1
|
Shi B, Zhu C, Wang X, Qi Y, Hu J, Liu X, Wang J, Hao Z, Zhao Z, Zhang X. microRNA Temporal-Specific Expression Profiles Reveal longissimus dorsi Muscle Development in Tianzhu White Yak. Int J Mol Sci 2024; 25:10151. [PMID: 39337635 PMCID: PMC11432130 DOI: 10.3390/ijms251810151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As a class of regulatory factors, microRNAs (miRNAs) play an important role in regulating normal muscle development and fat deposition. Muscle and adipose tissues, as major components of the animal organism, are also economically important traits in livestock production. However, the effect of miRNA expression profiles on the development of muscle and adipose tissues in yak is currently unknown. In this study, we performed RNA sequencing (RNA-Seq) on Tianzhu white yak longissimus dorsi muscle tissue obtained from calves (6 months of age, M6, n = 6) and young (30 months of age, M30, n = 6) and adult yak (54 months of age, M54, n = 6) to identify which miRNAs are differentially expressed and to investigate their temporal expression profiles, establishing a regulatory network of miRNAs associated with the development of muscle and adipose. The results showed that 1191 miRNAs and 22061 mRNAs were screened across the three stages, of which the numbers of differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) were 225 and 450, respectively. The expression levels of the nine DE miRNAs were confirmed using a reverse transcription quantitative PCR (RT-qPCR) assay, and the trend of the assay results was generally consistent with the trend of the transcriptome profiles. Based on the expression trend, DE miRNAs were categorized into eight different expression patterns. Regarding the expression of DE miRNAs in sub-trends Profile 1 and Profile 2 (p < 0.05), the gene expression patterns were upregulated (87 DE miRNAs). Gene ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) analyses showed that the identified DE miRNAs and DE mRNAs were enriched in pathway entries associated with muscle and intramuscular fat (IMF) growth and development. On this basis, we constructed a DE miRNA-mRNA interaction network. We found that some DE mRNAs of interest overlapped with miRNA target genes, such as ACSL3, FOXO3, FBXO30, FGFBP4, TSKU, MYH10 (muscle development), ACOX1, FADS2, EIF4E2, SCD1, EL0VL5, and ACACB (intramuscular fat deposition). These results provide a valuable resource for further studies on the molecular mechanisms of muscle tissue development in yak and also lay a foundation for investigating the interactions between genes and miRNAs.
Collapse
Affiliation(s)
- Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Chune Zhu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangyan Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Youpeng Qi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolan Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Yu B, Liu J, Cai Z, Wang H, Feng X, Zhang T, Ma R, Gu Y, Zhang J. RNA N 6-methyladenosine profiling reveals differentially methylated genes associated with intramuscular fat metabolism during breast muscle development in chicken. Poult Sci 2023; 102:102793. [PMID: 37276703 PMCID: PMC10258505 DOI: 10.1016/j.psj.2023.102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Intramuscular fat (IMF) is an important indicator for determining meat quality, and IMF deposition during muscle development is regulated by a complex molecular network involving multiple genes. The N6-methyladenosine (m6A) modification of mRNA plays an important regulatory role in muscle adipogenesis. However, the distribution of m6A and its role in IMF metabolism in poultry has not been reported. In the present study, a transcriptome-wide m6A profile was constructed using methylated RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to explore the potential mechanism of regulating IMF deposition in the breast muscle based on the comparative analysis of IMF differences in the breast muscles of 42 (group G), 126 (group S), and 180-days old (group M) Jingyuan chickens. The findings revealed that the IMF content in the breast muscle increased significantly with the increase in the growth days of the Jingyuan chickens (P < 0.05). The m6A peak in the breast muscles of the 3 groups was highly enriched in the coding sequence (CDS) and 3' untranslated regions (3' UTR), which corresponded to the consensus motif RRACH. Moreover, we identified 129, 103, and 162 differentially methylated genes (DMGs) in the breast muscle samples of the G, S, and M groups, respectively. Functional enrichment analyses revealed that DMGs are involved in many physiological activities of muscle fat anabolism. The m6A-induced ferroptosis pathway was identified in breast muscle tissue as a new target for regulating IMF metabolism. In addition, association analysis demonstrated that LMOD2 and its multiple m6A negatively regulated DMGs are potential regulators of IMF differential deposition in muscle. The findings of the present study provide a solid foundation for further investigation into the potential role of m6A modification in regulating chicken fat metabolism.
Collapse
Affiliation(s)
- Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiamin Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haorui Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Tong Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruoshuang Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Zhang M, Guo Y, Su R, Corazzin M, Hou R, Xie J, Zhang Y, Zhao L, Su L, Jin Y. Transcriptome analysis reveals the molecular regulatory network of muscle development and meat quality in Sunit lamb supplemented with dietary probiotic. Meat Sci 2022; 194:108996. [PMID: 36195032 DOI: 10.1016/j.meatsci.2022.108996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Supplementing animal feed with probiotic additives can promote muscle production and improve meat quality. The study aimed to explore the effects of dietary probiotics supplementation on the performance, meat quality and muscle transcriptome profile in Sunit lamb. Overall, feeding probiotics significantly increased the body length, LT area, pH24h and intramuscular fat (IMF) content, but decreased cooking loss and meat shear force compared to the control group (P < .05). A total of 651 differentially expressed genes (DEGs) were found in probiotic supplemented lambs. Pathway analysis revealed that DEGs were involved in multiple pathways related to muscle development and fat deposition, such as the ECM-receptor interactions, the MAPK signaling pathway and the FoxO signaling pathway. Therefore, dietary probiotic supplementation can improve muscle development and final meat quality in Sunit lambs by altering gene expression profiles associated with key pathways, providing unique insights into the molecular mechanisms by which dietary probiotics regulate muscle development in the lamb industry.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yueying Guo
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Ran Hou
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Jingyu Xie
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yue Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China.
| |
Collapse
|
4
|
Shi B, Shi X, Zuo Z, Zhao S, Zhao Z, Wang J, Zhou H, Luo Y, Hu J, Hickford JGH. Identification of differentially expressed genes at different post-natal development stages of longissimus dorsi muscle in Tianzhu white yak. Gene X 2022; 823:146356. [PMID: 35227854 DOI: 10.1016/j.gene.2022.146356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The regulatory mechanisms controlling post-natal muscle development in the yak (Bos grunniens) are still largely unknown, yet the growth and development of muscle is a complex process that plays a crucial role in determining the yield and quality of an animal's meat. In this study, we performed a transcriptome analysis based on the RNA sequencing (RNA-Seq) of yak longissimus dorsi muscle tissue obtained from calves (6 months of age; 6 M), young adults (30 months of age; 30 M) and adult (54 months of age; 54 M) to identify which genes are differentially expressed and to investigate their temporal expression profiles. In total, 1788 differentially expressed genes (DEGs) (|log2FC| ≥ 1, P-adjusted < 0.05) were detected by pairwise comparisons between the different age groups. The expression levels of 10 of the DEGs were confirmed using reverse transcription-quantitative PCR (RT-qPCR), and the results were consistent with the transcriptome profile. A time-series expression profile analysis clustered the DEGs into four groups that could be divided into two classes (P < 0.05): class 1 profiles, which had up-regulated patterns of gene expression and class 2 profiles, which featured down-regulated patterns. Based on that cluster analysis, GO enrichment analysis revealed 1073, 127, and 184 terms as significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in the class 1 profiles, while 714, 66, and 206 terms were significantly enriched in BP, CC, and MF in the class 2 profiles. A KEGG pathway analysis revealed that DEGs from the class 1 profiles were enriched in 62 pathways, with the most enriched being the phosphoinositide 3-kinase (PI3K) - protein kinase B (Akt)-signaling pathway. The DEGs from the class 2 profiles were enriched in 16 pathways, of which forkhead box protein O (FoxO) - signaling was the most enriched. Taken together, these results provide insight into the mechanisms of skeletal muscle development, as well suggesting some potential genes of importance for yak meat production.
Collapse
Affiliation(s)
- Bingang Shi
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuehong Shi
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhi Zuo
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shijie Zhao
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huitong Zhou
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Yuzhu Luo
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jon G H Hickford
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
5
|
Yin X, Wu Y, Zhang S, Zhang T, Zhang G, Wang J. Transcriptomic profile of leg muscle during early growth and development in Haiyang yellow chicken. Arch Anim Breed 2021; 64:405-416. [PMID: 34584942 PMCID: PMC8461557 DOI: 10.5194/aab-64-405-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Skeletal muscle growth and development from embryo to
adult consists of a series of carefully regulated changes in gene
expression. This study aimed to identify candidate genes involved in chicken
growth and development and to investigate the potential regulatory
mechanisms of early growth in Haiyang yellow chicken. RNA sequencing was
used to compare the transcriptomes of chicken muscle tissues at four
developmental stages. In total, 6150 differentially expressed genes (DEGs)
(|fold change| ≥ 2; false discovery rate (FDR) ≤ 0.05) were detected by
pairwise comparison in female chickens. Functional analysis showed that the
DEGs were mainly involved in the processes of muscle growth and development
and cell differentiation. Many of the DEGs, such as MSTN,
MYOD1, MYF6, MYF5, and IGF1, were
related to chicken growth and development. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that
the DEGs were significantly enriched in four pathways related to growth and
development: extracellular matrix
(ECM)–receptor interaction, focal adhesion, tight junction, and
insulin signalling pathways. A total of 42 DEGs assigned to these pathways
are potential candidate genes for inducing the differences in growth among
the four development stages, such as MYH1A, EGF, MYLK2,
MYLK4, and LAMB3. This study identified a
range of genes and several pathways that may be involved in regulating early
growth.
Collapse
Affiliation(s)
- Xuemei Yin
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, China
| | - Yulin Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Shanshan Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Shu Y, He J, Zhang H, Liu G, Li S, Deng S, Wu H. Dynamic transcriptome and histomorphology analysis of developmental traits of hindlimb thigh muscle from Odorrana tormota and its adaptability to different life history stages. BMC Genomics 2021; 22:369. [PMID: 34016051 PMCID: PMC8138932 DOI: 10.1186/s12864-021-07677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background Systematic studies on the development and adaptation of hindlimb muscles in anura amphibians are rare. Here, we integrated analysis of transcriptome and histomorphological data for the hindlimb thigh muscle of Odorrana tormota (concave-eared torrent frog) at different developmental stages, to uncover the developmental traits of hindlimb thigh muscle from O. tormota and its adaptability to different life history stages. Results The development of hindlimb thigh muscle from O. tormota has the following characteristics. Before metamorphosis, myogenous cells proliferate and differentiate into myotubes, and form 11 muscle groups at G41; Primary myofibers and secondary myofibers appeared during metamorphosis; 11 muscle groups differentiated continuously to form myofibers, accompanied by myofibers hypertrophy after metamorphosis; During the growth process of O. tormota from G42 to G46, there were differences between the sexes in the muscle groups that differentiate into muscle fibers, indicating that there was sexual dimorphism in the hindlimb thigh muscles of O. tormota at the metamorphosis stages. Some genes and pathways related to growth, development, and movement ability of O. tormota at different developmental stages were obtained. In addition, some pathways associated with adaptation to metamorphosis and hibernation also were enriched. Furthermore, integrated analysis of the number of myofibers and transcriptome data suggested that myofibers of specific muscle groups in the hindlimbs may be degraded through lysosome and ubiquitin pathways to transform into energy metabolism and other energy-related substances to meet the physiological needs of hibernation. Conclusions These results provide further understanding the hindlimb thigh muscle development pattern of frogs and their adaption to life history stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07677-0.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Guangxuan Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Shikun Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Shuaitao Deng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China. .,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China.
| |
Collapse
|
7
|
Li Y, Jin W, Zhai B, Chen Y, Li G, Zhang Y, Guo Y, Sun G, Han R, Li Z, Li H, Tian Y, Liu X, Kang X. LncRNAs and their regulatory networks in breast muscle tissue of Chinese Gushi chickens during late postnatal development. BMC Genomics 2021; 22:44. [PMID: 33422015 PMCID: PMC7797159 DOI: 10.1186/s12864-020-07356-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 12/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chicken skeletal muscle is an important economic product. The late stages of chicken development constitute the main period that affects meat production. LncRNAs play important roles in controlling the epigenetic process of growth and development. However, studies on the role of lncRNAs in the late stages of chicken breast muscle development are still lacking. In this study, to investigate the expression characteristics of lncRNAs during chicken muscle development, 12 cDNA libraries were constructed from Gushi chicken breast muscle samples from 6-, 14-, 22-, and 30-week-old chickens. RESULTS A total of 1252 new lncRNAs and 1376 annotated lncRNAs were identified. Furthermore, 53, 61, 50, 153, 117, and 78 DE-lncRNAs were found in the W14 vs. W6, W22 vs. W14, W22 vs. W6, W30 vs. W6, W30 vs. W14, and W30 vs. W22 comparison groups, respectively. After GO enrichment analysis of the DE-lncRNAs, several muscle development-related GO terms were found in the W22 vs. W14 comparison group. Moreover, it was found that the MAPK signaling pathway was one of the most frequently enriched pathways in the different comparison groups. In addition, 12 common target DE-miRNAs of DE-lncRNAs were found in different comparison groups, some of which were muscle-specific miRNAs, such as gga-miR-206, gga-miR-1a-3p, and miR-133a-3p. Interestingly, the precursors of four newly identified miRNAs were found to be homologous to lncRNAs. Additionally, we found some ceRNA networks associated with muscle development-related GO terms. For example, the ceRNA networks contained the DYNLL2 gene with 12 lncRNAs that targeted 2 miRNAs. We also constructed PPI networks, such as IGF-I-EGF and FZD6-WNT11. CONCLUSIONS This study revealed, for the first time, the dynamic changes in lncRNA expression in Gushi chicken breast muscle at different periods and revealed that the MAPK signaling pathway plays a vital role in muscle development. Furthermore, MEF2C and its target lncRNA may be involved in muscle regulation through the MAPK signaling pathway. This research provided valuable resources for elucidating posttranscriptional regulatory mechanisms to promote the development of chicken breast muscles after hatching.
Collapse
Affiliation(s)
- Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjiao Jin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bin Zhai
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yujie Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
8
|
Silva DBS, Fonseca LFS, Pinheiro DG, Magalhães AFB, Muniz MMM, Ferro JA, Baldi F, Chardulo LAL, Schnabel RD, Taylor JF, Albuquerque LG. Spliced genes in muscle from Nelore Cattle and their association with carcass and meat quality. Sci Rep 2020; 10:14701. [PMID: 32895448 PMCID: PMC7477197 DOI: 10.1038/s41598-020-71783-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/04/2020] [Indexed: 01/31/2023] Open
Abstract
Transcript data obtained by RNA-Seq were used to identify differentially expressed alternatively spliced genes in ribeye muscle tissue between Nelore cattle that differed in their ribeye area (REA) or intramuscular fat content (IF). A total of 166 alternatively spliced transcripts from 125 genes were significantly differentially expressed in ribeye muscle between the highest and lowest REA groups (p ≤ 0.05). For animals selected on their IF content, 269 alternatively spliced transcripts from 219 genes were differentially expressed in ribeye muscle between the highest and lowest IF animals. Cassette exons and alternative 3′ splice sites were the most frequently found alternatively spliced transcripts for REA and IF content. For both traits, some differentially expressed alternatively spliced transcripts belonged to myosin and myotilin gene families. The hub transcripts were identified for REA (LRRFIP1, RCAN1 and RHOBTB1) and IF (TRIP12, HSPE1 and MAP2K6) have an important role to play in muscle cell degradation, development and motility. In general, transcripts were found for both traits with biological process GO terms that were involved in pathways related to protein ubiquitination, muscle differentiation, lipids and hormonal systems. Our results reinforce the biological importance of these known processes but also reveal new insights into the complexity of the whole cell muscle mRNA of Nelore cattle.
Collapse
Affiliation(s)
- Danielly B S Silva
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
| | - Larissa F S Fonseca
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Daniel G Pinheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Ana F B Magalhães
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Maria M M Muniz
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Jesus A Ferro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasilia, DF, Brazil
| | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasilia, DF, Brazil
| | - Luis A L Chardulo
- School of Veterinary and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri Columbia, Columbia, MO, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri Columbia, Columbia, MO, USA
| | - Lucia G Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil. .,National Council for Scientific and Technological Development (CNPq), Brasilia, DF, Brazil.
| |
Collapse
|
9
|
Wang R, Su L, Yu S, Ma X, Jiang C, Yu Y. Inhibition of PHLDA2 transcription by DNA methylation and YY1 in goat placenta. Gene 2020; 739:144512. [DOI: 10.1016/j.gene.2020.144512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022]
|
10
|
Elolimy AA, Abdel-Hamied E, Hu L, McCann JC, Shike DW, Loor JJ. RAPID COMMUNICATION: Residual feed intake in beef cattle is associated with differences in protein turnover and nutrient transporters in ruminal epithelium. J Anim Sci 2019; 97:2181-2187. [PMID: 30806449 DOI: 10.1093/jas/skz080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Residual feed intake (RFI) is a widely used measure of feed efficiency in cattle. Although the precise biologic mechanisms associated with improved feed efficiency are not well-known, most-efficient steers (i.e., with low RFI coefficient) downregulate abundance of proteins controlling protein degradation in skeletal muscle. Whether cellular mechanisms controlling protein turnover in ruminal tissue differ by RFI classification is unknown. The aim was to investigate associations between RFI and signaling through the mechanistic target of rapamycin (MTOR) and ubiquitin-proteasome pathways in ruminal epithelium. One hundred and forty-nine Red Angus cattle were allocated to 3 contemporary groups according to sex and herd origin. Animals were offered a finishing diet for 70 d to calculate the RFI coefficient for each. Within each group, the 2 most-efficient (n = 6) and least-efficient animals (n = 6) were selected. Compared with least-efficient animals, the most-efficient animals consumed less feed (P < 0.05; 18.36 vs. 23.39 kg/d DMI). At day 70, plasma samples were collected for insulin concentration analysis. Ruminal epithelium was collected immediately after slaughter to determine abundance and phosphorylation status of 29 proteins associated with MTOR, ubiquitin-proteasome, insulin signaling, and glucose and amino acid transport. Among the proteins involved in cellular protein synthesis, most-efficient animals had lower (P ≤ 0.05) abundance of MTOR, p-MTOR, RPS6KB1, EIF2A, EEF2K, AKT1, and RPS6KB1, whereas MAPK3 tended (P = 0.07) to be lower. In contrast, abundance of p-EEF2K, p-EEF2K:EEF2K, and p-EIF2A:EIF2A in most-efficient animals was greater (P ≤ 0.05). Among proteins catalyzing steps required for protein degradation, the abundance of UBA1, NEDD4, and STUB1 was lower (P ≤ 0.05) and MDM2 tended (P = 0.06) to be lower in most-efficient cattle. Plasma insulin and ruminal epithelium insulin signaling proteins did not differ (P > 0.05) between RFI groups. However, abundance of the insulin-responsive glucose transporter SLC2A4 and the amino acid transporters SLC1A3 and SLC1A5 also was lower (P ≤ 0.05) in most-efficient cattle. Overall, the data indicate that differences in signaling mechanisms controlling protein turnover and nutrient transport in ruminal epithelium are components of feed efficiency in beef cattle.
Collapse
Affiliation(s)
- Ahmed A Elolimy
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Emad Abdel-Hamied
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Animal Medicine Department, Beni-Suef University, Beni-Suef, Egypt
| | - Liangyu Hu
- Department of Animal Sciences, University of Illinois, Urbana, IL.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, Illinois Informatics Institute, University of Illinois, Urbana, IL
| |
Collapse
|
11
|
Li Y, Chen Y, Jin W, Fu S, Li D, Zhang Y, Sun G, Jiang R, Han R, Li Z, Kang X, Li G. Analyses of MicroRNA and mRNA Expression Profiles Reveal the Crucial Interaction Networks and Pathways for Regulation of Chicken Breast Muscle Development. Front Genet 2019; 10:197. [PMID: 30936892 PMCID: PMC6431651 DOI: 10.3389/fgene.2019.00197] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/25/2019] [Indexed: 01/17/2023] Open
Abstract
There is a lack of understanding surrounding the molecular mechanisms involved in the development of chicken skeletal muscle in the late postnatal stage, especially in the regulation of breast muscle development related genes, pathways, miRNAs and other factors. In this study, 12 cDNA libraries and 4 small RNA libraries were constructed from Gushi chicken breast muscle samples from 6, 14, 22, and 30 weeks. A total of 15,508 known transcripts, 25,718 novel transcripts, 388 known miRNAs and 31 novel miRNAs were identified by RNA-seq in breast muscle at the four developmental stages. Through correlation analysis of miRNA and mRNA expression profiles, it was found that 417, 370, 240, 1,418, 496, and 363 negatively correlated miRNA–mRNA pairs of W14 vs. W6, W22 vs. W6, W22 vs. W14, W30 vs. W6, W30 vs. W14, and W30 vs. W22 comparisons, respectively. Based on the annotation analysis of these miRNA–mRNA pairs, we constructed the miRNA–mRNA interaction network related to biological processes, such as muscle cell differentiation, striated muscle tissue development and skeletal muscle cell differentiation. The interaction networks for signaling pathways related to five KEGG pathways (the focal adhesion, ECM-receptor interaction, FoxO signaling, cell cycle, and p53 signaling pathways) and PPI networks were also constructed. We found that ANKRD1, EYA2, JSC, AGT, MYBPC3, MYH11, ACTC1, FHL2, RCAN1, FOS, EGR1, and FOXO3, PTEN, AKT1, GADD45, PLK1, CCNB2, CCNB3 and other genes were the key core nodes of these networks, most of which are targets of miRNAs. The FoxO signaling pathway was in the center of the five pathway-related networks. In the PPI network, there was a clear interaction among PLK1 and CDK1, CCNB2, CDK1, and GADD45B, and CDC45, ORC1 and MCM3 genes. These results increase the understanding for the molecular mechanisms of chicken breast muscle development, and also provide a basis for studying the interactions between genes and miRNAs, as well as the functions of the pathways involved in postnatal developmental regulation of chicken breast muscle.
Collapse
Affiliation(s)
- Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenjiao Jin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shouyi Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Liu Y, Jia Y, Liu C, Ding L, Xia Z. RNA-Seq transcriptome analysis of breast muscle in Pekin ducks supplemented with the dietary probiotic Clostridium butyricum. BMC Genomics 2018; 19:844. [PMID: 30486769 PMCID: PMC6264624 DOI: 10.1186/s12864-018-5261-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Increased attention is being paid to breast muscle yield and meat quality in the duck breeding industry. Our previous report has demonstrated that dietary Clostridium butyricum (C. butyricum) can improve meat quality of Pekin ducks. However, the potential biological processes and molecular mechanisms that are modulated by dietary C. butyricum in the breast muscle of Pekin ducks remain unknown. RESULTS Supplementation with C. butyricum increased growth performance and meat yield. Therefore, we utilized de novo assembly methods to analyze the RNA-Seq transcriptome profiles in breast muscle to explore the differentially expressed genes between C. butyricum-treated and control Pekin ducks. A total of 1119 differentially expressed candidate genes were found of which 403 genes were significantly up-regulated and 716 genes were significantly down-regulated significantly. qRT-PCR analysis was used to confirm the accuracy of the of RNA-Seq results. GO annotations revealed potential genes, processes and pathways that may participate in meat quality and muscle development. KEGG pathway analysis showed that the differentially expressed genes participated in numerous pathways related to muscle development, including ECM-receptor interaction, the MAPK signaling pathway and the TNF signaling pathway. CONCLUSIONS This study suggests that long-time dietary supplementation with C. butyricum can modulate muscle development and meat quality via altering the expression patterns of genes involved in crucial metabolic pathways. The findings presented here provide unique insights into the molecular mechanisms of muscle development in Pekin ducks in response to dietary C. butyricum.
Collapse
Affiliation(s)
- Yanhan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Cun Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Limin Ding
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
13
|
Xue Q, Zhang G, Li T, Ling J, Zhang X, Wang J. Transcriptomic profile of leg muscle during early growth in chicken. PLoS One 2017; 12:e0173824. [PMID: 28291821 PMCID: PMC5349469 DOI: 10.1371/journal.pone.0173824] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/26/2017] [Indexed: 11/27/2022] Open
Abstract
The early growth pattern, especially the age of peak growth, of broilers affects the time to market and slaughter weight, which in turn affect the profitability of the poultry industry. However, the underlying mechanisms regulating chicken growth and development have rarely been studied. This study aimed to identify candidate genes involved in chicken growth and investigated the potential regulatory mechanisms of early growth in chicken. RNA sequencing was applied to compare the transcriptomes of chicken muscle tissues at three developmental stages during early growth. In total, 978 differentially expressed genes (DEGs) (fold change ≥ 2; false discovery rate < 0.05) were detected by pairwise comparison. Functional analysis showed that the DEGs are mainly involved in the processes of cell growth, muscle development, and cellular activities (such as junction, migration, assembly, differentiation, and proliferation). Many of the DEGs are well known to be related to chicken growth, such as MYOD1, GH, IGF2BP2, IGFBP3, SMYD1, CEBPB, FGF2, and IGFBP5. KEGG pathway analysis identified that the DEGs were significantly enriched in five pathways (P < 0.1) related to growth and development: extracellular matrix–receptor interaction, focal adhesion, tight junction, insulin signaling pathway, and regulation of the actin cytoskeleton. A total of 42 DEGs assigned to these pathways are potential candidate genes inducing the difference in growth among the three developmental stages, such as MYH10, FGF2, FGF16, FN1, CFL2, MAPK9, IRS1, PHKA1, PHKB, and PHKG1. Thus, our study identified a series of genes and several pathways that may participate in the regulation of early growth in chicken. These results should serve as an important resource revealing the molecular basis of chicken growth and development.
Collapse
Affiliation(s)
- Qian Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail: (JW); (GZ)
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jiaojiao Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail: (JW); (GZ)
| |
Collapse
|
14
|
Taye M, Kim J, Yoon SH, Lee W, Hanotte O, Dessie T, Kemp S, Mwai OA, Caetano-Anolles K, Cho S, Oh SJ, Lee HK, Kim H. Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genet 2017; 18:11. [PMID: 28183280 PMCID: PMC5301378 DOI: 10.1186/s12863-016-0467-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Africa is home to numerous cattle breeds whose diversity has been shaped by subtle combinations of human and natural selection. African Sanga cattle are an intermediate type of cattle resulting from interbreeding between Bos taurus and Bos indicus subspecies. Recently, research has asserted the potential of Sanga breeds for commercial beef production with better meat quality as compared to Bos indicus breeds. Here, we identified meat quality related gene regions that are positively selected in Ankole (Sanga) cattle breeds as compared to indicus (Boran, Ogaden, and Kenana) breeds using cross-population (XP-EHH and XP-CLR) statistical methods. RESULTS We identified 238 (XP-EHH) and 213 (XP-CLR) positively selected genes, of which 97 were detected from both statistics. Among the genes obtained, we primarily reported those involved in different biological process and pathways associated with meat quality traits. Genes (CAPZB, COL9A2, PDGFRA, MAP3K5, ZNF410, and PKM2) involved in muscle structure and metabolism affect meat tenderness. Genes (PLA2G2A, PARK2, ZNF410, MAP2K3, PLCD3, PLCD1, and ROCK1) related to intramuscular fat (IMF) are involved in adipose metabolism and adipogenesis. MB and SLC48A1 affect meat color. In addition, we identified genes (TIMP2, PKM2, PRKG1, MAP3K5, and ATP8A1) related to feeding efficiency. Among the enriched Gene Ontology Biological Process (GO BP) terms, actin cytoskeleton organization, actin filament-based process, and protein ubiquitination are associated with meat tenderness whereas cellular component organization, negative regulation of actin filament depolymerization and negative regulation of protein complex disassembly are involved in adipocyte regulation. The MAPK pathway is responsible for cell proliferation and plays an important role in hyperplastic growth, which has a positive effect on meat tenderness. CONCLUSION Results revealed several candidate genes positively selected in Ankole cattle in relation to meat quality characteristics. The genes identified are involved in muscle structure and metabolism, and adipose metabolism and adipogenesis. These genes help in the understanding of the biological mechanisms controlling beef quality characteristics in African Ankole cattle. These results provide a basis for further research on the genomic characteristics of Ankole and other Sanga cattle breeds for quality beef.
Collapse
Affiliation(s)
- Mengistie Taye
- Department of Agricultural Biotechnology, Animal Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Bahir Dar University, College of Agriculture and Environmental Sciences, PO Box 79, Bahir Dar, Ethiopia
| | - Jaemin Kim
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Sook Hee Yoon
- Department of Agricultural Biotechnology, Animal Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Wonseok Lee
- Department of Agricultural Biotechnology, Animal Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Olivier Hanotte
- The University of Nottingham, School of Life Sciences, Nottingham, NG7 2RD, UK
- International Livestock Research Institute (ILRI), PO Box 5689, Addis Ababa, Ethiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI), PO Box 5689, Addis Ababa, Ethiopia
| | - Stephen Kemp
- International Livestock Research Institute (ILRI), PO Box 30709-00100, Nairobi, Kenya
- The Centre for Tropical Livestock Genetics and Health, The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland
| | - Okeyo Ally Mwai
- International Livestock Research Institute (ILRI), PO Box 30709-00100, Nairobi, Kenya
| | | | - Seoae Cho
- C&K genomics, Main Bldg. #514, SNU Research Park, Seoul, 151-919, Republic of Korea
| | - Sung Jong Oh
- National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Hak-Kyo Lee
- The Animal Molecular Genetics & Breeding Center, Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Animal Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea.
- C&K genomics, Main Bldg. #514, SNU Research Park, Seoul, 151-919, Republic of Korea.
- Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.
| |
Collapse
|
15
|
Chen B, Xu J, He X, Xu H, Li G, Du H, Nie Q, Zhang X. A Genome-Wide mRNA Screen and Functional Analysis Reveal FOXO3 as a Candidate Gene for Chicken Growth. PLoS One 2015; 10:e0137087. [PMID: 26366565 PMCID: PMC4569328 DOI: 10.1371/journal.pone.0137087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Chicken growth performance provides direct economic benefits to the poultry industry. However, the underlying genetic mechanisms are unclear. The objective of this study was to identify candidate genes associated with chicken growth and investigate their potential mechanisms. We used RNA-Seq to study the breast muscle transcriptome in high and low tails of Recessive White Rock (WRRh, WRRl) and Xinghua chickens (XHh, XHl). A total of 60, 23, 153 and 359 differentially expressed genes were detected in WRRh vs. WRRl, XHh vs. XHl, WRRh vs. XHh and WRRl vs. XHl, respectively. GO, KEGG pathway and gene network analyses showed that CEBPB, FBXO32, FOXO3 and MYOD1 played key roles in growth. The functions of FBXO32 and FOXO3 were validated. FBXO32 was predominantly expressed in leg muscle, heart and breast muscle. After decreased FBXO32 expression, growth-related genes such as PDK4, IGF2R and IGF2BP3 were significantly down-regulated (P < 0.05). FBXO32 was significantly (P < 0.05) associated with carcass and meat quality traits, but not growth traits. FOXO3 was predominantly expressed in breast and leg muscle. In both of these tissues, the FOXO3 mRNA level in XH was significantly higher than that in WRR chickens with normal body weight (P < 0.05). In DF-1 cells, siRNA knockdown of FOXO3 significantly (P < 0.01) inhibited the MYOD expression and significantly up-regulated (P < 0.01 or P < 0.05) the expression of growth-related genes including CEBPB, FBXO32, GH, GHR, IGF1R, IGF2R, IGF2BP1, IGF2BP3, INSR, PDK1 and PDK4. Moreover, 18 SNPs were identified in FOXO3. G66716193A was significantly (P < 0.05) associated with growth traits. The sites C66716002T, C66716195T and A66716179G were significantly (P < 0.05) associated with growth or carcass traits. These results demonstrated that FOXO3 is a candidate gene influencing chicken growth. Our observations provide new clues to understand the molecular basis of chicken growth.
Collapse
Affiliation(s)
- Biao Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Jiguo Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Xiaomei He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Guihuan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Hongli Du
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
- * E-mail: (QN); (HD)
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
- * E-mail: (QN); (HD)
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
16
|
Sabarly V, Aubron C, Glodt J, Balliau T, Langella O, Chevret D, Rigal O, Bourgais A, Picard B, de Vienne D, Denamur E, Bouvet O, Dillmann C. Interactions between genotype and environment drive the metabolic phenotype within Escherichia coli isolates. Environ Microbiol 2015; 18:100-17. [PMID: 25808978 DOI: 10.1111/1462-2920.12855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/26/2015] [Accepted: 03/07/2015] [Indexed: 11/28/2022]
Abstract
To gain insights into the adaptation of the Escherichia coli species to different environments, we monitored protein abundances using quantitative proteomics and measurements of enzymatic activities of central metabolism in a set of five representative strains grown in four contrasted culture media including human urine. Two hundred and thirty seven proteins representative of the genome-scale metabolic network were identified and classified into pathway categories. We found that nutrient resources shape the general orientation of metabolism through coordinated changes in the average abundances of proteins and in enzymatic activities that all belong to the same pathway category. For example, each culture medium induces a specific oxidative response whatever the strain. On the contrary, differences between strains concern isolated proteins and enzymes within pathway categories in single environments. Our study confirms the predominance of genotype by environment interactions at the proteomic and enzyme activity levels. The buffering of genetic variation when considering life-history traits suggests a multiplicity of evolutionary strategies. For instance, the uropathogenic isolate CFT073 shows a deregulation of iron demand and increased oxidative stress response.
Collapse
Affiliation(s)
- Victor Sabarly
- Univ Paris-Sud, UMR de Génétique Végétale INRA/Univ Paris-Sud/CNRS, Ferme du Moulon, 91190, Gif-sur-Yvette, France.,INSERM, IAME, UMR 1137, F-75018, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| | - Cécile Aubron
- INSERM, IAME, UMR 1137, F-75018, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| | - Jérémy Glodt
- INSERM, IAME, UMR 1137, F-75018, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| | - Thierry Balliau
- INRA, UMR de Génétique Végétale INRA/Univ Paris-Sud/CNRS, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Olivier Langella
- CNRS, UMR de Génétique Végétale INRA/Univ Paris-Sud/CNRS, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Didier Chevret
- INRA, UMR MICALIS, PAPPSO, batiment 526, Domaine de Vilvert, 78352, Jouy en Josas cedex, France
| | - Odile Rigal
- Service de Biochimie, Hormonologie, Hôpital Robert Debré, Paris, France
| | - Aurélie Bourgais
- CNRS, UMR de Génétique Végétale INRA/Univ Paris-Sud/CNRS, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Bertrand Picard
- INSERM, IAME, UMR 1137, F-75018, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| | - Dominique de Vienne
- Univ Paris-Sud, UMR de Génétique Végétale INRA/Univ Paris-Sud/CNRS, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Erick Denamur
- INSERM, IAME, UMR 1137, F-75018, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| | - Odile Bouvet
- INSERM, IAME, UMR 1137, F-75018, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| | - Christine Dillmann
- Univ Paris-Sud, UMR de Génétique Végétale INRA/Univ Paris-Sud/CNRS, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Jiang C, Yang Y, Huang C, Whitelaw B. Promoter characterization and functional association with placenta of porcine MAGEL2. Gene 2014; 547:63-9. [PMID: 24930731 DOI: 10.1016/j.gene.2014.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022]
Abstract
MAGEL2 (melanoma antigen-like gene 2) is essential for circadian function, metabolism and reproduction in mammals. This study was conducted to investigate transcriptional regulation and functional importance in the placenta of porcine MAGEL2. Quantitative real-time PCR showed that MAGEL2 was highly expressed in porcine hypothalamus, pituitary and placenta (P<0.05). The gene was down-regulated in Meishan but up-regulated in Duroc placentas from 25 days post-coitum (dpc) to 105 dpc (P<0.01). Dual luciferase assay demonstrated that the region -151/+110 had the highest promoter activity. Of the g. -712C>G and g. -708T>C polymorphisms in MAGEL2 promoter, -712C and -708T were observed to be predominant in Large White, Landrace and Duroc populations, while -712G and -708C were predominant in Meishan and Rongchang populations. Moreover, -712C>G and -708T>C had significant effects on MAGEL2 transcription (P<0.05) and placental efficiency (P<0.01). In conclusion, -151/+110 harbors the basal promoter of porcine MAGEL2. The region upstream the basal promoter contains repressive cis-elements. And, MAGEL2 is essential in porcine placenta.
Collapse
Affiliation(s)
- Caode Jiang
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Southwest University, Chongqing 400716, PR China.
| | - Yongsheng Yang
- School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Chenchen Huang
- School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Bruce Whitelaw
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
18
|
|
19
|
Pérez-Montarelo D, Hudson NJ, Fernández AI, Ramayo-Caldas Y, Dalrymple BP, Reverter A. Porcine tissue-specific regulatory networks derived from meta-analysis of the transcriptome. PLoS One 2012; 7:e46159. [PMID: 23049964 PMCID: PMC3458843 DOI: 10.1371/journal.pone.0046159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species.
Collapse
Affiliation(s)
- Dafne Pérez-Montarelo
- Computational and Systems Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Animal, Food and Health Sciences, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, Australia
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Nicholas J. Hudson
- Computational and Systems Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Animal, Food and Health Sciences, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, Australia
| | - Ana I. Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Yuliaxis Ramayo-Caldas
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Brian P. Dalrymple
- Computational and Systems Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Animal, Food and Health Sciences, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, Australia
| | - Antonio Reverter
- Computational and Systems Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Animal, Food and Health Sciences, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Characterization, tissue expression, and imprinting analysis of the porcine CDKN1C and NAP1L4 genes. J Biomed Biotechnol 2012; 2012:946527. [PMID: 22500112 PMCID: PMC3303864 DOI: 10.1155/2012/946527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/25/2011] [Accepted: 11/15/2011] [Indexed: 01/07/2023] Open
Abstract
CDKN1C and NAP1L4 in human CDKN1C/KCNQ1OT1 imprinted domain are two key candidate genes responsible for BWS (Beckwith-Wiedemann syndrome) and cancer. In order to increase understanding of these genes in pigs, their cDNAs are characterized in this paper. By the IMpRH panel, porcine CDKN1C and NAP1L4 genes were assigned to porcine chromosome 2, closely linked with IMpRH06175 and with LOD of 15.78 and 17.94, respectively. By real-time quantitative RT-PCR and polymorphism-based method, tissue and allelic expression of both genes were determined using F1 pigs of Rongchang and Landrace reciprocal crosses. The transcription levels of porcine CDKN1C and NAP1L4 were significantly higher in placenta than in other neonatal tissues (P < 0.01) although both genes showed the highest expression levels in the lung and kidney of one-month pigs (P < 0.01). Imprinting analysis demonstrated that in pigs, CDKN1C was maternally expressed in neonatal heart, tongue, bladder, ovary, spleen, liver, skeletal muscle, stomach, small intestine, and placenta and biallelically expressed in lung and kidney, while NAP1L4 was biallelically expressed in the 12 neonatal tissues examined. It is concluded that imprinting of CDKN1C is conservative in mammals but has tissue specificity in pigs, and imprinting of NAP1L4 is controversial in mammalian species.
Collapse
|