1
|
Zeng Z, Lan Y, Chen Y, Zuo F, Gong Y, Luo G, Peng Y, Yuan Z. LncRNA GAS5 suppresses inflammatory responses by inhibiting HMGB1 release via miR-155-5p/SIRT1 axis in sepsis. Eur J Pharmacol 2023; 942:175520. [PMID: 36693551 DOI: 10.1016/j.ejphar.2023.175520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Sepsis comprises a lethal immunologic response due to infection. Increasingly, evidence has demonstrated the important role of long non-coding RNA growth arrest-specific transcript 5 (GAS5) in the regulation of sepsis. Nevertheless, the mechanisms by which GAS5 participates in the progression of sepsis remain unclear. Our study demonstrated the role and underlying mechanism of GAS5 in regulating lipopolysaccharide (LPS)-induced inflammation. In this study, GAS5 expression was found to be markedly decreased in serum samples of sepsis patients and a sepsis mouse model, and was negatively related with HMGB1 expression. GAS5 overexpression inhibited cell inflammatory responses by decreasing HMGB1 release. Furthermore, GAS5 inhibited LPS-mediated hyperacetylation and the release of HMGB1 by increasing the expression of sirtuin1 (SIRT1). Additionally, upregulated GAS5 attenuated inflammatory responses in vitro and vivo, and the knockdown of a miR-155-5p mimic and SIRT1 rescued the effects of GAS5 upregulation. Mechanistically, GAS5 sponged miR-155-5p to upregulate SIRT1, thereby inhibiting HMGB1 acetylation and release. In conclusion, our findings indicate that GAS5 suppresses inflammatory responses by modulating the miR-155-5p/SIRT1/HMGB1 axis in sepsis, providing a novel therapeutic target for inflammation in sepsis.
Collapse
Affiliation(s)
- Zhuo Zeng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingying Lan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fangqing Zuo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yali Gong
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yizhi Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Yuan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
2
|
Yang R, Gao Y, Li H, Huang W, Tu D, Yang M, Liu X, Hong JS, Gao HM. Posttranslational S-nitrosylation modification regulates HMGB1 secretion and promotes its proinflammatory and neurodegenerative effects. Cell Rep 2022; 40:111330. [PMID: 36103834 PMCID: PMC9531316 DOI: 10.1016/j.celrep.2022.111330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Nuclear protein high-mobility group box 1 (HMGB1) can be actively secreted by activated immune cells and functions as a proinflammatory cytokine. Regulation of HMGB1 secretion is critical for treatment of HMGB1-mediated inflammation and related diseases. This study demonstrates that S-nitrosylation (SNO; the covalent binding of nitric oxide [NO] to cysteine thiols) by inducible nitric oxide synthase (iNOS)-derived NO at Cys106 is essential and sufficient for inflammation-elicited HMGB1 secretion. iNOS deletion or inhibition or Cys106Ser mutation prevents lipopolysaccharide (LPS)- and/or poly(I:C)-elicited HMGB1 secretion. NO donors induce SNO of HMGB1 and reproduce inflammogen-triggered HMGB1 secretion. SNO of HMGB1 promotes its proinflammatory and neurodegenerative effects. Intranigral HMGB1 injection induces chronic microglial activation, dopaminergic neurodegeneration, and locomotor deficits, the key features of Parkinson’s disease (PD), in wild-type, but not Mac1 (CD11b/CD18)-deficient, mice. This study indicates pivotal roles for SNO modification in HMGB1 secretion and HMGB1-Mac1 interaction for inflammatory neurodegeneration, identifying a mechanistic basis for PD development. Regulation of HMGB1 secretion is critical for the treatment of HMGB1-mediated inflammation and related diseases. Yang et al. demonstrate that posttranslational S-nitrosylation modification (the covalent binding of nitric oxide to protein cysteine thiols) regulates HMGB1 secretion and promotes its proinflammatory and neurodegenerative effects, thereby contributing to Parkinson’s disease pathogenesis.
Collapse
Affiliation(s)
- Ru Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Yun Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China; Laboratory of Neurobiology, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Hui Li
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Wei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Dezhen Tu
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China; Laboratory of Neurobiology, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mengnan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Xingqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Hui-Ming Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
3
|
Lu J, Yue Y, Xiong S. Extracellular HMGB1 augments macrophage inflammation by facilitating the endosomal accumulation of ALD-DNA via TLR2/4-mediated endocytosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166184. [PMID: 34087422 DOI: 10.1016/j.bbadis.2021.166184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with unclear pathogenesis. We previously reported that syngenetic, activated lymphocyte-derived DNA (ALD-DNA) could robustly elicit macrophage activation, which plays an important role in the pathogenesis of murine lupus nephritis. In addition, extracellular HMGB1 obviously facilitated the accumulation of ALD-DNA in endosomes and promoted macrophage inflammation. While the detailed mechanism was still unknown. In this study, we found that HMGB1 could obviously change the DNA uptake pathways in macrophages. ALD-DNA alone was mainly uptake by the low efficient and unselective macropinocytosis, while extracellular HMGB1 potently promoted the more efficient and specific clathrin-/caveolin-1-dependent receptor-mediated endocytosis pathways, and led to the rapid and abundant aggregation of ALD-DNA in endosomes. This effect relied on the DNA binding ability and TLR2/TLR4 of HMGB1. Our study not only helped us to understand the promotion mechanisms of extracellular HMGB1 on ALD-DNA-induced macrophage inflammation, but also provided some clues to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Jincheng Lu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yan Yue
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
4
|
Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci 2020; 259:118203. [PMID: 32781069 DOI: 10.1016/j.lfs.2020.118203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
High mobility group box 1 (HMGB1) is a highly conserved nucleoprotein involving in numerous biological processes, and well known to trigger immune responses as the damage-associated molecular pattern (DAMP) in the extracellular environment. The role of HMGB1 is distinct due to its multiple functions in different subcellular location. In the nucleus, HMGB1 acts as a chaperone to regulate DNA events including DNA replication, repair and nucleosome stability. While in the cytoplasm, it is engaged in regulating autophagy and apoptosis. A great deal of research has explored its function in the pathogenesis of renal diseases. This review mainly focuses on the role of HMGB1 and summarizes the pathway and treatment targeting HMGB1 in the various renal diseases which may open the windows of opportunities for the development of desirable therapeutic ends in these pathological conditions.
Collapse
Affiliation(s)
- Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| |
Collapse
|
5
|
Lv WL, Arnesano F, Carloni P, Natile G, Rossetti G. Effect of in vivo post-translational modifications of the HMGB1 protein upon binding to platinated DNA: a molecular simulation study. Nucleic Acids Res 2019; 46:11687-11697. [PMID: 30407547 PMCID: PMC6294504 DOI: 10.1093/nar/gky1082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
Cisplatin is one of the most widely used anticancer drugs. Its efficiency is unfortunately severely hampered by resistance. The High Mobility Group Box (HMGB) proteins may sensitize tumor cells to cisplatin by specifically binding to platinated DNA (PtDNA) lesions. In vivo, the HMGB/PtDNA binding is regulated by multisite post-translational modifications (PTMs). The impact of PTMs on the HMGB/PtDNA complex at atomistic level is here investigated by enhanced sampling molecular simulations. The PTMs turn out to affect the structure of the complex, the mobility of several regions (including the platinated site), and the nature of the protein/PtDNA non-covalent interactions. Overall, the multisite PTMs increase significantly the apparent synchrony of all the contacts between the protein and PtDNA. Consequently, the hydrophobic anchoring of the side chain of F37 between the two cross-linked guanines at the platinated site-a key element of the complexes formation - is more stable than in the complex without PTM. These differences can account for the experimentally measured greater affinity for PtDNA of the protein isoforms with PTMs. The collective behavior of multisite PTMs, as revealed here by the synchrony of contacts, may have a general significance for the modulation of intermolecular recognitions occurring in vivo.
Collapse
Affiliation(s)
- Wenping Lyu Lv
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH-Aachen University, 52056 Aachen, Germany.,Computation-Based Science and Technology Research Center, Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "A. Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Giovanni Natile
- Department of Chemistry, University of Bari "A. Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52062 Aachen, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
6
|
Schröder M, Yusein-Myashkova S, Todorova J, Pasheva E, Ugrinova I. High mobility group box 1 protein (HMGB1) stimulates the nuclear accumulation of p53. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1604159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Maria Schröder
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev’’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Shazie Yusein-Myashkova
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev’’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jordana Todorova
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev’’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Evdokia Pasheva
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev’’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev’’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
7
|
Chen X, Xu Y, Xiong P, Tan Z, Gong F, Hou X, Zheng F. Effects of mimicked acetylated HMGB1 on macrophages and dendritic cells. Mol Med Rep 2018; 18:5527-5535. [PMID: 30365069 PMCID: PMC6236298 DOI: 10.3892/mmr.2018.9584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/25/2018] [Indexed: 11/05/2022] Open
Abstract
Extracellular high mobility group box 1 (HMGB1) serves a critical role in inflammatory diseases. HMGB1 is released into the extracellular environment mainly by passive release from necrotic cells or active secretion from monocytes/macrophages following stimulation. However, the translocation of actively secreted HMGB1 from the nucleus to the cytoplasm with post‑translational modifications such as acetylation is required; HMGB1 is then released into the extracellular space. Whether acetylation influences the extracellular function of HMGB1 remains unknown. In the present study, an optimized method of gene mutation by using well‑designed primers in particular, which were employed to identify the mutant gene. The substitution of six lysine residues for glutamines was conducted to mimic acetylated HMGB1 (HMGB1‑M) and observe the effects of HMGB1‑M on macrophages and dendritic cells (DCs). Tumor necrosis factor (TNF)‑α production in RAW 264.7 cells was assessed by ELISA. The phagocytic potential of RAW 264.7 cells, DC maturation and CXCR4 expression were analyzed by flow cytometry. The results of the present study revealed that HMGB1‑M increased cytoplasmic translocation. Compared with HMGB1, HMGB1‑M increased TNF‑α production within RAW 264.7 cells and decreased the mean fluorescence intensity (MFI) of integrin α X, and the percentage and MFI of major histocompatibility complex‑II on DCs. HMGB1‑M exhibited no significant effects on phagocytosis of macrophages and expression frequency of cluster of differentiation 80 and chemokine receptor type 4 on DCs. These results suggested that HMGB1‑M may partly promote inflammation and decrease DC maturation. Thus, the findings of the present study may provide insight into the complex role of HMGB1 in inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ping Xiong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
8
|
Gaskell H, Ge X, Nieto N. High-Mobility Group Box-1 and Liver Disease. Hepatol Commun 2018; 2:1005-1020. [PMID: 30202816 PMCID: PMC6128227 DOI: 10.1002/hep4.1223] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
High‐mobility group box‐1 (HMGB1) is a ubiquitous protein. While initially thought to be simply an architectural protein due to its DNA‐binding ability, evidence from the last decade suggests that HMGB1 is a key protein participating in the pathogenesis of acute liver injury and chronic liver disease. When it is passively released or actively secreted after injury, HMGB1 acts as a damage‐associated molecular pattern that communicates injury and inflammation to neighboring cells by the receptor for advanced glycation end products or toll‐like receptor 4, among others. In the setting of acute liver injury, HMGB1 participates in ischemia/reperfusion, sepsis, and drug‐induced liver injury. In the context of chronic liver disease, it has been implicated in alcoholic liver disease, liver fibrosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Recently, specific posttranslational modifications have been identified that could condition the effects of the protein in the liver. Here, we provide a detailed review of how HMGB1 signaling participates in acute liver injury and chronic liver disease.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine University of Illinois at Chicago Chicago IL
| |
Collapse
|
9
|
He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 2017; 8:64534-64550. [PMID: 28969092 PMCID: PMC5610024 DOI: 10.18632/oncotarget.17885] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant protein in most eukaryocytes. It can bind to several receptors such as advanced glycation end products (RAGE) and Toll-like receptors (TLRs), in direct or indirect way. The biological effects of HMGB1 depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription, telomere maintenance, and genome stability. While outside the nucleus, it possesses more complicated functions, including regulating cell proliferation, autophagy, inflammation and immunity. During tumor development, HMGB1 has been characterized as both a pro- and anti-tumoral protein by either promoting or suppressing tumor growth, proliferation, angiogenesis, invasion and metastasis. However, the current knowledge concerning the positive and negative effects of HMGB1 on tumor development is not explicit. Here, we evaluate the role of HMGB1 in tumor development and attempt to reconcile the dual effects of HMGB1 in carcinogenesis. Furthermore, we would like to present current strategies targeting against HMGB1, its receptor or release, which have shown potentially therapeutic value in cancer intervention.
Collapse
Affiliation(s)
- Si-Jia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yu
- Oncology Department, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ling Tian
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Daniels MJD, Brough D. Unconventional Pathways of Secretion Contribute to Inflammation. Int J Mol Sci 2017; 18:E102. [PMID: 28067797 PMCID: PMC5297736 DOI: 10.3390/ijms18010102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022] Open
Abstract
In the conventional pathway of protein secretion, leader sequence-containing proteins leave the cell following processing through the endoplasmic reticulum (ER) and Golgi body. However, leaderless proteins also enter the extracellular space through mechanisms collectively known as unconventional secretion. Unconventionally secreted proteins often have vital roles in cell and organism function such as inflammation. Amongst the best-studied inflammatory unconventionally secreted proteins are interleukin (IL)-1β, IL-1α, IL-33 and high-mobility group box 1 (HMGB1). In this review we discuss the current understanding of the unconventional secretion of these proteins and highlight future areas of research such as the role of nuclear localisation.
Collapse
Affiliation(s)
- Michael J D Daniels
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK.
| | - David Brough
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
11
|
Ugrinova I, Pasheva E. HMGB1 Protein: A Therapeutic Target Inside and Outside the Cell. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:37-76. [PMID: 28215228 DOI: 10.1016/bs.apcsb.2016.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-mobility group box 1 protein (HMGB1) is a nonhistone chromosomal protein discovered more than 30 years ago. It is an abundant nuclear protein that has a dual function-in the nucleus, it binds DNA and participates in practically all DNA-dependent processes serving as an architectural factor. Outside the cell, HMGB1 plays a different role-it acts as an alarmine that activates a large number of HMGB1-"competent" cells and mediates a broad range of physiological and pathological responses. This universality makes it an attractive target for innovative therapeutic strategies in the treatment of various diseases. Here we present an overview of the major nuclear and extracellular properties of HMGB1 and describe its interaction with different molecular partners as specific receptors or inhibitors, which are important for its role as a target in multiple diseases. We highlight its pivotal role as a target for cancer treatment at two aspects: first in terms of its substantial impact on the repair capacity of cancer cells, thus affecting the effectiveness of chemotherapy with the antitumor drug cis-platinum and, second, the possibility to be targeted by microRNAs influencing different pathways of human diseases, thus making it a promising candidate for a new strategy for therapeutic interventions against various pathological conditions but mainly cancer.
Collapse
Affiliation(s)
- I Ugrinova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - E Pasheva
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
12
|
Fu J, Shi Q, Song X, Liu Z, Wang Y, Wang Y, Song E, Song Y. From the Cover: Tetrachlorobenzoquinone Exerts Neurological Proinflammatory Activity by Promoting HMGB1 Release, Which Induces TLR4 Clustering within the Lipid Raft. Toxicol Sci 2016; 153:303-15. [DOI: 10.1093/toxsci/kfw124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
He Y, Ding Y, Wang D, Zhang W, Chen W, Liu X, Qin W, Qian X, Chen H, Guo Z. HMGB1 bound to cisplatin-DNA adducts undergoes extensive acetylation and phosphorylation in vivo. Chem Sci 2015; 6:2074-2078. [PMID: 29449921 PMCID: PMC5810237 DOI: 10.1039/c4sc03650f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/13/2014] [Indexed: 11/21/2022] Open
Abstract
Cisplatin, one of the most effective anticancer drugs, is a DNA-damaging agent that induces cell death primarily by apoptosis. For many years, HMGB1 has been known to be a recognition protein for cisplatin-DNA lesions. Here, an application of a biomolecular probe based on a peptide-oligonucleotide conjugate is presented as a novel method for investigating this recognition process in vivo. Proteins known to be involved in the recognition of cisplatin-damaged DNA were pulled down and identified, including members of the HMGB family and a number of other proteins. Interestingly, at least 4 subforms of HMGB1 bind to cisplatin-DNA adducts. These proteins were further identified as post-translationally acetylated or phosphorylated forms of HMGB1. These results provide a rich pool of protein candidates whose roles in the mechanism of action of platinum drugs should be explored. These newly discovered molecular components of the DNA damage signalling cascade could serve as novel links between the initial cell responses to DNA damage and the downstream apoptotic or DNA repair pathways.
Collapse
Affiliation(s)
- Yafeng He
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Yin Ding
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Dan Wang
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Institute of Radiation Medicine , 33 Life Science Park Road, Changping District , Beijing , 102206 P. R. China
| | - Weizhong Chen
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Xichun Liu
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Weijie Qin
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Institute of Radiation Medicine , 33 Life Science Park Road, Changping District , Beijing , 102206 P. R. China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Institute of Radiation Medicine , 33 Life Science Park Road, Changping District , Beijing , 102206 P. R. China
| | - Hao Chen
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| |
Collapse
|
14
|
Curcumin attenuated acute Propionibacterium acnes -induced liver injury through inhibition of HMGB1 expression in mice. Int Immunopharmacol 2015; 24:159-165. [DOI: 10.1016/j.intimp.2014.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
15
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
16
|
Nguyen TH, Rossetti G, Arnesano F, Ippoliti E, Natile G, Carloni P. Molecular Recognition of Platinated DNA from Chromosomal HMGB1. J Chem Theory Comput 2014; 10:3578-84. [PMID: 26588321 DOI: 10.1021/ct500402e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cisplatin cures testicular and ovarian cancers with unprecedented potency. It induces its beneficial activity by covalently binding to DNA. Repair enzymes, which remove the platinated lesions from DNA, cause drug resistance. Chromosomal High Mobility Group Box proteins (HMGB) may interfere with this process by binding to platinated DNA. Using 8 μs multiple-walker well-tempered metadynamics simulations, here, we investigated the structural and the energetic determinants of one of the HMGB proteins (HMGB1A) in complex with the platinated oligonucleotide [Pt(NH3)2](2+)-d(CCUCTCTG*G*ACCTTCC)-d(GGAGAGACCTGGAAGG) (*G are platinated guanines), for which experimental structural information is available. The calculated affinity is in good agreement with experiment. The process is predicted to be enthalpy-driven, as found for other protein/DNA complexes. The Lys7 residue, whose side-chain was not resolved in the X-ray structure, is found to interact with the C4 5'-phosphate and this interaction emerges as a key facet for the molecular recognition process. In addition, our calculations provide a molecular basis for the experimentally measured decreased affinity of HMGB1A for platinated DNA, as a consequence of Cys22-Cys44 S-S bridge formation (such an oxidation cannot take place in some members of this protein family present in the testis, where the drug is particularly effective). This decrease is likely to be caused by a small yet significant rearrangement of helices H1 and H2 with consequent alteration of the Phe37 juxtaposition.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Computational Biophysics, German Research School for Simulation Sciences (joint venture of RWTH Aachen University and Forschungszentrum Jülich, Germany) , D-52425 Jülich, Germany.,Institute for Advanced Simulation IAS-5, Computational Biomedicine, Forschungszentrum Jülich , D-52425 Jülich, Germany.,Computational Biomedicine section (INM-9), Institute for Neuroscience and Medicine (INM) , 52425 Jülich, Germany
| | - Giulia Rossetti
- Computational Biophysics, German Research School for Simulation Sciences (joint venture of RWTH Aachen University and Forschungszentrum Jülich, Germany) , D-52425 Jülich, Germany.,Institute for Advanced Simulation IAS-5, Computational Biomedicine, Forschungszentrum Jülich , D-52425 Jülich, Germany.,Computational Biomedicine section (INM-9), Institute for Neuroscience and Medicine (INM) , 52425 Jülich, Germany.,Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain.,Joint IRB-BSC Program in Computational Biology, Barcelona, Spain.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "A. Moro" , via Edoardo Orabona 4, I-70125 Bari, Italy
| | - Emiliano Ippoliti
- Computational Biophysics, German Research School for Simulation Sciences (joint venture of RWTH Aachen University and Forschungszentrum Jülich, Germany) , D-52425 Jülich, Germany.,Institute for Advanced Simulation IAS-5, Computational Biomedicine, Forschungszentrum Jülich , D-52425 Jülich, Germany.,Computational Biomedicine section (INM-9), Institute for Neuroscience and Medicine (INM) , 52425 Jülich, Germany
| | - Giovanni Natile
- Department of Chemistry, University of Bari "A. Moro" , via Edoardo Orabona 4, I-70125 Bari, Italy
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences (joint venture of RWTH Aachen University and Forschungszentrum Jülich, Germany) , D-52425 Jülich, Germany.,Institute for Advanced Simulation IAS-5, Computational Biomedicine, Forschungszentrum Jülich , D-52425 Jülich, Germany.,Computational Biomedicine section (INM-9), Institute for Neuroscience and Medicine (INM) , 52425 Jülich, Germany
| |
Collapse
|
17
|
High-mobility group box 1 is a novel deacetylation target of Sirtuin1. Kidney Int 2014; 87:95-108. [PMID: 24940804 PMCID: PMC4270955 DOI: 10.1038/ki.2014.217] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/18/2022]
Abstract
High mobility group box 1 (HMGB1) undergoes acetylation, nuclear-to-cytoplasmic translocation and release from stressed kidneys, unleashing a signaling cascade of events leading to systemic inflammation. Here we tested whether the deacetylase activity of Sirtuin1 (SIRT1) participates in regulating nuclear retention of HMGB1 to ultimately modulate damage signaling initiated by HMGB1 secretion during stress. When immunoprecipitated acetylated HMGB1 was incubated with SIRT1, HMGB1 acetylation decreased by 57%. Proteomic analysis showed that SIRT1 deacetylates HMGB1 at four lysine residues (55, 88, 90 and 177) within the pro-inflammatory and nuclear localization signal domains of HMGB1. Genetic ablation or pharmacological inhibition of SIRT1 in endothelial cells increased HMGB1 acetylation and translocation. In vivo, deletion of SIRT1 reduced nuclear HMGB1 while increasing its acetylation and release into circulation during basal and ischemic conditions causing increased renal damage. Conversely, resveratrol pretreatment led to decreased HMGB1 acetylation, its nuclear retention, decreased systemic release and reduced tubular damage. Thus, a vicious cycle is set into motion in which the inflammation-induced repression of SIRT1 disables deacetylation of HMGB1, facilitates its nuclear-to-cytoplasmic translocation and systemic release, thereby maintaining inflammation.
Collapse
|
18
|
Kuroda N, Inoue K, Ikeda T, Hara Y, Wake K, Sato T. Apoptotic response through a high mobility box 1 protein-dependent mechanism in LPS/GalN-induced mouse liver failure and glycyrrhizin-mediated inhibition. PLoS One 2014; 9:e92884. [PMID: 24690901 PMCID: PMC3972228 DOI: 10.1371/journal.pone.0092884] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/26/2014] [Indexed: 12/31/2022] Open
Abstract
HMGB1 is a nuclear component involved in nucleosome stabilization and transcription regulation, but extracellularly it is able to serve as a potential late mediator of lethality. In the present study, we explored inflammation-promoting activity of HMGB1 and blockade of extracellular release of HMGB1 by glycyrrhizin (GL) in LPS/GalN-triggered mouse liver injury. At 1 to 10 h after LPS/GalN-treatment, mice were anesthetized to collect blood from heart puncture, and serum transaminase and HMGB1 were evaluated. Administration of LPS/GalN precipitated tissue injury associated with time-dependent alteration in HMGB1 serum levels. At 8 h nuclear immunoreactive products were remarkably reduced and extracellular HMGB1 expression was found exclusively in the pericentral foci. The treatment with GL significantly down-regulated the serum levels of ALT, AST, and HMGB1 in addition to the strong inhibition of tissue injury and extracellular immunoreactivity to HMGB1 and to acetylated-lysine. Furthermore, GL brought about a significant decrease in the number of apoptotic hepatocytes labeled with TUNEL-method. On the basis of these results, three apoptosis-associated genes were identified with microarray analysis and real-time PCR. The ChIP-assay revealed the binding of HMGB1 protein to Gsto1 promoter sequence in LPS/GalN-treated mice and the remarkable decrease in combined HMGB1 protein by GL. The current findings claim that a single injection of LPS/GalN might stimulate apoptosis of hepatocytes through the binding of HMGB1 protein to Gsto1 promoter region and that GL-treatment might prevent the apoptosis and inflammatory infiltrates caused with LPS/GalN-injection by disturbing the binding of HMGB1 protein to Gsto1 promoter sequence.
Collapse
Affiliation(s)
- Noriyuki Kuroda
- Department of Anatomy and Histocytology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Kouji Inoue
- Research Center of Electron Microscopy, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Tadayuki Ikeda
- Department of Geriatric Dentistry, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yaiko Hara
- Department of Anatomy and Histocytology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Kenjiro Wake
- Department of Anatomy and Histocytology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
- Liver Research Unit, Minophagen Pharmaceutical Co. Ltd., Tokyo, Japan
| | - Tetsuji Sato
- Department of Anatomy and Histocytology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
- * E-mail:
| |
Collapse
|
19
|
Role of the acidic tail of high mobility group protein B1 (HMGB1) in protein stability and DNA bending. PLoS One 2013; 8:e79572. [PMID: 24255708 PMCID: PMC3821859 DOI: 10.1371/journal.pone.0079572] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/02/2013] [Indexed: 12/14/2022] Open
Abstract
High mobility group box (HMGB) proteins are abundant nonhistone proteins found in all eukaryotic nuclei and are capable of binding/bending DNA. The human HMGB1 is composed of two binding motifs, known as Boxes A and B, are L-shaped alpha-helix structures, followed by a random-coil acidic tail that consists of 30 Asp and Glu residues. This work aimed at evaluating the role of the acidic tail of human HMGB1 in protein stability and DNA interactions. For this purpose, we cloned, expressed and purified HMGB1 and its tailless form, HMGB1ΔC, in E. coli strain. Tryptophan fluorescence spectroscopy and circular dichroism (CD) experiments clearly showed an increase in protein stability promoted by the acidic tail under different conditions, such as the presence of the chemical denaturant guanidine hydrochloride (Gdn.HCl), high temperature and low pH. Folding intermediates found at low pH for both proteins were denatured only in the presence of chemical denaturant, thus showing a relatively high stability. The acidic tail did not alter the DNA-binding properties of the protein, although it enhanced the DNA bending capability from 76° (HMGB1ΔC) to 91° (HMGB1), as measured using the fluorescence resonance energy transfer technique. A model of DNA bending in vivo was proposed, which might help to explain the interaction of HMGB1 with DNA and other proteins, i.e., histones, and the role of that protein in chromatin remodeling.
Collapse
|
20
|
Combinatorial control of gene expression. BIOMED RESEARCH INTERNATIONAL 2013; 2013:407263. [PMID: 24069600 PMCID: PMC3771257 DOI: 10.1155/2013/407263] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/07/2013] [Accepted: 07/21/2013] [Indexed: 02/02/2023]
Abstract
The complexity and diversity of eukaryotic organisms are a feat of nature's engineering. Pulling the strings of such an intricate machinery requires an even more masterful and crafty approach. Only the number and type of responses that they generate exceed the staggering proportions of environmental signals perceived and processed by eukaryotes. Hence, at first glance, the cell's sparse stockpile of controlling factors does not seem remotely adequate to carry out this response. The question as to how eukaryotes sense and respond to environmental cues has no single answer. It is an amalgamation, an interplay between several processes, pathways, and factors—a combinatorial control. A short description of some of the most important elements that operate this entire conglomerate is given in this paper.
Collapse
|
21
|
Malarkey CS, Churchill MEA. The high mobility group box: the ultimate utility player of a cell. Trends Biochem Sci 2012; 37:553-62. [PMID: 23153957 DOI: 10.1016/j.tibs.2012.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/03/2012] [Accepted: 09/18/2012] [Indexed: 12/26/2022]
Abstract
High mobility group (HMG) box proteins are abundant and ubiquitous DNA binding proteins with a remarkable array of functions throughout the cell. The structure of the HMG box DNA binding domain and general mechanisms of DNA binding and bending have been known for more than a decade. However, new mechanisms that regulate HMG box protein intracellular translocation, and by which HMG box proteins recognize DNA with and without sequence specificity, have only recently been uncovered. This review focuses primarily on the Sry-like HMG box family, HMGB1, and mitochondrial transcription factor A. For these proteins, structural and biochemical studies have shown that HMG box protein modularity, interactions with other DNA binding proteins and cellular receptors, and post-translational modifications are key regulators of their diverse functions.
Collapse
Affiliation(s)
- Christopher S Malarkey
- Department of Pharmacology, University of Colorado Denver, School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045-0511, USA
| | | |
Collapse
|