1
|
Li Q, Wu D, Song Y, Zhang L, Wang T, Chen X, Zhang M. In vivo mechanism of the interaction between trimethylamine lyase expression and glycolytic pathways. Food Funct 2025; 16:87-101. [PMID: 39604809 DOI: 10.1039/d4fo03809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Recent studies confirmed that host-gut microbiota interactions modulate disease-linked metabolite TMA production via TMA lyase. However, microbial enzyme production mechanisms remain unclear. In the present study, we investigated the impact of dietary and intervention factors on gut microbiota, microbial gene expression, and the interplay between TMA lyase and glycolytic pathways in mice. Using 16S rRNA gene sequencing, metagenomics, and metabolomics, the gut microbiota composition and microbial functional gene expression profiles related to TMA lyase and glycolytic enzymes were determined. The results revealed that distinct diets and intervention factors altered gut microbiota, gene expression, and metabolites linked to glycine metabolism and glycolysis. Notably, an arabinoxylan-rich diet suppressed genes linked to choline, glycine, glycolysis, and TMA lyase, favoring glycine utilization via pyruvate pathways. Glycolytic inhibitors amplified these effects, mainly inhibiting pyruvate kinase. Our findings underscored the crosstalk between TMA lyase and glycolytic pathways, regulating glycine levels, and suggested avenues for targeted interventions and personalized diets to curb choline TMA lyase production.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
- Tianjin Agricultural University Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Di Wu
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Yu Song
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Lu Zhang
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Ting Wang
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Xiaoxu Chen
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
- Tianjin Agricultural University Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
- Tianjin Agricultural University Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, PR China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
2
|
Xu C, Jiang C, Tian Y, Liu Y, Zhang H, Xiang Z, Xue H, Gu L, Xu Q. Nervous system in colorectal cancer. Cancer Lett 2024; 611:217431. [PMID: 39725147 DOI: 10.1016/j.canlet.2024.217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
A malignant tumor is a complex systemic disease involving the nervous system, which regulates nerve signals. Cancer neuroscience is a field that explores the interactions between tumors and the nervous system. The gastrointestinal tract is a typical peripheral organ with abundant neuroregulation and is regulated by the peripheral, enteric, and central nervous systems (PNS, ENS, and CNS, respectively). The physiological functions of the gastrointestinal tract are maintained via complex neuromodulation. Neuroregulatory imbalance is the primary cause of gastrointestinal diseases, including colorectal cancer (CRC). In CRC, there is a direct interaction between the nervous system and tumor cells. Moreover, this tumor-nerve interaction can indirectly regulate the tumor microenvironment, including the microbiota, immunity, and metabolism. In addition to the lower nerve centers, the stress response, emotion, and cognition represented by the higher nerve centers also participate in the occurrence and progression of CRC. Herein, we review some basic knowledge regarding cancer neuroscience and elucidate the mechanism underlying tumor-nerve interactions in CRC.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| |
Collapse
|
3
|
Ren X, Huang S, Xu J, Xue Q, Xu T, Shi D, Ma S, Li X. BRG1 improves reprogramming efficiency by enhancing glycolytic metabolism. Cell Mol Life Sci 2024; 81:482. [PMID: 39643758 PMCID: PMC11624181 DOI: 10.1007/s00018-024-05527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
BRG1 has been found to promote the generation of induced pluripotent stem cells (iPSCs) by regulating epigenetic modifications or binding to transcription factors, however, the role of BRG1 on the cellular metabolism during reprogramming has not been reported. In this study, we found that BRG1 improved the efficiency of porcine iPSC generation, and upregulated the expression of pluripotency-related factors. Further analysis revealed that BRG1 promoted cellular glycolysis, and increased levels of glycolysis-related metabolites. It enhanced the transcriptional activity of glycolysis-related gene HK2, PKM2, and PFK-1 promoters, and decreased the enrichment of H3K9me3 in glycolysis- and pluripotency-related gene promoters. BRG1 also increased the phosphorylation level at the Ser473 site of AKT protein. The specific PI3K/AKT signaling pathway inhibitor, LY294002, impaired the generation of porcine iPSCs, downregulated the expression of pluripotency-related factors, and inhibited cellular glycolysis, overexpressing BRG1 rescued those changes caused by LY294002 treatment. In addition, the glycolysis inhibitor 2-DG and BRG1 inhibitor PFI-3 had similar effects to LY294002. The above results suggest that overexpression of BRG1 promotes the generation of porcine iPSCs by facilitating glycolytic reprogramming through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xuan Ren
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jianchun Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qingsong Xue
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Tairan Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Shinan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Tai-He Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Xiangping Li
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
4
|
Weng L, Hong H, Zhang Q, Xiao C, Zhang Q, Wang Q, Huang J, Lai D. Sleep Deprivation Triggers the Excessive Activation of Ovarian Primordial Follicles via β2 Adrenergic Receptor Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402393. [PMID: 39229959 PMCID: PMC11538700 DOI: 10.1002/advs.202402393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/23/2024] [Indexed: 09/05/2024]
Abstract
Sleep deprivation (SD) is observed to adversely affect the reproductive health of women. However, its precise physiological mechanisms remain largely elusive. In this study, using a mouse model of SD, it is demonstrated that SD induces the depletion of ovarian primordial follicles, a phenomenon not attributed to immune-mediated attacks or sympathetic nervous system activation. Rather, the excessive secretion of stress hormones, namely norepinephrine (NE) and epinephrine (E), by overactive adrenal glands, has emerged as a key mediator. The communication pathway mediated by the KIT ligand (KITL)-KIT between granulosa cells and oocytes plays a pivotal role in primordial follicle activation. SD heightened the levels of NE/E that stimulates the activation of the KITL-KIT/PI3K and mTOR signaling cascade in an β2 adrenergic receptor (ADRB2)-dependent manner, thereby promoting primordial follicle activation and consequent primordial follicle loss in vivo. In vitro experiments further corroborate these observations, revealing that ADRB2 upregulates KITL expression in granulosa cells via the activation of the downstream cAMP/PKA pathway. Together, these results reveal the significant involvement of ADRB2 signaling in the depletion of ovarian primordial follicles under sleep-deprived conditions. Additionally, ADRB2 antagonists are proposed for the treatment or prevention of excessive activation of primordial follicles induced by SD.
Collapse
Affiliation(s)
- Lichun Weng
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Hanqing Hong
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qinyu Zhang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Chengqi Xiao
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qian Wang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Ju Huang
- Songjiang Hospital and Songjiang Research InstituteShanghai Key Laboratory of Emotions and Affective DisordersShanghai Jiao Tong University School of MedicineShanghai201600China
| | - Dongmei Lai
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| |
Collapse
|
5
|
Tang N, Li Y, Tang J, Chen J, Chen L, Dang L. ACOT7 positively regulated by CREB1 promotes the progression of cutaneous melanoma. Acta Histochem 2024; 126:152186. [PMID: 39142244 DOI: 10.1016/j.acthis.2024.152186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Cutaneous melanoma (cM) is a prevalent invasive cancer resulting from the malignant transformation of melanocytes. At present, the primary treatment for melanoma is surgical resection, which is not appropriate for patients with metastasis. Therefore, it is necessary to identify effective therapeutic targets for the early diagnosis and treatment of metastatic melanoma. Acyl-CoA thioesterase 7 (ACOT7) has been reported to be involved in the progression of multiple cancer, while its role in melanoma has not been extensively researched. Through gain-of-function and loss-of-function experiments, ACOT7 was identified as a tumor promoter that facilitates the progression of melanoma cells. Cell proliferation was promoted by overexpressing ACOT7 in M14 cells, and was suppressed by silencing ACOT7 in MeWo cells. Knockdown of ACOT7 induced cell cycle arrest by increasing the expressions of cyclin dependent kinase inhibitor 1B (P27) and cyclin dependent kinase inhibitor 1 A (P21), while simultaneously reducing proliferating cell nuclear antigen (PCNA) expression. Upregulation of ACOT7 promoted the cell cycle of melanoma cells. Additionally, apoptosis was induced by the absence of ACOT7 through activating caspase-3 and poly (ADP-ribose) polymerase (PARP). The metastatic and invasive capacity of melanoma cells was significantly enhanced by the overexpression of ACOT7 and inhibited by the downregulation of ACOT7. Moreover, the cAMP responsive element binding protein 1 (CREB1) positively regulates ACOT7 expression by binding to its promoter region. A decrease of cell proliferation, migration and invasion, as well as an increase of cell apoptosis induced by silencing CREB1 were obviously reversed by ACOT7. In summary, ACOT7 transcriptionally activated by CREB1 elevates the progression of cM.
Collapse
Affiliation(s)
- Ni Tang
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Yunhui Li
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Junchi Tang
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Juexin Chen
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Lili Chen
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Lin Dang
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China.
| |
Collapse
|
6
|
Yang D, Sun Y, Wen P, Chen Y, Cao J, Sun X, Dong Y. Chronic Stress-induced Serotonin Impairs Intestinal Epithelial Cell Mitochondrial Biogenesis via the AMPK-PGC-1α Axis. Int J Biol Sci 2024; 20:4476-4495. [PMID: 39247815 PMCID: PMC11380450 DOI: 10.7150/ijbs.97275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Chronic stress is closely associated with gastrointestinal disorders. However, the impact of stress-related neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) on the intestines under chronic stress conditions remains poorly understood. This study aims to elucidate the mechanisms by which 5-HT affects mitochondrial biogenesis and intestinal barrier integrity during chronic stress. Employing a chronic restraint stress (CRS) mouse model, we observed elevated intestinal 5-HT levels, altered colonic mucosal structure, and disrupted tight junctions. The increase in 5-HT was associated with up-regulated serotonin synthesis enzymes and downregulated serotonin reuptake transporters, indicating an imbalance in serotonin homeostasis imbalance caused by chronic stress. Furthermore, serotonin exacerbated oxidative stress and impaired tight junction protein expression, highlighting its role in promoting intestinal barrier dysfunction. Experiments with cells in vitro demonstrated that 5-HT impairs mitochondrial biogenesis by inhibiting the AMPK-PGC-1α axis via 5-HT7 receptors and the cAMP-PKA pathway. Pharmacological inhibition of serotonin synthesis or 5-HT7 receptors alleviated the intestinal barrier damage caused by 5-HT and chronic stress, restoring mitochondrial biogenesis. These findings provide compelling evidence that serotonin exacerbates chronic stress-induced intestinal barrier disruption by inhibiting the AMPK-PGC-1α axis, paving the way for novel therapeutic interventions targeting the detrimental effects of serotonin on the intestine, particularly under chronic stress conditions.
Collapse
Affiliation(s)
- Ding Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, P.R. China
| | - Pei Wen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Xuelin Sun
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
7
|
Yang F, Men R, Lv L, Zhou L, Deng Q, Wang X, Liu J, Yang L. Engaging natural regulatory myeloid cells to restrict T-cell hyperactivation-induced liver inflammation via extracellular vesicle-mediated purine metabolism regulation. Theranostics 2024; 14:4874-4893. [PMID: 39239508 PMCID: PMC11373623 DOI: 10.7150/thno.97427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Dysregulated T-cell immune response-mediated inflammation plays critical roles in the pathology of diverse liver diseases, but the underlying mechanism of liver immune homeostasis control and the specific therapies for limiting T-cell overactivation remain unclear. Methods: The metabolic changes in concanavalin A (ConA) mice and autoimmune hepatitis (AIH) patients and their associations with liver injury were analyzed. The expression of purine catabolism nucleases (e.g., CD39 and CD73) on liver cells and immune cells was assessed. The effects of MCregs and their extracellular vesicles (EVs) on CD4+ T-cell overactivation and the underlying mechanism were also explored. Results: Our findings revealed significant alterations in purine metabolism in ConA mice and AIH patients, which correlated with liver injury severity and therapeutic response. CD39 and CD73 were markedly upregulated on CD11b+Gr-1+ MCs under liver injury conditions. The naturally expanded CD39+CD73+Gr-1highCD11b+ MCreg subset during early liver injury effectively suppressed CD4+ T-cell hyperactivation and liver injury both in vitro and in vivo. Mechanistically, MCregs released CD73high EVs, which converted extracellular AMP to immunosuppressive metabolites (e.g., adenosine and inosine), activating the cAMP pathway and inhibiting glycolysis and cytokine secretion in activated CD4+ T cells. Conclusions: This study provides insights into the mechanism controlling immune homeostasis during the early liver injury phase and highlights that MCreg or MCreg-EV therapy may be a specific strategy for preventing diverse liver diseases induced by T-cell overactivation.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ruoting Men
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Linling Lv
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Leyu Zhou
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xianglin Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Zhang Y, Wang Y. The dual roles of serotonin in antitumor immunity. Pharmacol Res 2024; 205:107255. [PMID: 38862071 DOI: 10.1016/j.phrs.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Research has shown that a significant portion of cancer patients experience depressive symptoms, often accompanied by neuroendocrine hormone imbalances. Depression is frequently associated with decreased levels of serotonin with the alternate name 5-hydroxytryptamine (5-HT), leading to the common use of selective serotonin reuptake inhibitors (SSRIs) as antidepressants. However, the role of serotonin in tumor regulation remains unclear, with its expression levels displaying varied effects across different types of tumors. Tumor initiation and progression are closely intertwined with the immune function of the human body. Neuroimmunity, as an interdisciplinary subject, has played a unique role in the study of the relationship between psychosocial factors and tumors and their mechanisms in recent years. This article offers a comprehensive review of serotonin's regulatory roles in tumor onset and progression, as well as its impacts on immune cells in the tumor microenvironment. The aim is to stimulate further interdisciplinary research and discover novel targets for tumor treatment.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
9
|
Tang T, Fang D, Ji Z, Zhong Z, Zhou B, Ye L, Jiang L, Sun X. Inhibition of thioredoxin-1 enhances the toxicity of glycolysis inhibitor 2-deoxyglucose by downregulating SLC1A5 expression in colorectal cancer cells. Cell Oncol (Dordr) 2024; 47:607-621. [PMID: 37867183 DOI: 10.1007/s13402-023-00887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Targeting glycolysis in cancer is an attractive approach for therapeutic intervention. 2-Deoxyglucose (2DG) is a synthetic glucose analog that inhibits glycolysis. However, its efficacy is limited by the systemic toxicity at high doses. Understanding the mechanism of 2DG resistance is important for further use of this drug in cancer treatment. METHODS The expression of thioredoxin-1 (Trx-1) in colorectal cancer (CRC) cells treated with 2DG was detected by Western blotting. The effect of Trx-1 on the cytotoxicity of 2DG in CRC cells was examined in vitro and in vivo. The molecular mechanism involved in Trx-1-mediated activation of the SLC1A5 gene promoter activity was elucidated using in vitro models. RESULTS Inhibition glycolysis with 2DG increased the expression of Trx-1 in CRC cells. Overexpression of Trx-1 decreased the cytotoxicity of 2DG, whereas knockdown of Trx-1 by shRNA significantly increased the cytotoxicity of 2DG in CRC cells. The Trx-1 inhibitor PX-12 increased the cytotoxicity of 2DG on CRC cells both in vitro and in vivo. In addition, Trx-1 promoted SLC1A5 expression by increasing the promoter activity of the SLC1A5 gene by binding to SP1. We also found that the SLC1A5 expression was upregulated in CRC tissues, and inhibition of SLC1A5 significantly enhanced the inhibitory effect of 2DG on the growth of CRC cells in vitro and in vivo. Overexpression of SLC1A5 reduced the cytotoxicity of 2DG in combination with PX-12 treatment in CRC cells. CONCLUSION Our results demonstrate a novel adaptive mechanism of glycolytic inhibition in which Trx-1 increases GSH levels by regulating SLC1A5 to rescue cytotoxicity induced by 2DG in CRC cells. Inhibition of glycolysis in combination with inhibition of Trx-1 or SLC1A5 may be a promising strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Tianbin Tang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Daoquan Fang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ziwei Ji
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, China
| | - Zuyue Zhong
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Baojian Zhou
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lechi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xuecheng Sun
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
10
|
Han S, Chen S, Wang J, Huang S, Xiao Y, Deng G. Erianin promotes apoptosis and inhibits Akt-mediated aerobic glycolysis of cancer cells. J Cancer 2024; 15:2380-2390. [PMID: 38495480 PMCID: PMC10937289 DOI: 10.7150/jca.92780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Highly activated aerobic glycolysis provides the metabolic requirements for tumor cell growth and proliferation. Erianin, a natural product isolated from Dendrobium chrysotoxum Lindl, has been reported to exert antitumor activity in multiple cancers. However, whether Erianin exerts inhibitory effects on aerobic glycolysis and the inherent mechanism remain poorly defined in non-small cell lung cancer (NSCLC). Here, we showed that Erianin inhibited the cell viability and proliferation, and induced apoptosis in NSCLC cells. Moreover, Erianin overtly suppressed aerobic glycolysis via decreasing HK2 expression. Mechanistically, Erianin dose-dependently curbed the Akt-GSK3β signaling pathway phosphorylation activation, which afterwards downregulated HK2 expression. Meanwhile, Erianin inhibited HCC827 tumor growth in vivo. Taken together, our results suggest that the natural product Erianin can suppress aerobic glycolysis and exert potent anticancer effects via the Akt-GSK3β signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Shuangze Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijin Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Jidong Wang
- Department of Oral and Maxillofacial Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde 415000, Hunan, China
| | - Sheng Huang
- Department of General, Hunan Chest Hospital, Changsha 410013, Hunan, China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha 410013, Hunan, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha 410013, Hunan, China
| |
Collapse
|
11
|
Cao Q, Zhao M, Su Y, Liu S, Lin Y, Da H, Yue C, Liu Y, Jing D, Zhao Q, Liu N, Du J, Zuo Z, Fu Y, Chen A, Birnbaumer L, Yang Y, Dai B, Gao X. Chronic Stress Dampens Lactobacillus Johnsonii-Mediated Tumor Suppression to Enhance Colorectal Cancer Progression. Cancer Res 2024; 84:771-784. [PMID: 38190716 DOI: 10.1158/0008-5472.can-22-3705] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 09/30/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Colorectal cancer development and outcome are impacted by modifiable risk factors, including psychologic stress. The gut microbiota has also been shown to be linked to psychologic factors. Here, we found a marked deteriorative effect of chronic stress in multiple colorectal cancer models, including chemically induced (AOM/DSS), genetically engineered (APCmin/+), and xenograft tumor mouse models. RNA sequencing data from colon tissues revealed that expression of stemness-related genes was upregulated in the stressed colorectal cancer group by activated β-catenin signaling, which was further confirmed by results from ex vivo organoid analyses as well as in vitro and in vivo cell tumorigenicity assays. 16S rRNA sequencing of the gut microbiota showed that chronic stress disrupted gut microbes, and antibiotic treatment and fecal microbiota transplantation abolished the stimulatory effects of chronic stress on colorectal cancer progression. Stressed colorectal cancer mice displayed a significant decrease in Lactobacillus johnsonii (L. johnsonii) abundance, which was inversely correlated with tumor load. Moreover, protocatechuic acid (PCA) was identified as a beneficial metabolite produced by L. johnsonii based on metabolome sequencing and LC/MS-MS analysis. Replenishment of L. johnsonii or PCA blocked chronic stress-induced colorectal cancer progression by decreasing β-catenin expression. Furthermore, PCA activated the cGMP pathway, and the cGMP agonist sildenafil abolished the effects of chronic stress on colorectal cancer. Altogether, these data identify that stress impacts the gut microbiome to support colorectal cancer progression. SIGNIFICANCE Chronic stress stimulates cancer stemness by reducing the intestinal abundance of L. johnsonii and its metabolite PCA to enhance β-catenin signaling, forming a basis for potential strategies to circumvent stress-induced cancer aggressiveness. See related commentary by McCollum and Shah, p. 645.
Collapse
Affiliation(s)
- Qiuhua Cao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Mingrui Zhao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Yali Su
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Siliang Liu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Yanting Lin
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Huijuan Da
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Chongxiu Yue
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Yiming Liu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Dongquan Jing
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Qixiang Zhao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, P.R. China
| | - Juan Du
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, P.R. China
| | - Zhanjie Zuo
- Thoracic Cancer Treatment Center, Armed Police Beijing Corps Hospital, Beijing, P.R. China
| | - Yao Fu
- Department of Pathology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Anqi Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, P.R. China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Xinghua Gao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
12
|
Lu Y, Cheng D, Pang J, Peng Y, Jin S, Zhang X, Li Y, Zuo Y. Chronic stress promotes gastric cancer progression via the adrenoceptor beta 2/PlexinA1 pathway. Cell Stress Chaperones 2024; 29:201-215. [PMID: 38331165 PMCID: PMC10939071 DOI: 10.1016/j.cstres.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Chronic stress is a common emotional disorder in cancer patients. Chronic stress promotes progression of gastric cancer (GC) and leads to poor outcomes. However, the underlying mechanisms remain not clear. Herein, we explored the possible mechanisms of chronic stress in GC progression. The Cancer Genome Atlas (TCGA) datasets were analyzed for differentially expressed genes. Clinical data of GC were evaluated for their association with PlexinA1 using TCGA and Kaplan-Meier-plotter databases. Chronic stress of GC patients was evaluated using the Self-Rating Anxiety Scale and Self-Rating Depression Scale. Chronic unpredictable mild stress (CUMS) was used to induce chronic stress in mice. Gastric xenograft tumor was constructed using the sewing method. Chronic stress-like behaviors were assessed using light/dark box and tail suspension tests. Protein expression was detected using immunohistochemistry and Western blot analysis. Analyses of TCGA and the Kaplan-Meier-plotter databases showed that patients with high levels of PlexinA1 in GC had worse overall survival than those with low levels of PlexinA1. A total of 36 GC patients were enrolled in the study, and about 33% of the patients had chronic stress. Compared with patients without chronic stress, higher expression levels of adrenoceptor beta 2 and PlexinA1 were observed in patients with chronic stress. The tumor size in mice under CUMS was significantly increased compared with the control mice. Adrenoceptor beta 2, PlexinA1, N-cadherin, and alpha-smooth muscle actin, as well as Ki67 were highly expressed in the tumors of CUMS group. However, E-cadherin was lowly expressed in the tumors of CUMS group. Importantly, chemical sympathectomy with 6-hydroxydopamine or treatment with a selective β2 adrenergic receptor antagonist (ICI118,551) could reverse these effects. Our findings suggest that chronic stress plays an important role in GC progression and there is a potential for blocking the epinephrine-β2AR/PlexinA1 pathway in the treatment of GC.
Collapse
Affiliation(s)
- Yanjie Lu
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China; Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei Province, China
| | - Die Cheng
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Jiayu Pang
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Yuqiao Peng
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Shunkang Jin
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Xinyu Zhang
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Yuhong Li
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China; Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei Province, China.
| | - Yanzhen Zuo
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei Province, China.
| |
Collapse
|
13
|
Cheng Z, Huang H, Li M, Chen Y. Proteomic analysis identifies PFKP lactylation in SW480 colon cancer cells. iScience 2024; 27:108645. [PMID: 38155775 PMCID: PMC10753066 DOI: 10.1016/j.isci.2023.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/23/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
Aerobic glycolysis is a pivotal hallmark of cancers, including colorectal cancer. Evidence shows glycolytic enzymes are regulated by post-translational modifications (PTMs), thereby affecting the Warburg effect and reprograming cancer metabolism. Lysine lactylation is a PTM reported in 2019 in histones. In this study, we identified protein lactylation in FHC cells and SW480 colon cancer cells through mass spectrometry. Totally, 637 lysine lactylation sites in 444 proteins were identified in FHC and SW480 cells. Lactylated proteins were enriched in the glycolysis pathway, and we identified lactylation sites in phosphofructokinase, platelet (PFKP) lysine 688 and aldolase A (ALDOA) lysine 147. We also showed that PFKP lactylation directly attenuated enzyme activity. Collectively, our study presented a resource to investigate proteome-wide lactylation in SW480 cells and found PFKP lactylation led to activity inhibition, indicating that lactic acid and lactylated PFKP may form a negative feedback pathway in glycolysis and lactic acid production.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huichao Huang
- Department of Infectious Disease, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
14
|
Wu S, Guan W, Zhao H, Li G, Zhou Y, Shi B, Zhang X. Prognostic role of short-term heart rate variability and deceleration/acceleration capacities of heart rate in extensive-stage small cell lung cancer. Front Physiol 2023; 14:1277383. [PMID: 38028778 PMCID: PMC10663334 DOI: 10.3389/fphys.2023.1277383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Prior research suggests that autonomic modulation investigated by heart rate variability (HRV) might act as a novel predictive biomarker for cancer prognosis, such as in breast cancer and pancreatic cancer. It is not clear whether there is a correlation between autonomic modulation and prognosis in patients with extensive-stage small cell lung cancer (ES-SCLC). Therefore, the purpose of the study was to examine the association between short-term HRV, deceleration capacity (DC) and acceleration capacity (AC) of heart rate and overall survival in patients with ES-SCLC. Methods: We recruited 40 patients with ES-SCLC, and 39 were included in the final analysis. A 5-min resting electrocardiogram of patients with ES-SCLC was collected using a microelectrocardiogram recorder to analyse short-term HRV, DC and AC. The following HRV parameters were used: standard deviation of the normal-normal intervals (SDNN) and root mean square of successive interval differences (RMSSD). Overall survival of patients with ES-SCLC was defined as time from the date of electrocardiogram measurement to the date of death or the last follow-up. Follow-up was last performed on 07 June 2023. There was a median follow-up time of 42.2 months. Results: Univariate analysis revealed that the HRV parameter SDNN, as well as DC significantly predicted the overall survival of ES-SCLC patients (all p < 0.05). Multivariate analysis showed that the HRV parameters SDNN (hazard ratio = 5.254, 95% CI: 1.817-15.189, p = 0.002), RMSSD (hazard ratio = 3.024, 95% CI: 1.093-8.372, p = 0.033), as well as DC (hazard ratio = 3.909, 95% CI: 1.353-11.293, p = 0.012) were independent prognostic factors in ES-SCLC patients. Conclusion: Decreased HRV parameters (SDNN, RMSSD) and DC are independently associated with shorter overall survival in ES-SCLC patients. Autonomic nervous system function (assessed based on HRV and DC) may be a new biomarker for evaluating the prognosis of patients with ES-SCLC.
Collapse
Affiliation(s)
- Shuang Wu
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Radiation Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Weizheng Guan
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Zhao
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Guangqiao Li
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Yufu Zhou
- Department of Radiation Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Bo Shi
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Oncology, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu, China
| |
Collapse
|