1
|
Jiang Y, Le F, Huang S, Chen X, Deng Z. MLN4924 Suppresses head and neck squamous cell carcinoma progression by inactivating the mTOR signaling pathway via the NEDD8/CUL4/TSC2 axis. Int J Biochem Cell Biol 2024; 177:106696. [PMID: 39566655 DOI: 10.1016/j.biocel.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer with a five-year survival rate below 50 %. Standard treatments for HNSCC include surgery, radiotherapy, chemotherapy, and targeted therapies, but they still have significant limitations. Neddylation, a post-translational modification involving the attachment of NEDD8 (neural precursor cells expressed developmentally down-regulated 8) to proteins, is frequently dysregulated in HNSCC, thereby promoting tumor growth. MLN4924, also known as Pevonedistat, is a Neddylation inhibitor that has shown promise in suppressing HNSCC cell proliferation and invasion, establishing it as a potential therapeutic option. However, its precise molecular mechanism remains unclear. This study aims to investigate the mechanism of MLN4924 in HNSCC. This study examined the effects of MLN4924 on HNSCC and its associated molecular pathways. Bioinformatic analysis indicated that NEDD8, a critical component of the Neddylation pathway, is linked to poor prognosis and the mTOR (mammalian target of rapamycin) signaling pathway in HNSCC. MLN4924 significantly suppressed cell migration, invasion, and the epithelial-mesenchymal transition (EMT) pathway, and downregulated NEDD8 expression. Mechanistic studies demonstrated that MLN4924 inhibited the binding of NEDD8 to cullin4 (CUL4) and prevented the Neddylation of tuberous sclerosis complex 2 (TSC2), leading to the inactivation of the mTOR pathway. These findings were confirmed in vivo, where MLN4924 effectively inhibited tumor growth. Overall, MLN4924 disrupted Neddylation pathway and stabilized TSC2, thereby inactivating the mTOR pathway. The study provided a theoretical basis for the clinical potential of MLN4924 in improving treatment outcomes for HNSCC patients, offering a novel strategy for addressing this challenging disease.
Collapse
Affiliation(s)
- Youfang Jiang
- Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, China; Department of head and neck Surgery, Jiangxi Cancer hospital, Nanchang Medical College, Nanchang, Jiangxi 330029, China
| | - Fei Le
- Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, China; Department of head and neck Surgery, Jiangxi Cancer hospital, Nanchang Medical College, Nanchang, Jiangxi 330029, China
| | - Shuangling Huang
- Department of neurosurgery, Jiangxi Cancer hospital, Nanchang Medical College, Nanchang, Jiangxi 330029, China
| | - Xuezhong Chen
- Department of Nuclear Medicine, First affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
| | - Ziqing Deng
- Department of General Surgery, The Third Hospital of Nanchang, Nanchang, Jiangxi 330000, China.
| |
Collapse
|
2
|
Zheng X, Tang P, Li H, Ye T, Zhu X, He W, Cheng L, Cheng H. Cucurbitacin E elicits apoptosis in laryngeal squamous cell carcinoma by enhancing reactive oxygen species-regulated mitochondrial dysfunction and endoplasmic reticulum stress. Am J Cancer Res 2024; 14:3905-3921. [PMID: 39267666 PMCID: PMC11387858 DOI: 10.62347/hpqq9412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a prevalent head and neck neoplasm with escalating global morbidity and mortality rates. Despite the increasing burden of LSCC, the drugs currently approved for its treatment are limited. Therefore, it is necessary to identify novel and promising drugs that target LSCC. Cucurbitacin E (CuE) is a naturally oxygenated tetracyclic triterpenoid that suppresses several cancers. However, its anti-LSCC activity and the molecular mechanisms of action remain unclear. This study explored its impact on LSCC, revealing cell viability attenuation and apoptosis enhancement in vitro. Further investigations indicated that CuE significantly decreased mitochondrial membrane potential, thereby promoting cytochrome c release, increasing cleaved-Caspase 3 and cleaved-PARP levels, and triggering mitochondria-dependent apoptosis. Concurrently, exposure of LSCC cells to CuE enhanced endoplasmic reticulum (ER) stress, mobilized the protein kinase RNA-like endoplasmic reticulum kinase/initiation factor 2a/ATF4/C-EBP homologous protein pathway, and induced LSCC cell apoptosis. Finally, CuE markedly elevated intracellular reactive oxygen species (ROS) levels. When ROS were eliminated with N-acetylcysteine, CuE-mediated mitochondrial dysfunction, ER stress, and cell apoptosis were nearly abolished. Similar outcomes were observed in murine LSCC models. Together, these results highlight that CuE suppresses proliferation while triggering apoptosis in LSCC cells via ROS-regulated mitochondrial dysfunction and the ER stress pathway. Hence, CuE may serve as a promising candidate for LCSS treatment.
Collapse
Affiliation(s)
- Xucai Zheng
- Department of Oncology, The Second Hospital of Anhui Medical University Hefei 230601, Anhui, China
- Department of Head, Neck and Breast Surgery, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital Hefei 230031, Anhui, China
| | - Puze Tang
- Bachelor of Science in Mathematics, University of Liverpool United Kingdom
| | - Hui Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University Hefei 230032, Anhui, China
| | - Tingbo Ye
- Department of Head, Neck and Breast Surgery, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital Hefei 230031, Anhui, China
| | - Xu Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University Hefei 230032, Anhui, China
| | - Wei He
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University Hefei 230032, Anhui, China
| | - Ling Cheng
- Medical Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine Hefei 230031, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Hospital of Anhui Medical University Hefei 230601, Anhui, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University Shenzhen 518000, Guangdong, China
| |
Collapse
|
3
|
Zhu Y, Zhao T, Wu Y, Xie S, Sun W, Wu J. ZNF862 induces cytostasis and apoptosis via the p21-RB1 and Bcl-xL-Caspase 3 signaling pathways in human gingival fibroblasts. J Periodontal Res 2024; 59:599-610. [PMID: 38482719 DOI: 10.1111/jre.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/06/2023] [Accepted: 02/15/2024] [Indexed: 05/24/2024]
Abstract
OBJECTIVE This study investigates the effects of ZNF862 on the proliferation and apoptosis of human gingival fibroblasts and their related mechanisms. BACKGROUND As a major transcription factor family, zinc finger proteins (ZFPs) regulate cell differentiation, growth, and apoptosis through their conserved zinc finger motifs, which allow high flexibility and specificity in gene regulation. In our previous study, ZNF862 mutation was associated with hereditary gingival fibromatosis. Nevertheless, little is known about the biological function of ZNF862. Therefore, this study was aimed to reveal intracellular localization of ZNF862, the influence of ZNF862 on the growth and apoptosis of human gingival fibroblasts (HGFs) and its potential related mechanisms. METHODS Immunohistochemistry, immunofluorescence staining, and western blotting were performed to determine the intracellular localization of ZNF862 in HGFs. HGFs were divided into three groups: ZNF862 overexpression group, ZNF862 interference group, and the empty vector control group. Then, the effects of ZNF862 on cell proliferation, migration, cell cycle, and apoptosis were evaluated. qRT-PCR and western blotting were performed to further explore the mechanism related to the proliferation and apoptosis of HGFs. RESULTS ZNF862 was found to be localized in the cytoplasm of HGFs. In vitro experiments revealed that ZNF862 overexpression inhibited HGFs proliferation and migration, induced cell cycle arrest at the G0/G1-phase and apoptosis. Whereas, ZNF862 knockdown promoted HGFs proliferation and migration, accelerated the transition from the G0/G1 phase into the S and G2/M phase and inhibited cell apoptosis. Mechanistically, the effects of ZNF862 on HGFs proliferation and apoptosis were noted to be dependent on inhibiting the cyclin-dependent kinase inhibitor 1A (p21)-retinoblastoma 1 (RB1) signaling pathway and enhancing the B-cell lymphoma-extra-large (Bcl-xL)-Caspase 3 signaling pathway. CONCLUSION Our results for the first time reveal that ZNF862 is localized in the cytoplasm of HGFs. ZNF862 can inhibit the proliferation of HGFs by inhibiting the p21-RB1 signaling pathway, and it also promotes the apoptosis of HGFs by enhancing the Bcl-xL-Caspase 3 signaling pathway.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Tian Zhao
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yongkang Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Sijing Xie
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Elkhadragy L, Myers A, Long W. Role of the Atypical MAPK ERK3 in Cancer Growth and Progression. Cancers (Basel) 2024; 16:1381. [PMID: 38611058 PMCID: PMC11011113 DOI: 10.3390/cancers16071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose structural and regulatory features are distinct from those of conventional MAPKs, such as ERK1/2. Since its identification in 1991, the regulation, substrates and functions of ERK3 have remained largely unknown. However, recent years have witnessed a wealth of new findings about ERK3 signaling. Several important biological functions for ERK3 have been revealed, including its role in neuronal morphogenesis, inflammation, metabolism, endothelial cell tube formation and epithelial architecture. In addition, ERK3 has been recently shown to play important roles in cancer cell proliferation, migration, invasion and chemoresistance in multiple types of cancers. Furthermore, accumulating studies have uncovered various molecular mechanisms by which the expression level, protein stability and activity of ERK3 are regulated. In particular, several post-translational modifications (PTMs), including ubiquitination, hydroxylation and phosphorylation, have been shown to regulate the stability and activity of ERK3 protein. In this review, we discuss recent findings regarding biochemical and cellular functions of ERK3, with a main focus on its roles in cancers, as well as the molecular mechanisms of regulating its expression and activity.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amanda Myers
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| |
Collapse
|
5
|
Jiang YH, Liu YS, Wei YC, Jhang JF, Kuo HC, Huang HH, Chan MWY, Lin GL, Cheng WC, Lin SC, Wang HJ. Hypermethylation Loci of ZNF671, IRF8, and OTX1 as Potential Urine-Based Predictive Biomarkers for Bladder Cancer. Diagnostics (Basel) 2024; 14:468. [PMID: 38472940 DOI: 10.3390/diagnostics14050468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Bladder cancer (BCa) is a significant health issue and poses a healthcare burden on patients, highlighting the importance of an effective detection method. Here, we developed a urine DNA methylation diagnostic panel for distinguishing between BCa and non-BCa. In the discovery stage, an analysis of the TCGA database was conducted to identify BCa-specific DNA hypermethylation markers. In the validation phase, DNA methylation levels of urine samples were measured with real-time quantitative methylation-specific PCR (qMSP). Comparative analysis of the methylation levels between BCa and non-BCa, along with the receiver operating characteristic (ROC) analyses with machine learning algorithms (logistic regression and decision tree methods) were conducted to develop practical diagnostic panels. The performance evaluation of the panel shows that the individual biomarkers of ZNF671, OTX1, and IRF8 achieved AUCs of 0.86, 0.82, and 0.81, respectively, while the combined yielded an AUC of 0.91. The diagnostic panel using the decision tree algorithm attained an accuracy, sensitivity, and specificity of 82.6%, 75.0%, and 90.9%, respectively. Our results show that the urine-based DNA methylation diagnostic panel provides a sensitive and specific method for detecting and stratifying BCa, showing promise as a standard test that could enhance the diagnosis and prognosis of BCa in clinical settings.
Collapse
Affiliation(s)
- Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Tzu Chi University, Hualien 970374, Taiwan
| | - Yu-Shu Liu
- Guzip Biomarkers Corporation, Hsinchu City 302041, Taiwan
- Phalanx Biotech, Hsinchu City 302041, Taiwan
| | - Yu-Chung Wei
- Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua City 500207, Taiwan
| | - Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Tzu Chi University, Hualien 970374, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Tzu Chi University, Hualien 970374, Taiwan
- Guzip Biomarkers Corporation, Hsinchu City 302041, Taiwan
| | - Hsin-Hui Huang
- Guzip Biomarkers Corporation, Hsinchu City 302041, Taiwan
- Phalanx Biotech, Hsinchu City 302041, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chiayi 621301, Taiwan
| | - Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chiayi 621301, Taiwan
| | - Wen-Chi Cheng
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Shu-Chuan Lin
- Guzip Biomarkers Corporation, Hsinchu City 302041, Taiwan
- Phalanx Biotech, Hsinchu City 302041, Taiwan
| | - Hung-Jung Wang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien 97004, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|