1
|
Chen H, Liu N, Hu S, Li X, He F, Chen L, Xu X. Yeast β-glucan-based nanoparticles loading methotrexate promotes osteogenesis of hDPSCs and periodontal bone regeneration under the inflammatory microenvironment. Carbohydr Polym 2024; 342:122401. [PMID: 39048236 DOI: 10.1016/j.carbpol.2024.122401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
The regeneration of absorbed alveolar bone and reconstruction of periodontal support tissue are huge challenges in the clinical treatment of periodontitis due to the limited regenerative capacity of alveolar bone. It is essential to regulate inflammatory reaction and periodontal cell differentiation. Based on the anti-inflammatory effect of baker's yeast β-glucan (BYG) with biosafety by targeting macrophages, the BYG-based nanoparticles loading methotrexate (cBPM) were fabricated from polyethylene glycol-grafted BYG through chemical crosslinking for treatment of periodontitis. In our findings, cBPM promoted osteogenesis of human dental pulp stem cells (hDPSCs) under inflammatory microenvironment, characterized by the enhanced expression of osteogenesis-related Runx2 and activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/Erk) pathway in vitro. Animal experiments further demonstrate that cBPM effectively promoted periodontal bone regeneration and achieved in a better effect of recovery indicated by 19.2 % increase in tissue volume, 7.1 % decrease in trabecular separation, and a significant increase in percent bone volume and trabecular thickness, compared with the model group. Additionally, cBPM inhibited inflammation and repaired alveolar bone by transforming macrophage phenotype from inflammatory M1 to anti-inflammatory M2. This work provides an alternative strategy for the clinical treatment of periodontitis through BYG-based delivery nanoplatform of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Huanhuan Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Ningyue Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shuqian Hu
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuan Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fangzhou He
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaojuan Xu
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Zhao B, Zhang Q, Yang H, Yu S, Fu R, Shi S, Wang Y, Zhou W, Cui Y, Guo Q, Zhang X. Peptide KN-17-Loaded Supramolecular Hydrogel Induces the Regeneration of the Pulp-Dentin Complex. ACS Biomater Sci Eng 2024; 10:2523-2533. [PMID: 38445444 DOI: 10.1021/acsbiomaterials.3c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Regenerating the pulp-dentin complex remains a decisive factor during apexification for immature permanent teeth. Peptide KN-17, which was modified based on the structure of cecropin B, could effectively interfere with bacterial growth and induce the migration of human bone marrow stromal cells (hBMSCs). This study aimed to investigate the effect of KN-17 on the tissue regeneration. To our surprise, KN-17 can significantly stimulate angiogenesis in vitro and in vivo, which may provide a guarantee for apical closure. Herein, a novel peptide/KN-17 coassembled hydrogel is developed via a heating-cooling process. Npx-FFEY/KN-17 supramolecular hydrogel can induce vessel development, stimulate odontogenic differentiation of human dental pulp stem cells (hDPSCs), and exert an antibacterial effect on Enterococcus faecalis (E. faecalis). Furthermore, coronal pulp excised rat molars are supplied with KN-17 or KN-17-loaded hydrogel and transplanted subcutaneously in BALB/c-nu mice. After 4 weeks, the hydrogel Npx-FFEY/KN-17 stimulates the formation of multiple odontoblast-like cells and dentin-like structures. Our findings demonstrate that the KN-17-loaded hydrogel can promote the regeneration of the pulp-dentin complex for continued root development.
Collapse
Affiliation(s)
- Borui Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Qian Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Houzhi Yang
- Tianjin Medical University, Tianjin 300070, China
| | - Shuipeng Yu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Rui Fu
- Tianjin Medical University, Tianjin 300070, China
| | - Shurui Shi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zhou
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Yange Cui
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xi Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
3
|
Bi M, Yang K, Yu T, Wu G, Li Q. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed Pharmacother 2023; 169:115907. [PMID: 37984308 DOI: 10.1016/j.biopha.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The lack of a functional vascular supply has been identified as a major challenge limiting the clinical introduction of stem cell-based bone tissue engineering (BTE) for the repair of large-volume bone defects (LVBD). Various approaches have been explored to improve the vascular supply in tissue-engineered constructs, and the development of strategies that could effectively induce the establishment of a functional vascular supply has become a major goal of BTE research. One of the state-of-the-art methods is to incorporate both angiogenic and osteogenic cells in co-culture systems. This review clarifies the key concepts involved, summarises the cell types and models used to date, and systematically evaluates their performance. We also discuss the cell-to-cell communication between these two cell types and the strategies explored in BTE constructs with angiogenic and osteogenic cells to optimise their functions. In addition, we outline unresolved issues and remaining obstacles that need to be overcome for further development in this field and eventual successful repair of LVBD.
Collapse
Affiliation(s)
- Mengning Bi
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology Shanghai, China
| | - Kaiwen Yang
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology &Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands.
| | - Qiong Li
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
4
|
Hu Z, Jiang Z, Meng S, Liu R, Yang K. Research Progress on the Osteogenesis-Related Regulatory Mechanisms of Human Umbilical Cord Mesenchymal Stem Cells. Stem Cell Rev Rep 2023; 19:1252-1267. [PMID: 36917312 DOI: 10.1007/s12015-023-10521-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 03/16/2023]
Abstract
In recent years, research on human umbilical cord mesenchymal stem cells (hUCMSCs) derived from human umbilical cord tissue has accelerated and entered clinical application research. Compared with mesenchymal stem cells (MSCs) from other sources, hUCMSCs can be extracted from different parts of umbilical cord or from the whole umbilical cord. It has the characteristics of less ethical controversy, high differentiation potential, strong proliferation ability, efficient expansion in vitro, avoiding immune rejection and immune privilege, and avoids the limitations of lack of embryonic stem cells, heterogeneity, ethical and moral constraints. hUCMSCs avoid the need for embryonic stem cell sources, heterogeneity, and ethical and moral constraints. Bone defects are very common in clinical practice, but completely effective bone tissue regeneration treatment is challenging. Currently, autologous bone transplantation and allogeneic bone transplantation are main treatment approaches in clinical work, but each has different shortcomings, such as limited sources, invasiveness, immune rejection and insufficient osteogenic ability. Therefore, to solve the bottleneck of bone tissue regeneration and repair, a great amount of research has been carried out to explore the clinical advantages of hUCMSCs as seed cells to promote osteogenesis.However, the regulation of osteogenic differentiation of hUCMSCs is an extremely complex process. Although a large number of studies have demonstrated that the role of hUCMSCs in enhancing local bone regeneration and repair through osteogenic differentiation and transplantation into the body involves multiple signaling pathways, there is no relevant article that summarize the findings. This article discusses the osteogenesis-related regulatory mechanisms of hUCMSCs, summarizes the currently known related mechanisms, and speculates on the possible signals.
Collapse
Affiliation(s)
- Zhengqi Hu
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhiliang Jiang
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shengzi Meng
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Rong Liu
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Kun Yang
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
5
|
Xu J, Liu G, Wang X, Hu Y, Luo H, Ye L, Feng Z, Li C, Kuang M, Zhang L, Zhou Y, Qi X. hUC-MSCs: evaluation of acute and long-term routine toxicity testing in mice and rats. Cytotechnology 2022; 74:17-29. [PMID: 35185283 PMCID: PMC8817012 DOI: 10.1007/s10616-021-00502-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/17/2021] [Indexed: 02/03/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are present in human umbilical connective tissue and can differentiate into various cell types. Our previous studies have proved that hUC-MSCs do not lead to allergies and tumorigenesis. In the present study, the acute and long-term toxicity of hUC-MSCs in mice and rats was evaluated. The acute toxicity of hUC-MSCs was assessed in 8-week-old mice receiving two caudal intravenous (i.v.) injections of hUC-MSCs at the maximum tolerated dose of 1.5 × 107 cells/kg with an interval of 8 h and the observation period sustained for 14 days. For the long-term toxicity evaluation, rats were randomly divided into control, low-dose (3.0 × 105 cells/kg), mid-dose (1.5 × 106 cells/kg), and high-dose (7.5 × 106 cells/kg) groups, which were treated with hUC-MSCs via a caudal i.v. injection every 3 days for 90 days. Weight and food intake evaluation was performed for all rats for 2 weeks after the hUC-MSC administration. The animals were then sacrificed for hematological, blood biochemical, and pathological analyses, as well as organ index determination. We observed no obvious acute toxicity of hUC-MSCs in mice at the maximum tolerated dose. Long-term toxicity tests in rats showed no significant differences between HUC-MSC-treated and control groups in the following parameters: body weight, hematological and blood biochemical parameters, and histopathologic changes in the heart, liver, kidneys, and lungs. This study provides evidence of the safety of i.v. hUC-MSCs infusion for future clinical therapies.
Collapse
Affiliation(s)
- Jianwei Xu
- grid.413458.f0000 0000 9330 9891National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, China ,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, China ,grid.413458.f0000 0000 9330 9891Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Gang Liu
- grid.413458.f0000 0000 9330 9891Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Xianyao Wang
- grid.413458.f0000 0000 9330 9891National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, China
| | - Ya’nan Hu
- grid.263761.70000 0001 0198 0694Department of Cell Biology, Medical College of Soochow University, Suzhou, China
| | - Hongyang Luo
- Department of Otorhinolaryngology, People’s Hospital of Wudang District, Guiyang, China
| | - Lan Ye
- grid.413458.f0000 0000 9330 9891Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhanhui Feng
- grid.452244.1Neurological Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chen Li
- Department of Oncology, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Menglan Kuang
- grid.413458.f0000 0000 9330 9891School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Lijuan Zhang
- grid.413458.f0000 0000 9330 9891School of Nursing, Guizhou Medical University, Guiyang, China
| | - Yixia Zhou
- grid.443382.a0000 0004 1804 268XSchool of Nursing, Guizhou University of Traditional Chinese Medicine, 9# Beijing Road, Guiyang, China ,grid.452244.1Department of Nursing, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- grid.413458.f0000 0000 9330 9891Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, 9# Beijing Road, Guiyang, People’s Republic of China ,grid.413458.f0000 0000 9330 9891Key Laboratory of Medical Molecular Biology (Guizhou Medical University), Guiyang, 550004 People’s Republic of China
| |
Collapse
|
6
|
Matsuzaka T, Matsugaki A, Nakano T. Control of osteoblast arrangement by osteocyte mechanoresponse through prostaglandin E2 signaling under oscillatory fluid flow stimuli. Biomaterials 2021; 279:121203. [PMID: 34717197 DOI: 10.1016/j.biomaterials.2021.121203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Anisotropic collagen/apatite microstructure is a prominent determinant of bone tissue functionalization; in particular, bone matrix modulates its anisotropic microstructure depending on the surrounding mechanical condition. Although mechanotransduction in bones is governed by osteocyte function, the precise mechanisms linking mechanical stimuli and anisotropic formation of collagen/apatite microstructure are poorly understood. Here we developed a novel anisotropic mechano-coculture system which enables the understanding of the biological mechanisms regulating the oriented bone matrix formation, which is constructed by aligned osteoblasts. The developed model provides bone-mimetic coculture platform that enables simultaneous control of mechanical condition and osteoblast-osteocyte communication with an anisotropic culture scaffold. The engineered coculture device helps in understanding the relationship between osteocyte mechanoresponses and osteoblast arrangement, which is a significant contributor to anisotropic organization of bone tissue. Our study showed that osteocyte responses to oscillatory flow stimuli regulated osteoblast arrangement through soluble molecular interactions. Importantly, we found that prostaglandin E2 is a novel determinant for oriented collagen/apatite organization of bone matrix, through controlling osteoblast arrangement.
Collapse
Affiliation(s)
- Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Koh B, Sulaiman N, Ismadi SNSW, Ramli R, Yunus SSM, Idrus RBH, Ariffin SHZ, Wahab RMA, Yazid MD. Mesenchymal stem cells: A comprehensive methods for odontoblastic induction. Biol Proced Online 2021; 23:18. [PMID: 34521356 PMCID: PMC8442352 DOI: 10.1186/s12575-021-00155-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In the area of oral and maxillofacial surgery, regenerative endodontics aims to present alternative options to conventional treatment strategies. With continuous advances in regenerative medicine, the source of cells used for pulp tissue regeneration is not only limited to mesenchymal stem cells as the non-mesenchymal stem cells have shown capabilities too. In this review, we are systematically assessing the recent findings on odontoblastic differentiation induction with scaffold and non-scaffold approaches. METHODS A comprehensive search was conducted in Pubmed, and Scopus, and relevant studies published between 2015 and 2020 were selected following the PRISMA guideline. The main inclusion criteria were that articles must be revolving on method for osteoblast differentiation in vitro study. Therefore, in vivo and human or animal clinical studies were excluded. The search outcomes identified all articles containing the word "odontoblast", "differentiation", and "mesenchymal stem cell". RESULTS The literature search identified 99 related studies, but only 11 articles met the inclusion criteria. These include 5 odontoblastic differentiation induction with scaffold, 6 inductions without scaffolds. The data collected were characterised into two main categories: type of cells undergo odontoblastic differentiation, and odontoblastic differentiation techniques using scaffolds or non-scaffold. CONCLUSION Based on the data analysis, the scaffold-based odontoblastic induction method seems to be a better option compared to the non-scaffold method. In addition of that, the combination of growth factors in scaffold-based methods could possibly enhance the differentiation. Thus, further detailed studies are still required to understand the mechanism and the way to enhance odontoblastic differentiation.
Collapse
Affiliation(s)
- Benson Koh
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Sharifah Nursyazwani Shahirah Wan Ismadi
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Roszalina Ramli
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Siti Salmiah Mohd Yunus
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Rohaya Megat Abdul Wahab
- Department of Orthodontic, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Oriano M, Zorzetto L, Guagliano G, Bertoglio F, van Uden S, Visai L, Petrini P. The Open Challenge of in vitro Modeling Complex and Multi-Microbial Communities in Three-Dimensional Niches. Front Bioeng Biotechnol 2020; 8:539319. [PMID: 33195112 PMCID: PMC7606986 DOI: 10.3389/fbioe.2020.539319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/28/2020] [Indexed: 12/03/2022] Open
Abstract
The comprehension of the underlying mechanisms of the interactions within microbial communities represents a major challenge to be faced to control their outcome. Joint efforts of in vitro, in vivo and ecological models are crucial to controlling human health, including chronic infections. In a broader perspective, considering that polymicrobial communities are ubiquitous in nature, the understanding of these mechanisms is the groundwork to control and modulate bacterial response to any environmental condition. The reduction of the complex nature of communities of microorganisms to a single bacterial strain could not suffice to recapitulate the in vivo situation observed in mammals. Furthermore, some bacteria can adapt to various physiological or arduous environments embedding themselves in three-dimensional matrices, secluding from the external environment. Considering the increasing awareness that dynamic complex and dynamic population of microorganisms (microbiota), inhabiting different apparatuses, regulate different health states and protect against pathogen infections in a fragile and dynamic equilibrium, we underline the need to produce models to mimic the three-dimensional niches in which bacteria, and microorganisms in general, self-organize within a microbial consortium, strive and compete. This review mainly focuses, as a case study, to lung pathology-related dysbiosis and life-threatening diseases such as cystic fibrosis and bronchiectasis, where the co-presence of different bacteria and the altered 3D-environment, can be considered as worst-cases for chronic polymicrobial infections. We illustrate the state-of-art strategies used to study biofilms and bacterial niches in chronic infections, and multispecies ecological competition. Although far from the rendering of the 3D-environments and the polymicrobial nature of the infections, they represent the starting point to face their complexity. The increase of knowledge respect to the above aspects could positively affect the actual healthcare scenario. Indeed, infections are becoming a serious threat, due to the increasing bacterial resistance and the slow release of novel antibiotics on the market.
Collapse
Affiliation(s)
- Martina Oriano
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Zorzetto
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Giuseppe Guagliano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” and UdR INSTM Politecnico di Milano, Milan, Italy
| | - Federico Bertoglio
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatic, Department of Biotechnology, Braunschweig, Germany
| | - Sebastião van Uden
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” and UdR INSTM Politecnico di Milano, Milan, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici (ICS) Maugeri, IRCCS, Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” and UdR INSTM Politecnico di Milano, Milan, Italy
| |
Collapse
|
9
|
Goez JC, Kilfoil RL, Wang CA, Sax Z, Arif F. A Novel Use of Umbilical Perinatal Graft in Subungual Exostosis Resection. J Am Podiatr Med Assoc 2020; 110:444549. [PMID: 32997760 DOI: 10.7547/17-207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nail pathologies have a broad range of origin and may sometimes be complicated in presentation or clinical course, specifically when the pathology remains recalcitrant after treatment. In this case report we discuss a pathologic disorder that was initially misdiagnosed as a pyogenic granuloma surrounding an ingrown nail but was later found to be a benign neoplastic bone growth, Dupuytren exostosis, also known as a subungual exostosis. Operative treatment was deemed appropriate for the patient, and the exostosis was resected, leaving a soft-tissue void at the distal toe. The remaining void was filled with a perinatal graft, the use of which has been deemed effective anecdotally in both chronic and acute lower-extremity wounds but has not been widely discussed in the lower-extremity literature. This graft was placed to aid in wound healing over a potentially difficult wound bed. As amniotic, chorionic, and umbilical grafts become more prevalent in lower-extremity surgery, its antitumor effects should be further explored and published. This is the first case report, to our knowledge, of the successful use of a perinatal graft in the setting of a bone tumor, and it demonstrates that certain benign neoplasms can be treated with resection and placement of a perinatal graft while helping to prevent chronic wounds at surgical sites.
Collapse
|
10
|
Proliferation and odontogenic differentiation of human umbilical cord mesenchymal stem cells and human dental pulp cells co-cultured in hydrogel. Arch Oral Biol 2019; 109:104582. [PMID: 31605918 DOI: 10.1016/j.archoralbio.2019.104582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the proliferation and odontogenic differentiation of human dental pulp cells (hDPCs) and human umbilical cord mesenchymal stem cells (hUCMSCs) in three-dimensional co-culture system which was established with the help of bone morphogenetic protein-2 (BMP-2) and hydrogel. METHODS hDPCs and hUCMSCs were cultured in different concentrations of hydrogel to explore the more suitable concentrations for subsequent experiments. hUCMSCs and hDPCs induced by BMP-2 were co-cultured in the hydrogel. MTT assay was used to measure the cell viability. The differentiation into odontoblast-like cells were measured by the mRNA expression of dentin salivary phosphoprotein (DSPP), dentin matrix protein-1 (DMP-1), alkaline phosphatase and osteocalcin. Alizarin red staining was performed for the formation of mineralized nodules. RESULTS hUCMSCs and hDPCs could grow and proliferate in hydrogel scaffold. The growth rate of cells in lower concentrations hydrogels were higher than that of high concentrations hydrogels (P < 0.05). The study showed that 0.25% hydrogel scaffold was more suitable for subsequent experiments than other groups. Compared with hUCMSCs-monoculture and hDPCs-monoculture, the co-culture groups exhibited more proliferative potential, alkaline phosphatase activity and mineralization nodule formation (P < 0.05). The mRNA expression in co-culture groups were higher than that of hUCMSCs-monoculture, closed to or even higher than that of hDPCs-monoculture. CONCLUSION 0.25% hydrogel was the suitable concentration in co-culture system for subsequent experiments. The co-culture groups had stronger abilities of odontoblastic differentiation and mineralization than cells-monoculture groups, indicated that the co-culture conditions could regulate cell proliferation and differentiation within a certain range.
Collapse
|
11
|
Zhang Y, Xing Y, Jia L, Ji Y, Zhao B, Wen Y, Xu X. An In Vitro Comparative Study of Multisource Derived Human Mesenchymal Stem Cells for Bone Tissue Engineering. Stem Cells Dev 2018; 27:1634-1645. [PMID: 30234437 DOI: 10.1089/scd.2018.0119] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been considered promising tools for tissue engineering and regenerative medicine. However, the optimal cell source for bone regeneration remains controversial. To better identify seed cells for bone tissue engineering, we compared MSCs from seven different tissues, including four from dental origins, dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), gingival MSCs (GMSCs), and dental follicle stem cells (DFSCs); two from somatic origins, bone marrow-derived MSCs (BM-MSCs) and adipose-derived stem cells (ADSCs); and one from birth-associated perinatal tissue umbilical cord (UCMSCs). We cultured the cells under a standardized culture condition and studied their biological characteristics. According to our results, these cells exhibited similar immunophenotype and had potential for multilineage differentiation. MSCs from dental and perinatal tissues proliferated more rapidly than those from somatic origins. Simultaneously, DPSCs and PDLSCs owned stronger antiapoptotic ability under the microenvironment of oxidative stress combined with serum deprivation. In respect to osteogenic differentiation, the two somatic MSCs, BM-MSCs and ADSCs, demonstrated the strongest ability for osteogenesis compared to PDLSCs and DFSCs, which were just a little bit weaker than the formers. However, GMSCs and UCMSCs were the most pertinacious ones to differentiate to osteoblasts. We also revealed that the canonical intracellular protein kinase-based cascade signaling pathways, including PI3K/AKT, MAPK/ERK, and p38 MAPK, possessed different levels of activation in different MSCs after osteoblast induction. Our conclusions suggest that PDLSCs might be a good potential alternative to BM-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Yunpeng Zhang
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Yixiao Xing
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Linglu Jia
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Yawen Ji
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Bin Zhao
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Yong Wen
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Xin Xu
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| |
Collapse
|