to recruit immunosuppressive cells and to educate immune cells toward an immunosuppressive and protumor phenotype. We also address currently investigated CSC-targeted strategies that could pave the way for new promising therapeutic approaches for melanoma care.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
2
|
Papa V, Li Pomi F, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Alarmins in cutaneous malignant melanoma: An updated overview of emerging evidence on their pathogenetic, diagnostic, prognostic, and therapeutic role. J Dermatol 2024; 51:927-938. [PMID: 38775220 PMCID: PMC11483971 DOI: 10.1111/1346-8138.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
Malignant cutaneous melanoma is the leading cause of death for skin cancer to date, with globally increasing incidence rates. In this epidemiological scenario, international scientific research is exerting efforts to identify new clinical strategies aimed at the prognostic amelioration of the disease. Very promising and groundbreaking in this context is the scientific interest related to alarmins and their pioneering utility in the setting of the pathogenetic understanding, diagnosis, prognosis, and therapy for malignant cutaneous melanoma. However, the scientific investigations on this matter should not overlook their still well-presented dual and contradictory role. The aim of our critical analysis is to provide an up-to-date overview of the emerging evidence concerning the dichotomous role of alarmins in the aforementioned clinical settings. Our literature revision was based on the extensive body of both preclinical and clinical findings published on the PubMed database over the past 5 years. In addition to this, we offer a special focus on potentially revolutionary new therapeutic frontiers, which, on the strength of their earliest successes in other clinical areas, could inaugurate a new era of personalized and precision medicine in the field of dermato-oncology.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.)University of PalermoPalermoItaly
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR)MessinaItaly
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| |
Collapse
|
3
|
Jiang Y, Liang R, Li L, Guan J. Studies on the effect and mechanism of CD147 on melanoma stem cells. Allergol Immunopathol (Madr) 2024; 52:71-78. [PMID: 38186196 DOI: 10.15586/aei.v52i1.1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Melanoma is the most aggressive form of skin cancer. Melanoma stem cells (MSCs) are one of the driving forces of melanoma invasion and metastasis. Therefore, it is of great significance to explore the mechanisms that maintain the stemness of MSCs. In this study, CD147-positive (CD147+) MSCs derived from A375 cell line were characterized. METHODS Side population (SP) and non-SP cells were sorted from A375 cells. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to determine the expression of CD147 in SP and non-SP cells. Subsequently, CD147+ and CD147-negative (CD147-) cells were isolated from SP cells. Stem cell characteristics and metastatic potential of CD147+/- antigen-presenting cells were identified by sphere-forming, wound-healing, and transwell assays. Western blot analysis was performed to evaluate the protein levels of transforming growth factor-beta1 (TGFβ1) and neurogenic locus notch homolog protein 1 (Notch1) signaling pathway. Xenograft tumor experiments were conducted to investigate the tumorigenic capacity of CD147+ cells in vivo. RESULTS CD147 was highly expressed in SP cells of A375 cell line. CD147+ cells have stronger abilities for sphere forming, migration, and invasion in vitro. The protein levels of TGFβ1, notch1, jagged1, and Hes1 were higher in CD147+ cells than in CD147- cells. Moreover, the CD147+ cells showed stronger tumorigenic and metastatic potential in vivo. CONCLUSION SP cells of A375 cell line expressed high levels of CD147, and CD147+ SP cells possessed much stronger stem-like characteristics and motility, which is linked to the activation of TGFβ and notch pathways.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Wound Healing and Plastic and Reconstruction Surgery, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China
| | - Renyi Liang
- Department of Tumor Radiotherapy and Chemotherapy, Lishui City People's Hospital, Lishui, Zhejiang Province, China
| | - Liqun Li
- Department of Plastic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China;
| | - Jian Guan
- Department of Wound Healing and Plastic and Reconstruction Surgery, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China;
| |
Collapse
|
4
|
Sun N, Tian Y, Chen Y, Guo W, Li C. Metabolic rewiring directs melanoma immunology. Front Immunol 2022; 13:909580. [PMID: 36003368 PMCID: PMC9393691 DOI: 10.3389/fimmu.2022.909580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma results from the malignant transformation of melanocytes and accounts for the most lethal type of skin cancers. In the pathogenesis of melanoma, disordered metabolism is a hallmark characteristic with multiple metabolic paradigms involved in, e.g., glycolysis, lipid metabolism, amino acid metabolism, oxidative phosphorylation, and autophagy. Under the driving forces of oncogenic mutations, melanoma metabolism is rewired to provide not only building bricks for macromolecule synthesis and sufficient energy for rapid proliferation and metastasis but also various metabolic intermediates for signal pathway transduction. Of note, metabolic alterations in tumor orchestrate tumor immunology by affecting the functions of surrounding immune cells, thereby interfering with their antitumor capacity, in addition to the direct influence on tumor cell intrinsic biological activities. In this review, we first introduced the epidemiology, clinical characteristics, and treatment proceedings of melanoma. Then, the components of the tumor microenvironment, especially different populations of immune cells and their roles in antitumor immunity, were reviewed. Sequentially, how metabolic rewiring contributes to tumor cell malignant behaviors in melanoma pathogenesis was discussed. Following this, the proceedings of metabolism- and metabolic intermediate-regulated tumor immunology were comprehensively dissertated. Finally, we summarized currently available drugs that can be employed to target metabolism to intervene tumor immunology and modulate immunotherapy.
Collapse
Affiliation(s)
- Ningyue Sun
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuhan Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chunying Li, ; Weinan Guo,
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chunying Li, ; Weinan Guo,
| |
Collapse
|
5
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Huang T, He WY. Pan-Cancer Analysis, Reveals COVID-19-Related BSG as a Novel Marker for Treatment and Identification of Multiple Human Cancers. Front Cell Dev Biol 2022; 10:876180. [PMID: 35646943 PMCID: PMC9136262 DOI: 10.3389/fcell.2022.876180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) has been a public threat and healthcare concern caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. During the period of the pandemic of COVID-19, cancer patients should be paid more attention as more severe events are found in cancer patients infected with SARS-CoV-2. Basigin (BSG) is an essential factor for the infection and progression of COVID-19 and tumorigenesis of multiple tumors, which may serve as a novel target for the effective treatment against COVID-19 and multiple human cancers.Methods: A total of 19,020 samples from multiple centers were included in our research for the comprehensive investigation of the differences in BSG expression among human organs, cancer cells, cancer tissues, and normal tissues. Cox regression analysis and Kaplan–Meier curves were utilized to explore the prognosis factor of BSG in cancers. Correlation analyses were used to determine associations of BSG expression with tumor mutational burden, the immune microenvironment, etc. Gene set enrichment analysis was applied to explore the underlying mechanisms of BSG in cancers.Results: Compared with normal tissues, BSG expression was high in 13 types of cancers (cholangiocarcinoma, etc.) and low in colon adenocarcinoma and rectum adenocarcinoma. BSG expression was related to the prognosis of eight cancers (e.g., invasive breast carcinoma) (p < 0.05). The gene also demonstrated a pronounced effect in identifying 12 cancers (cholangiocarcinoma, etc.) from their control samples (AUC >0.7). The BSG expression was associated with DNA methyltransferases, mismatch repair genes, immune infiltration levels, tumor mutational burden, microsatellite instability, neoantigen, and immune checkpoints, suggesting the potential of BSG as an exciting target for cancer treatment. BSG may play its role in several cancers by affecting several signaling pathways such as drug cytochrome metabolism P450 and JAK-STAT.Conclusion:BSG may be a novel biomarker for treating and identifying multiple human cancers.
Collapse
Affiliation(s)
- Tao Huang
- Department of Cardiothoracic Vascular Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wei-Ying He
- The First Clinical Medical College, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Wei-Ying He,
| |
Collapse
|
7
|
Zhang R, Zheng S, Guo Z, Wang Y, Yang G, Yin Z, Luo L. L-Theanine inhibits melanoma cell growth and migration via regulating expression of the clock gene BMAL1. Eur J Nutr 2022; 61:763-777. [PMID: 34542664 DOI: 10.1007/s00394-021-02677-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE L-Theanine is a unique non-protein amino acid found in green tea, which has been identified as a safe dietary supplement. It has been reported that L-theanine exerts various biological activities. In this study, we explored the anti-cancer effects of L-theanine on melanoma cells. METHODS A375, B16-F10, and PIG1 cell lines were used in the present study. EdU labeling, TUNEL and Annexin V/PI staining, wound-healing, and transwell migration assay were performed to detect the effects of L-theanine on melanoma cell proliferation, apoptosis, and migration. Brain and muscle Arnt-like protein 1 (BMAL1) was knocked down in melanoma cells to evaluate if L-theanine plays the anti-cancer role through regulating circadian rhythm of melanoma cells. The western blot, qRT-PCR, and dual luciferase assay were performed to explore the mechanism involved in the effects of L-theanine on melanoma cells. RESULTS L-Theanine apparently reduced the viability of melanoma cells. Further experiments showed that L-theanine attenuated the proliferation and migration, and promoted apoptosis of melanoma cells. L-Theanine significantly enhanced the expression of BMAL1, a clock gene in melanoma cells. Down-regulation of BMAL1 suppressed the anti-cancer effects of L-theanine on melanoma cells. Further experiments indicated that the p53 transcriptional activity raised by L-theanine was dependent on BMAL1 expression in melanoma cells. CONCLUSION L-Theanine exerts the anti-cancer effect on melanoma cells through attenuating the proliferation and migration, and promoting apoptosis of them, which is dependent on the regulation of the clock gene Bmal1 in melanoma cells.
Collapse
Affiliation(s)
- Ruyi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Shuangning Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Zhen Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yanan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Guocui Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
8
|
Yu Z, Hou Y, Zhou W, Zhao Z, Liu Z, Fu A. The effect of mitochondrial transplantation therapy from different gender on inhibiting cell proliferation of malignant melanoma. Int J Biol Sci 2021; 17:2021-2033. [PMID: 34131403 PMCID: PMC8193273 DOI: 10.7150/ijbs.59581] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
Today mitochondria are considered much more than a energy plant in cells. Mitochondrial transplantation therapy has been an active research area for treating mitochondria-associated diseases from animal studies to clinical trials. However, the specific mechanism involved in the anti-tumor activity of healthy mitochondria remain to be characterized. Here we investigate the signal mechanism and gender difference of mitochondrial transplantation therapy against malignant melanoma. In the study, we administrated intact mitochondria extracted from mouse livers respectively to the mice bearing malignantly subcutaneous and metastatic melanoma, and identified the signal mechanism responsible for the mitochondrial treatment through transcriptomic analysis. Meanwhile, the efficiency of female mitochondria and male mitochondria was compared in the cultured melanoma cells and transplanted melanoma in mice. The results suggested that the mitochondria significantly inhibited the tumor cell proliferation in vitro through cell cycle arrest and induction of cell apoptosis. In the melanoma-bearing mice, the mitochondria retard the tumor growth and lung migration, and the transcriptomic analysis indicated that general chromosome silencing was strongly associated with the mitochondria against melanoma after the mitochondrial transplantation on the metastasis melanoma. Moreover, the anti-tumor activity of mitochondria from female animals was more efficient in comparison to the males, and the female mitochondria could probably induce more persuasive mitochondria-nuclear communication than the mitochondria from male mice. The study identifies the anti-tumor mechanism of the mitochondrial transplantation therapy, and provides a novel insight into the effect of mitochondria from different gender.
Collapse
Affiliation(s)
| | | | | | | | | | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Sun B, Li G, Yu Q, Liu D, Tang X. HSP60 in cancer: a promising biomarker for diagnosis and a potentially useful target for treatment. J Drug Target 2021; 30:31-45. [PMID: 33939586 DOI: 10.1080/1061186x.2021.1920025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heat shock proteins (HSPs), most of which are molecular chaperones, are highly conserved proteins produced by cells under physiological stress or pathological conditions. HSP60 (57-69 kDa) can promote or inhibit cell apoptosis through different mechanisms, and its abnormal expression is also related to tumour cell metastasis and drug resistance. In recent years, HSP60 has received increasing attention in the field of cancer research due to its potential as a diagnostic and prognostic biomarker or therapeutic target. However, in different types of cancer, the specific mechanisms of abnormally expressed HSP60 in tumour carcinogenesis and drug resistance are complicated and still require further study. In this article, we comprehensively review the regulative mechanisms of HSP60 on apoptosis, its applications as a cancer diagnostic biomarker and a therapeutic target, evidence of involvement in tumour resistance and the applications of exosomal HSP60 in liquid biopsy. By evaluating the current findings of HSP60 in cancer research, we highlight some core issues that need to be addressed for the use of HSP60 as a diagnostic or prognostic biomarker and therapeutic target in certain types of cancer.
Collapse
Affiliation(s)
- Bo Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ganghui Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Qing Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Dongchun Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xing Tang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|