1
|
Andersson KE, Williams K. Cellular regenerative therapy in stress urinary incontinence: new frontiers?-a narrative review. Transl Androl Urol 2024; 13:1709-1716. [PMID: 39280677 PMCID: PMC11399031 DOI: 10.21037/tau-22-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/10/2023] [Indexed: 09/18/2024] Open
Abstract
Background and Objective Even if treatment with stem cells has been shown to be safe and effective in many patients with stress urinary incontinence (SUI), there is still room for improvement using other regenerative medicine alternatives. Since the beneficial effects of stem cells are probably mediated by secretion of factors rather than by the cells themselves there is a good rationale for further exploring the therapeutic effects of the secretome and/or its components. However, homing factors such as stromal derived growth factor 1 (SDF-1; CXCL12), stimulation of stem cell growth and stem cell mobilization in vivo using low intensity shock wave therapy (Li-ESWT) or regenerative electrical stimulation (RES), are also promising approaches. Methods A literature search was performed based on PubMed, Scopus and Google Scholar. The search criteria included original basic science articles, systematic reviews and randomized control trials. All studies were published between 2000 and 2023. Selected, peer-reviewed studies were further analyzed to identify those of relevance. Keywords searched included: "female stress incontinence", "homing factors", "CXCL12", "secretome", "low intensity shockwave therapy" and "regenerative electrical stimulation". The peer-reviewed publications on the key word subjects that contained a novel addition to the existing body of literature were included. Key Content and Findings There is evidence from studies on non-human primates (NHPs) with experimental urinary sphincter injury that CXCL12 can restore sphincter structure and function. Studies with homing factors in human patients with SUI are still to be performed. A large number of clinical studies on the use of secretome or secretome products from mesenchymal stem cells (MSCs) on indications other than human SUI are already available. However, controlled clinical trials on patients with SUI, have to the best of our knowledge, not yet been performed. Also, RES has not been studied in patients with SUI. In contrast, there is clinical evidence that Li-ESWT may improve female SUI. Conclusions Treatment with homing factors, MSC secretome/secretome components, Li-ESWT and RES are promising frontiers in the treatment of human SUI caused by sphincter damage.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
- Institute for Laboratory Medicine, Lund University, Lund, Sweden
| | - Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
2
|
González Enguita C, Garranzo García-Ibarrola M, Tufet I Jaumont JJ, Garde García H, González López R, Quintana Franco LM, Torres Zambrano GM, García-Arranz M. Cell Therapy in the Treatment of Female Stress Urinary Incontinence: Current Status and Future Proposals. Life (Basel) 2024; 14:861. [PMID: 39063615 PMCID: PMC11278173 DOI: 10.3390/life14070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Stress urinary incontinence (SUI) is a common condition with a significant impact on the quality of life of female patients. The limitations of current treatment strategies have prompted the exploration of new effective and minimally invasive alternative approaches, including cell therapy. METHODS A literature search was conducted to update the current clinical status of stem cell therapy in the management of female stress urinary incontinence. RESULTS Over thirty clinical studies have been designed to assess the feasibility, safety and efficacy of cell therapy for female SUI. Despite differences in cell types and protocols, the overall treatment procedures were similar. Standard subjective and objective assessment tools, and follow-up periods ranged from 6 weeks to 6 years have been used. Cell injection has shown to be a safe therapy in the treatment of female SUI. However, the results from more recent randomized trials have shown less promising results than expected in restoring continence. Heterogeneous research methodologies using different cell types and doses make it difficult to draw conclusions about effectiveness. Several key points remain that need to be further explored in future clinical trials. CONCLUSION To advance in the development of cell therapy, it is essential to know the mechanisms involved to be able to direct it properly, its efficacy and the durability of the injected cells. Rigorous and homogenized preclinical and clinical studies that demonstrate its scope and improve its application are necessary for validation in the treatment of female SUI.
Collapse
Affiliation(s)
- Carmen González Enguita
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | - María Garranzo García-Ibarrola
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | - Jaime Jorge Tufet I Jaumont
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | - Héctor Garde García
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | - Raquel González López
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | - Luis Miguel Quintana Franco
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.J.T.I.J.); (H.G.G.); (R.G.L.); (L.M.Q.F.)
| | | | - Mariano García-Arranz
- Instituto Investigaión Sanitaria Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain;
| |
Collapse
|
3
|
Knoll J, Amend B, Abruzzese T, Harland N, Stenzl A, Aicher WK. Production of Proliferation- and Differentiation-Competent Porcine Myoblasts for Preclinical Studies in a Porcine Large Animal Model of Muscular Insufficiency. Life (Basel) 2024; 14:212. [PMID: 38398721 PMCID: PMC10889968 DOI: 10.3390/life14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Muscular insufficiency is observed in many conditions after injury, chronic inflammation, and especially in elderly populations. Causative cell therapies for muscle deficiencies are not state of the art. Animal models to study the therapy efficacy are, therefore, needed. We developed an improved protocol to produce myoblasts suitable for pre-clinical muscle therapy studies in a large animal model. Myoblasts were isolated from the striated muscle, expanded by employing five different protocols, and characterized on transcript and protein expression levels to determine procedures that yielded optimized regeneration-competent myoblasts and multi-nucleated myotubes. We report that swine skeletal myoblasts proliferated well under improved conditions without signs of cellular senescence, and expressed significant levels of myogenic markers including Pax7, MyoD1, Myf5, MyoG, Des, Myf6, CD56 (p ≤ 0.05 each). Upon terminal differentiation, myoblasts ceased proliferation and generated multi-nucleated myotubes. Injection of such myoblasts into the urethral sphincter complex of pigs with sphincter muscle insufficiency yielded an enhanced functional regeneration of this muscle (81.54% of initial level) when compared to the spontaneous regeneration in the sham controls without myoblast injection (67.03% of initial level). We conclude that the optimized production of porcine myoblasts yields cells that seem suitable for preclinical studies of cell therapy in a porcine large animal model of muscle insufficiency.
Collapse
Affiliation(s)
- Jasmin Knoll
- Centre of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72072 Tuebingen, Germany
| | - Bastian Amend
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (B.A.)
| | - Tanja Abruzzese
- Centre of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72072 Tuebingen, Germany
| | - Niklas Harland
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (B.A.)
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (B.A.)
| | - Wilhelm K. Aicher
- Centre of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72072 Tuebingen, Germany
| |
Collapse
|
4
|
Knoll J, Amend B, Harland N, Isser S, Bézière N, Kraushaar U, Stenzl A, Aicher WK. Cell Therapy by Mesenchymal Stromal Cells Versus Myoblasts in a Pig Model of Urinary Incontinence. Tissue Eng Part A 2024; 30:14-30. [PMID: 37933911 DOI: 10.1089/ten.tea.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
The leading cause of stress urinary incontinence (SUI) in women is the urethral sphincter muscle deficiency caused by mechanical stress during pregnancy and vaginal delivery. In men, prostate cancer surgery and injury of local nerves and muscles are associated with incontinence. Current treatment often fails to satisfy the patient's needs. Cell therapy may improve the situation. We therefore investigated the regeneration potential of cells in ameliorating sphincter muscle deficiency and UI in a large animal model. Urethral sphincter deficiency was induced surgically in gilts by electrocautery and balloon dilatation. Adipose tissue-derived stromal cells (ADSCs) and myoblasts from Musculus semitendinosus were isolated from male littermates, expanded, characterized in depth for expression of marker genes and in vitro differentiation, and labeled. The cells were injected into the deficient sphincter complex of the incontinent female littermates. Incontinent gilts receiving no cell therapy served as controls. Sphincter deficiency and functional regeneration were recorded by monitoring the urethral wall pressure during follow-up by two independent methods. Cells injected were detected in vivo during follow-up by transurethral fluorimetry, ex vivo by fluorescence imaging, and in cryosections of tissues targeted by immunofluorescence and by polymerase chain reaction of the sex-determining region Y (SRY) gene. Partial spontaneous regeneration of sphincter muscle function was recorded in control gilts, but the sphincter function remained significantly below levels measured before induction of incontinence (67.03% ± 14.00%, n = 6, p < 0.05). Injection of myoblasts yielded an improved sphincter regeneration within 5 weeks of follow-up but did not reach significance compared to control gilts (81.54% ± 25.40%, n = 5). A significant and full recovery of the urethral sphincter function was observed upon injection of ADSCs within 5 weeks of follow-up (100.4% ± 23.13%, n = 6, p < 0.05). Injection of stromal cells provoked slightly stronger infiltration of CD45pos leukocytes compared to myoblasts injections and controls. The data of this exploratory study indicate that ADSCs inherit a significant potential to regenerate the function of the urethral sphincter muscle.
Collapse
Affiliation(s)
- Jasmin Knoll
- Department of Urology at UKT, Center for Medical Research, Eberhard-Karls-University, Tuebingen, Germany
| | - Bastian Amend
- Department of Urology, University of Tuebingen Hospital, Tuebingen, Germany
| | - Niklas Harland
- Department of Urology, University of Tuebingen Hospital, Tuebingen, Germany
| | - Simon Isser
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Germany
| | - Nicolas Bézière
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Germany
- Cluster of Excellence CMFI (EXC 2124) "Controlling Microbes to Fight Infections," Eberhard Karls University Tübingen, Germany
| | - Udo Kraushaar
- Naturwissenschaftlich-Medizinisches Institut, Reutlingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, Tuebingen, Germany
| | - Wilhelm K Aicher
- Department of Urology at UKT, Center for Medical Research, Eberhard-Karls-University, Tuebingen, Germany
| |
Collapse
|
5
|
Zheng H, Xie X, Ling H, You X, Liang S, Lin R, Qiu R, Hou H. Transdermal drug delivery via microneedles for musculoskeletal systems. J Mater Chem B 2023; 11:8327-8346. [PMID: 37539625 DOI: 10.1039/d3tb01441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
As the population is ageing and lifestyle is changing, the prevalence of musculoskeletal (MSK) disorders is gradually increasing with each passing year, posing a serious threat to the health and quality of the public, especially the elderly. However, currently prevalent treatments for MSK disorders, mainly administered orally and by injection, are not targeted to the specific lesion, resulting in low efficacy along with a series of local and systemic adverse effects. Microneedle (MN) patches loaded with micron-sized needle array, combining the advantages of oral administration and local injection, have become a potentially novel strategy for the administration and treatment of MSK diseases. In this review, we briefly introduce the basics of MNs and focus on the main characteristics of the MSK systems and various types of MN-based transdermal drug delivery (TDD) systems. We emphasize the progress and broad applications of MN-based transdermal drug delivery (TDD) for MSK systems, including osteoporosis, nutritional rickets and some other typical types of arthritis and muscular damage, and in closing summarize the future prospects and challenges of MNs application.
Collapse
Affiliation(s)
- Haibin Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xuankun Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Haocong Ling
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Siyu Liang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Renjie Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| |
Collapse
|
6
|
Liu M, Wang Y, Gao G, Zhao WX, Fu Q. Stem Cell Application for Stress Urinary Incontinence: From Bench to Bedside. Curr Stem Cell Res Ther 2023; 18:17-26. [PMID: 35249506 DOI: 10.2174/1574888x17666220304213057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Stress urinary incontinence (SUI) is a common urinary system disease worldwide. Nowadays, medical therapy and surgery can control the symptoms and improve the life quality of patients. However, they might also bring about complications as the standard therapy fails to address the underlying problem of urethral sphincter dysfunction. Recent advances in cell technology have aroused interest in the use of autologous stem cell therapy to restore the ability of urinary control. The present study reviewed several types of stem cells for the treatment of SUI in the experimental and clinical stages.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Ying Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Guo Gao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Xin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Qiang Fu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| |
Collapse
|
7
|
Seval MM, Koyuncu K. Current status of stem cell treatments and innovative approaches for stress urinary incontinence. Front Med (Lausanne) 2022; 9:1073758. [PMID: 36530893 PMCID: PMC9755676 DOI: 10.3389/fmed.2022.1073758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 01/06/2024] Open
Abstract
Stem cells are capable of self-renewal, differentiation, and the promotion of the release of chemokines and progenitor cells essential for tissue regeneration. Stem cells have the potential to develop into specialized cells if given the right conditions, to self-renew and maintain themselves, to generate a large number of new differentiated cells if injured, and to either generate new tissues or repair existing ones. In the last decade, it has become clear that treating lower urinary tract dysfunction with the patient's own adult stem cells is an effective, root-cause method. Regenerative medicine is predicated on the idea that a damaged rhabdosphincter can be repaired, leading to enhanced blood flow and improved function of the sphincter's exterior (striated) and internal (smooth) muscles. Stem cell therapy has the potential to cure stress urinary incontinence according to preclinical models. In contrast, stem cell treatment has not been licensed for routine clinical usage. This article reviews the current state of stem cell for stres urinary incontinence research and recommends future avenues to facilitate practical uses of this potential therapy modality.
Collapse
Affiliation(s)
- Mehmet Murat Seval
- Department of Obstetrics and Gynecology, Ankara University School of Medicine, Ankara, Turkey
| | - Kazibe Koyuncu
- Department of Obstetrics and Gynecology, Medicana Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Exosome biopotentiated hydrogel restores damaged skeletal muscle in a porcine model of stress urinary incontinence. NPJ Regen Med 2022; 7:58. [PMID: 36175423 PMCID: PMC9523025 DOI: 10.1038/s41536-022-00240-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
Urinary incontinence afflicts up to 40% of adult women in the United States. Stress urinary incontinence (SUI) accounts for approximately one-third of these cases, precipitating ~200,000 surgical procedures annually. Continence is maintained through the interplay of sub-urethral support and urethral sphincter coaptation, particularly during activities that increase intra-abdominal pressure. Currently, surgical correction of SUI focuses on the re-establishment of sub-urethral support. However, mesh-based repairs are associated with foreign body reactions and poor localized tissue healing, which leads to mesh exposure, prompting the pursuit of technologies that restore external urethral sphincter function and limit surgical risk. The present work utilizes a human platelet-derived CD41a and CD9 expressing extracellular vesicle product (PEP) enriched for NF-κB and PD-L1 and derived to ensure the preservation of lipid bilayer for enhanced stability and compatibility with hydrogel-based sustained delivery approaches. In vitro, the application of PEP to skeletal muscle satellite cells in vitro drove proliferation and differentiation in an NF-κB-dependent fashion, with full inhibition of impact on exposure to resveratrol. PEP biopotentiation of collagen-1 and fibrin glue hydrogel achieved sustained exosome release at 37 °C, creating an ultrastructural “bead on a string” pattern on scanning electron microscopy. Initial testing in a rodent model of latissimus dorsi injury documented activation of skeletal muscle proliferation of healing. In a porcine model of stress urinary incontinence, delivery of PEP-biopotentiated collagen-1 induced functional restoration of the external urethral sphincter. The histological evaluation found that sustained PEP release was associated with new skeletal muscle formation and polarization of local macrophages towards the regenerative M2 phenotype. The results provided herein serve as the first description of PEP-based biopotentiation of hydrogels implemented to restore skeletal muscle function and may serve as a promising approach for the nonsurgical management of SUI.
Collapse
|
9
|
Maene A, Deniz G, Bouland C, Lagneaux L, Philippart P, Buxant F. Suburethral implantation of autologous regenerative cells for female stress urinary incontinence management: Results of a pilot study. Eur J Obstet Gynecol Reprod Biol 2022; 278:38-44. [PMID: 36113285 DOI: 10.1016/j.ejogrb.2022.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To assess the feasibility and the safety of treating female stress urinary incontinence (SUI) with suburethral implantation of a mixture of the stromal vascular fraction from adipose tissue and leukocyte-and platelet-rich-fibrin. METHODS Patients with SUI were treated with a mixture of stromal vascular fraction and leukocyte-and platelet-rich fibrin. The stromal vascular fraction was obtained from enzymatic digestion of autologous adipose-tissue and added to an leukocyte-and platelet-rich-fibrin membrane. The mixture was transvaginally implanted into the suburethral area. A fraction of the Stromal vascular fraction sample was used for cellular characterization. Patients were followed for 9 months. Every 3 months, the patients were clinically evaluated with a cough- stress test and a validated-questionnaire. An MRI was performed preoperatively and 3 months after the procedure to assess tissue changes. RESULTS Ten patients received the surgical procedure. The validated-questionnaire revealed a subjective SUI improvement in nine patients 3 months after the operation and in seven patients 9 months after the operation. Eight, six, and four patients achieved a negative cough-stress test 3, 6 and 9 months post-injection, respectively. Flow cytometric analysis of stromal vascular fraction cell phenotypes revealed predominantly mesenchymal and endothelial cell heterogeneity. In total, we injected 0,18 × 106 to 13,6 × 106 cells. No adverse events were observed peri- or postoperatively. CONCLUSION These preliminary results suggest that the suburethral implantation of a combination of SVF and l-PRF is a feasible and safe modality for treating female SUI. However, evidence is lacking and further research are needed to clarify the respective roles of SVF and l-PRF in female SUI treatment.
Collapse
Affiliation(s)
- Anne Maene
- Université Libre de Bruxelles, Medicine Faculty, route de Lennik 808, 1070 Brussels, Belgium.
| | - Gulcan Deniz
- Departments of Gynecology and Obstetrics, IRIS South Hospital, rue Jean-Paquot 63, 1050 Brussels, Belgium
| | - Cyril Bouland
- Université Libre de Bruxelles, Medicine Faculty, route de Lennik 808, 1070 Brussels, Belgium; Departement of Stomatology and maxillofacial Surgery, CHU Saint-Pierre, 322 Rue Haute, 1000 Brussels, Belgium; Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Pierre Philippart
- Université Libre de Bruxelles, Medicine Faculty, route de Lennik 808, 1070 Brussels, Belgium; Departement of Stomatology and maxillofacial Surgery, IRIS south Hospital, rue Docteur Huet, 1070 Brussels, Belgium
| | - Fréderic Buxant
- Departments of Gynecology and Obstetrics, IRIS South Hospital, rue Jean-Paquot 63, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Fang J, Peng T, Liu J, Liu H, Liu T, Zhang Z, Zhao C, Li Y, Wang Q, Chen H, Li T, Huang S, Pu X. Muscle-derived Stem Cells Combined With Nerve Growth Factor Transplantation in the Treatment of Stress Urinary Incontinence. Urology 2022; 166:126-132. [PMID: 35490902 DOI: 10.1016/j.urology.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the efficacy of muscle-derived stem cells (MDSCs) combined with nerve growth factor (NGF) in the treatment of stress urinary incontinence (SUI) METHODS: MDSCs were isolated and extracted from 90 SD rats, and the stem cell characteristics of the cells were identified using flow cytometry. NGF overexpression (oe-NGF) plasmid was coated with adenovirus and qRT-PCR was applied to verify adenovirus transfection efficiency. The rat models of SUI were constructed and randomly divided into 5 groups: control group, phosphate buffer (PBS) group, MDSCs + oe-NGF group, MDSCs + vector group, and MDSCs group. After 8 weeks of feeding, the leakage point pressure (LPP) rats, and Masson staining of rat urethral sections were detected. The expression of NGF and vascular endothelial growth factor (VEGF) was detected by western blot and IHC staining. RESULTS Compared with the control group, the LPP and the ratio of muscle fibers/collagen fibers were significantly increased in the MDSCs treated groups, with the highest increase in the MDSCs + oe-NGF group. Western blot and IHC results showed that the expression of NGF and VEGF in the urethral tissues in the MDSCs treated groups were significantly up-regulated comparing with the control group, with the highest increase in the MDSCs + oe-NGF group. CONCLUSION MDSCs alone can relieve SUI, while MDSCs combined with NGF is more effective, which may be related to the up-regulating of VEGF.
Collapse
Affiliation(s)
- Jianxiong Fang
- Department of Urology, Jiangmen Central Hospital, Jiangmen, PR China; Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Tianming Peng
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Haosheng Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Tianqi Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; Shantou University Medical College, Shantou, PR China
| | - Zhenhui Zhang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Chao Zhao
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Yong Li
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Qianqian Wang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Hanzhong Chen
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Teng Li
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Shang Huang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Xiaoyong Pu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
11
|
Murata Y, Obinata D, Matsumoto T, Ikado Y, Kano K, Fukuda N, Yamaguchi K, Takahashi S. Urethral injection of dedifferentiated fat cells ameliorates sphincter damage and voiding dysfunction in a rat model of persistence stress urinary incontinence. Int Urol Nephrol 2022; 54:789-797. [PMID: 35175498 PMCID: PMC8924144 DOI: 10.1007/s11255-021-03083-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Purpose Dedifferentiated fat (DFAT) cells are mature adipocyte-derived multipotent cells that can be applicable to cell-based therapy for stress urinary incontinence (SUI). This study developed a persistence SUI model that allows long-term evaluation using a combination of vaginal distention (VD) and bilateral ovariectomy (OVX) in rats. Then, the therapeutic effects of DFAT cell transplantation in the persistence SUI model was examined. Methods In total, 48 Sprague–Dawley rats were divided into four groups and underwent VD (VD group), bilateral OVX (OVX group), VD and bilateral OVX (VD + OVX group), or sham operation (Control group). At 2, 4, and 6 weeks after injury, leak point pressure (LPP) and histological changes of the urethral sphincter were evaluated. Next, 14 rats undergoing VD and bilateral OVX were divided into two groups and administered urethral injection of DFAT cells (DFAT group) or fibroblasts (Fibroblast group). At 6 weeks after the injection, LPP and histology of the urethral sphincter were evaluated. Results The VD + OVX group retained a decrease in LPP with sphincter muscle atrophy at least until 6 weeks after injury. The LPP and urethral sphincter muscle atrophy in the DFAT group recovered better than those in the fibroblast group. Conclusions The persistence SUI model was created by a combination of VD and bilateral OVX in rats. Urethral injection of DFAT cells inhibited sphincter muscle atrophy and improved LPP in the persistence SUI model. These findings suggest that the DFAT cells may be an attractive cell source for cell-based therapy to treat SUI.
Collapse
Affiliation(s)
- Yasutaka Murata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Yuichiro Ikado
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Noboru Fukuda
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenya Yamaguchi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Cell Technologies in the Stress Urinary Incontinence Correction. Biomedicines 2022; 10:biomedicines10020309. [PMID: 35203518 PMCID: PMC8869383 DOI: 10.3390/biomedicines10020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
The scientific literature of recent years contains a lot of data about using multipotent stromal cells (MSCs) for urinary incontinence correction. Despite this, the ideal treatment method for urinary incontinence has not yet been created. The cell therapy results in patients and experimental animals with incontinence have shown promising results, but the procedures require further optimization, and more research is needed to focus on the clinical phase. The MSC use appears to be a feasible, safe, and effective method of treatment for patients with urinary incontinence. However, the best mode for application of cell technology is still under study. Most clinical investigations have been performed on only a few patients and during rather short follow-up periods, which, together with an incomplete knowledge of the mechanisms of MSC action, does not make it possible for their widespread implementation. The technical details regarding the MSC application remain to be identified in more rigorous preclinical and clinical trials.
Collapse
|
13
|
Geng R, Knoll J, Harland N, Amend B, Enderle MD, Linzenbold W, Abruzzese T, Kalbe C, Kemter E, Wolf E, Schenk M, Stenzl A, Aicher WK. Replacing Needle Injection by a Novel Waterjet Technology Grants Improved Muscle Cell Delivery in Target Tissues. Cell Transplant 2022; 31:9636897221080943. [PMID: 35466714 PMCID: PMC9036380 DOI: 10.1177/09636897221080943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Current regimen to treat patients suffering from stress urinary incontinence often seems not to yield satisfactory improvement or may come with severe side effects. To overcome these hurdles, preclinical studies and clinical feasibility studies explored the potential of cell therapies successfully and raised high hopes for better outcome. However, other studies were rather disappointing. We therefore developed a novel cell injection technology to deliver viable cells in the urethral sphincter complex by waterjet instead of using injection needles. We hypothesized that the risk of tissue injury and loss of cells could be reduced by a needle-free injection technology. Muscle-derived cells were obtained from young male piglets and characterized. Upon expansion and fluorescent labeling, cells were injected into cadaveric tissue samples by either waterjet or injection needle. In other experiments, labeled cells were injected by waterjet in the urethra of living pigs and incubated for up to 7 days of follow-up. The analyses documented that the cells injected by waterjet in vitro were viable and proliferated well. Upon injection in live animals, cells appeared undamaged, showed defined cellular somata with distinct nuclei, and contained intact chromosomal DNA. Most importantly, by in vivo waterjet injections, a significantly wider cell distribution was observed when compared with needle injections (P < .05, n ≥ 12 samples). The success rates of waterjet cell application in living animals were significantly higher (≥95%, n = 24) when compared with needle injections, and the injection depth of cells in the urethra could be adapted to the need by adjusting waterjet pressures. We conclude that the novel waterjet technology injects viable muscle cells in tissues at distinct and predetermined depth depending on the injection pressure employed. After waterjet injection, loss of cells by full penetration or injury of the tissue targeted was reduced significantly in comparison with our previous studies employing needle injections.
Collapse
Affiliation(s)
- Ruizhi Geng
- Department of Urology, Center for Medical Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Jasmin Knoll
- Department of Urology, Center for Medical Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Niklas Harland
- Department of Urology, University of Tübingen Hospital, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Bastian Amend
- Department of Urology, University of Tübingen Hospital, Eberhard Karl University of Tübingen, Tübingen, Germany
| | | | | | - Tanja Abruzzese
- Department of Urology, Center for Medical Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Claudia Kalbe
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Elisabeth Kemter
- Department of Molecular Animal Breeding and Biotechnology, LMU Munich, Oberschleißheim, Germany.,Center for Innovative Medical Models, LMU Munich, Oberschleißheim, Germany
| | - Eckhard Wolf
- Department of Molecular Animal Breeding and Biotechnology, LMU Munich, Oberschleißheim, Germany.,Center for Innovative Medical Models, LMU Munich, Oberschleißheim, Germany
| | - Martin Schenk
- Department of Surgery, University of Tübingen Hospital, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tübingen Hospital, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, Center for Medical Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Boyer O, Butler-Browne G, Chinoy H, Cossu G, Galli F, Lilleker JB, Magli A, Mouly V, Perlingeiro RCR, Previtali SC, Sampaolesi M, Smeets H, Schoewel-Wolf V, Spuler S, Torrente Y, Van Tienen F. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Front Genet 2021; 12:702547. [PMID: 34408774 PMCID: PMC8365145 DOI: 10.3389/fgene.2021.702547] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.
Collapse
Affiliation(s)
- Olivier Boyer
- Department of Immunology & Biotherapy, Rouen University Hospital, Normandy University, Inserm U1234, Rouen, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Hector Chinoy
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, United Kingdom
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesco Galli
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Stefano C. Previtali
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hubert Smeets
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
- School for Developmental Biology and Oncology (GROW), Maastricht University, Maastricht, Netherlands
| | - Verena Schoewel-Wolf
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Florence Van Tienen
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Schmid FA, Williams JK, Kessler TM, Stenzl A, Aicher WK, Andersson KE, Eberli D. Treatment of Stress Urinary Incontinence with Muscle Stem Cells and Stem Cell Components: Chances, Challenges and Future Prospects. Int J Mol Sci 2021; 22:3981. [PMID: 33921532 PMCID: PMC8069473 DOI: 10.3390/ijms22083981] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
Urinary incontinence (UI) is a major problem in health care and more than 400 million people worldwide suffer from involuntary loss of urine. With an increase in the aging population, UI is likely to become even more prominent over the next decades and the economic burden is substantial. Among the different subtypes of UI, stress urinary incontinence (SUI) is the most prevalent and focus of this review. The main underlying causes for SUI are pregnancy and childbirth, accidents with direct trauma to the pelvis or medical treatments that affect the pelvic floor, such as surgery or irradiation. Conservative approaches for the treatment of SUI are pelvic physiotherapy, behavioral and lifestyle changes, and the use of pessaries. Current surgical treatment options include slings, colposuspensions, bulking agents and artificial urinary sphincters. These treatments have limitations with effectiveness and bear the risk of long-term side effects. Furthermore, surgical options do not treat the underlying pathophysiological causes of SUI. Thus, there is an urgent need for alternative treatments, which are effective, minimally invasive and have only a limited risk for adverse effects. Regenerative medicine is an emerging field, focusing on the repair, replacement or regeneration of human tissues and organs using precursor cells and their components. This article critically reviews recent advances in the therapeutic strategies for the management of SUI and outlines future possibilities and challenges.
Collapse
Affiliation(s)
- Florian A. Schmid
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - J. Koudy Williams
- Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (J.K.W.); (K.-E.A.)
| | - Thomas M. Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland;
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tubingen, University of Tubingen, 72076 Tubingen, Germany; (A.S.); (W.K.A.)
| | - Wilhelm K. Aicher
- Department of Urology, University Hospital Tubingen, University of Tubingen, 72076 Tubingen, Germany; (A.S.); (W.K.A.)
| | - Karl-Erik Andersson
- Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (J.K.W.); (K.-E.A.)
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
16
|
Linzenbold W, Jäger L, Stoll H, Abruzzese T, Harland N, Bézière N, Fech A, Enderle M, Amend B, Stenzl A, Aicher WK. Rapid and precise delivery of cells in the urethral sphincter complex by a novel needle-free waterjet technology. BJU Int 2020; 127:463-472. [PMID: 32940408 DOI: 10.1111/bju.15249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the therapy of stress urinary incontinence in a preclinical setting cells were injected into the urethrae of minipigs; however, cells injected by William's needle were frequently misplaced or lost; thus, we investigated if needle-free cell injections using a novel waterjet technology facilitates precise injections in the urethral sphincter complex. MATERIALS AND METHODS Porcine adipose tissue-derived stromal cells (pADSCs) were isolated from boars, expanded, labelled, and injected in the sphincter of female pigs by waterjet employing two different protocols. After incubation for 15 min or 3 days, the urethrae of the pigs were examined. Injected cells were visualised by imaging and fluorescence microscopy of tissue sections. DNA of injected male cells was verified by polymerase chain reaction (PCR) of the sex-determining region (SRY) gene. Cell injections by William's needle served as controls. RESULTS The new waterjet technology delivered pADSCs faster and with better on-site precision than the needle injections. Bleeding during or after waterjet injection or other adverse effects, such as swelling or urinary retention, were not observed. Morphologically intact pADSCs were detected in the urethrae of all pigs treated by waterjet. SRY-PCR of chromosomal DNA and detection of recombinant green fluorescent protein verified the injection of viable cells. In contrast, three of four pigs injected by William's needle displayed no or misplaced cells. CONCLUSION Transurethral injection of viable pADSCs by waterjet is a simple, fast, precise, and yet gentle new technology. This is the first proof-of-principle concept study providing evidence that a waterjet injects intact cells exactly in the tissue targeted in a preclinical in vivo situation. To further explore the clinical potential of the waterjet technology longer follow-up, as well as incontinence models have to be studied.
Collapse
Affiliation(s)
| | | | - Hartmut Stoll
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Tanja Abruzzese
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Niklas Harland
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Nicolas Bézière
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | - Bastian Amend
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| |
Collapse
|
17
|
Abstract
Stem cells are capable of self-renewal and differentiation into a range of cell types and promote the release of chemokines and progenitor cells necessary for tissue regeneration. Mesenchymal stem cells are multipotent progenitor cells with enhanced proliferation and differentiation capabilities and less tumorigenicity than conventional adult stem cells; these cells are also easier to acquire. Bladder dysfunction is often chronic in nature with limited treatment modalities due to its undetermined pathophysiology. Most treatments focus on symptom alleviation rather than pathognomonic changes repair. The potential of stem cell therapy for bladder dysfunction has been reported in preclinical models for stress urinary incontinence, overactive bladder, detrusor underactivity, and interstitial cystitis/bladder pain syndrome. Despite these findings, however, stem cell therapy is not yet available for clinical use. Only one pilot study on detrusor underactivity and a handful of clinical trials on stress urinary incontinence have reported the effects of stem cell treatment. This limitation may be due to stem cell function loss following ex vivo expansion, poor in vivo engraftment or survival after transplantation, or a lack of understanding of the precise mechanisms of action underlying therapeutic outcomes and in vivo behavior of stem cells administered to target organs. Efficacy comparisons with existing treatment modalities are also needed for the successful clinical application of stem cell therapies. This review describes the current status of stem cell research on treating bladder dysfunction and suggests future directions to facilitate clinical applications of this promising treatment modality, particularly for bladder dysfunction.
Collapse
|
18
|
Evaluation of the In Vitro Damage Caused by Lipid Factors on Stem Cells from a Female Rat Model of Type 2 Diabetes/Obesity and Stress Urinary Incontinence. Int J Mol Sci 2020; 21:ijms21145045. [PMID: 32708907 PMCID: PMC7404394 DOI: 10.3390/ijms21145045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
Human stem cell therapy for type 2 diabetes/obesity (T2D/O) complications is performed with stem cell autografts, exposed to the noxious T2D/O milieu, often with suboptimal results. We showed in the Obese Zucker (OZ) rat model of T2D/O that when their muscle-derived stem cells (MDSC) were from long-term T2D/O male rats, their repair efficacy for erectile dysfunction was impaired and were imprinted with abnormal gene- and miR-global transcriptional signatures (GTS). The damage was reproduced in vitro by short-term exposure of normal MDSC to dyslipidemic serum, causing altered miR-GTS, fat infiltration, apoptosis, impaired scratch healing, and myostatin overexpression. Similar in vitro alterations occurred with their normal counterparts (ZF4-SC) from the T2D/O rat model for female stress urinary incontinence, and with ZL4-SC from non-T2D/O lean female rats. In the current work we studied the in vitro effects of cholesterol and Na palmitate as lipid factors on ZF4-SC and ZL4-SC. A damage partially resembling the one caused by the female dyslipidemic serum was found, but differing between both lipid factors, so that each one appears to contribute specifically to the stem cell damaging effects of dyslipidemic serum in vitro and T2D/O in vivo, irrespective of gender. These results also confirm the miR-GTS biomarker value for MDSC damage.
Collapse
|
19
|
Liu G, Wu R, Yang B, Shi Y, Deng C, Atala A, Mou S, Criswell T, Zhang Y. A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Acta Biomater 2020; 107:50-64. [PMID: 32044457 DOI: 10.1016/j.actbio.2020.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 01/19/2023]
Abstract
Traditional cell therapy technology relies on the maximum expansion of primary stem cells in vitro, through multiple passages and potential differentiation protocols, in order to generate the abundance of cells needed prior to transplantation in vivo. Implantation of in vitro over-expanded and pre-differentiated cells typically results in poor cell survival and reduced regeneration capacity for tissue repair in vivo. We hypothesized that implantation of primary stem cells, after a short time culture in vitro (passage number ≤p3), in combination with controlled release of relevant growth factors would improve in vivo cell viability, engraftment and tissue regeneration. The goal of this study was to determine whether the release of myogenic growth factors from a heparin-hyaluronic acid gel (hp-HA gel) could enhance in vivo cell survival, in-growth and myogenic differentiation of human urine-derived stem cells (USC) with a corresponding enhancement in graft vascularization, innervation and regenerative properties. Human USC were obtained from healthy adult donors (n = 6), expanded and then mixed with a hp-HA gel containing sets of growth factors known to enhance myogenesis (IGF1, HGF, PDGF-BB), neurogenesis (NGF, FGF) and angiogenesis (VEGF), or a cocktail with a combination of growth factors. Primary cultured USC (p3) mixed with the hp-HA gel and the various combinations of growth factors, were subcutaneously injected into athymic mice. In vivo cell survival, engraftment and functional differentiation within the host tissue were assessed. The implanted grafts containing USC and the growth factor cocktail showed the greatest number of surviving cells as well as increased numbers of cells that expressed myogenic and endothelial cell markers as compared to other groups 4 weeks after implantation. Moreover, the graft with USC and the growth factor cocktail showed increased numbers of blood vessels and infiltrating neurons. Thus, growth factors released in a controlled manner from an hp-HA gel containing USC efficiently improved in vivo cell survival and supported vascularization and myogenic differentiation within the grafts. This study provides evidence for the use of primary USC and growth factors in a hydrogel as a novel mode of cell therapy for the promotion of myogenic differentiation for the treatment of injured muscle tissue. STATEMENT OF SIGNIFICANCE: Cell therapies are a promising treatment option for neuromuscular dysfunction disorders. However, major limitations in cell retention and engraftment after implantation remain a hindrance to the use of stem cell therapy for the treatment of muscle injuries or diseased tissues. Implanted long-term in vitro cultured cells tend to demonstrate low rates of survival and tissue engraftment, lessened paracrine effects, and poor homing and differentiation. Human USC are an easily obtainable stem cell source that possess stem cell characteristics such as a robust proliferative potential, paracrine effects on neighboring cells, and multi-potential differentiation. In this study, we demonstrated that a combination of primary human USC with a cocktail of growth factors combined in a hyaluronic gel was optimal for cell survival and engraftment, including myogenic differentiation potential of USC, angiogenesis and host nerve fiber recruitment in vivo. The present study also demonstrated that the use of primary urine derived stem cells at early passages, without in vitro pre-differentiation, implanted in a hyaluronic-heparin hydrogel containing a cocktail of growth factors, provided an alternative safe site-specific delivery method for cell therapy.
Collapse
Affiliation(s)
- Guihua Liu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rongpei Wu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yingai Shi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven Mou
- Anesthesiology-Pediatric ICU Anesthesia at WakeForest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
20
|
New concepts in regenerative medicine approaches to the treatment of female stress urinary incontinence. Curr Opin Urol 2020; 29:380-384. [PMID: 30855380 DOI: 10.1097/mou.0000000000000617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Update on recent regenerative medicine approaches to the treatment of stress urinary incontinence (SUI) caused by intrinsic sphincter deficiency (ISD). RECENT FINDINGS In the treatment of female SUI/ISD, results using different types of cellular therapy have been disappointing, and new approaches are desirable. To advance our regenerative medicine approaches to SUI/ISD, it is critical to utilize animal models that best parallel the pathophysiology of this disease in women. Many current animal models mimic acute SUI/ISD. However, SUI/ISD in women is usually a chronic condition resulting from previous muscle and nerve sphincter damage during parturition or muscle loss during aging. Similar to women, a nonhuman primate (NHP) model of chronic SUI/ISD has demonstrated only modest response to cell therapy. However, treatment with stromal cell-derived factor 1 (SDF1), also known as C-X-C motif chemokine 12 (CXCL12) restored continence in this model. SUMMARY As a potential therapeutic approach, the use of a well characterized chemokine, such as CXCL12, may by-pass the lengthy and expensive process of cell isolation, expansion, and injection. Recent findings in this new NHP model of chronic SUI/ISD may open up the field for noncell-based treatments.
Collapse
|
21
|
Jäger L, Linzenbold W, Fech A, Enderle M, Abruzzese T, Stenzl A, Aicher WK. A novel waterjet technology for transurethral cystoscopic injection of viable cells in the urethral sphincter complex. Neurourol Urodyn 2019; 39:594-602. [PMID: 31873953 DOI: 10.1002/nau.24261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022]
Abstract
AIMS In a recent preclinical study, we noticed that injection of cells in the urethral sphincter by needle through a cystoscope under visual control frequently yielded in misplacement or loss of cells. We, therefore, investigated if a needle-free waterjet device delivers viable cells under defined settings, including injection volume and pressure, fluid velocity and transportation media, precisely through the urothelium and connective tissue close to the sphincter muscle without full penetration of the sphincter apparatus. METHODS Mesenchymal stromal cells (MSCs) were prepared for needle-free waterjet injections. Upon injections into liquids cell viability and yield were investigated by trypan blue dye exclusion. Upon injection into cadaveric urethral tissue samples, cells were isolated from the urethrae and expanded to prove that this novel method delivered viable cells into the tissue. MSC injections by William's needle served as controls. RESULTS Waterjet injections of MSCs into isotonic cell culture medium resulted in equal or better yields of viable cells when compared with needle injections. Upon injection in urethral tissue samples, the waterjet technology facilitated fast and precise injections of viable cells through urothelial, mucosal and submucosal layers to reach the sphincter muscle. By controlling the injection pressure, loss of cells due to insufficient thrust or unintended full penetration was avoided. CONCLUSIONS Needle-free waterjet injections deliver cells in the urethra faster and more precisely when compared with needle injections without compromising their viability. This is the first proof-of-concept study providing evidence that a waterjet transports viable cells precisely into the targeted tissue.
Collapse
Affiliation(s)
- Luise Jäger
- ERBE Elektromedizin GmbH, Tuebingen, Germany
| | | | | | | | - Tanja Abruzzese
- Department of Urology, University of Tuebingen Hospital, University of Tuebingen, Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, University of Tuebingen, Tuebingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, University of Tuebingen Hospital, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
22
|
Kaufman MR. Contemporary application of autologous muscle-derived cells for urinary sphincter regeneration. World J Urol 2019; 38:2095-2099. [DOI: 10.1007/s00345-019-03018-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
|
23
|
Kovanecz I, Gelfand R, Lin G, Sharifzad S, Ohanian A, Ricks R, Lue T, Gonzalez-Cadavid NF. Stem Cells from a Female Rat Model of Type 2 Diabetes/Obesity and Stress Urinary Incontinence Are Damaged by In Vitro Exposure to its Dyslipidemic Serum, Predicting Inadequate Repair Capacity In Vivo. Int J Mol Sci 2019; 20:ijms20164044. [PMID: 31430893 PMCID: PMC6720976 DOI: 10.3390/ijms20164044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Female stress urinary incontinence (FSUI) is prevalent in women with type 2 diabetes/obesity (T2D/O), and treatment is not optimal. Autograph stem cell therapy surprisingly has poor efficacy. In the male rat model of T2D/O, it was demonstrated that epigenetic changes, triggered by long-term exposure to the dyslipidemic milieu, led to abnormal global transcriptional signatures (GTS) of genes and microRNAs (miR), and impaired the repair capacity of muscle-derived stem cells (MDSC). This was mimicked in vitro by treatment of MDSC with dyslipidemic serum or lipid factors. The current study aimed to predict whether these changes also occur in stem cells from female 12 weeks old T2D/O rats, a model of FSUI. MDSCs from T2D/O (ZF4-SC) and normal female rats (ZL4-SC) were treated in vitro with either dyslipidemic serum (ZFS) from late T2D/O 24 weeks old female Zucker fatty (ZF) rats, or normal serum (ZLS) from 24 weeks old female Zucker lean (ZL) rats, for 4 days and subjected to assays for fat deposition, apoptosis, scratch closing, myostatin, interleukin-6, and miR-GTS. The dyslipidemic ZFS affected both female stem cells more severely than in the male MDSC, with some gender-specific differences in miR-GTS. The changes in miR-GTS and myostatin/interleukin-6 balance may predict in vivo noxious effects of the T2D/O milieu that might impair autograft stem cell (SC) therapy for FSUI, but this requires future studies.
Collapse
Affiliation(s)
- Istvan Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, 90095-1768 CA, USA
| | - Robert Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, 90059 CA, USA
| | - Guiting Lin
- Department of Urology, UCSF School of Medicine, San Francisco, 94143 CA, USA
| | - Sheila Sharifzad
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
| | - Alec Ohanian
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
| | - Randy Ricks
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, 90059 CA, USA
| | - Tom Lue
- Department of Urology, UCSF School of Medicine, San Francisco, 94143 CA, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA.
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, 90095-1768 CA, USA.
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, 90059 CA, USA.
| |
Collapse
|
24
|
Li T, Zhang YJ, Zhang HL, Ding XH, Yu ZJ, Lu S. Prevalence and Risk Factors of Stress Urinary Incontinence Among Perimenopausal Women and Its Influence on Daily Life in Women with Sexual Desire Problem. Curr Med Sci 2019; 39:615-621. [PMID: 31346999 DOI: 10.1007/s11596-019-2082-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/11/2019] [Indexed: 11/26/2022]
Abstract
The prevalence of, and related factors to, stress urinary incontinence (SUI) among perimenopausal Chinese women and its impact on daily life among those women with sexual desire problem in Hubei province were investigated. In this study, 1519 perimenopausal women aged 40 to 65 years were selected from three urban communities in the Wuhan area, and two impoverished, mountainous communities in Hubei province, and followed from April to October 2014. Detailed information about demographic characteristics, menstruation, pregnancy, sexual life and chronic diseases was collected. A cross-sectional survey was carried out following information collection by Chi-square test and multiple logistic regression analysis. Univariate and multivariate logistic regression analysis demonstrated that the potential factors associated with developing SUI were old age (OR=3.4, 95% CI: 1.92-6.04), vaginal delivery (OR=0.623, 95% CI: 0.45-0.87), low income (OR=0.063, 95% CI: 0.40-0.92), atrophic vaginitis (OR=1.4, 95% CI: 1.03-1.80), pelvic organ prolapse (OR=2.81, 95% CI: 1.36-5.80), chronic pelvic pain (OR=2.17, 95% CI: 1.90-4.03), constipation (OR=1.44, 95% CI: 1.07-1.93) and incontinence of feces (OR=3.32, 95% CI: 2.03-5.43). Moreover, the ratio of SUI (33.2%) was higher than the ratio of urgency urinary incontinence (24.1%) or the ratio of mixed urinary incontinence (17.4%), and SUI had a greater impact on daily life among women with decreased sexual desire. In conclusion, SUI is a common disorder affecting over one third of the women surveyed, and has a severe impact on the daily life of perimenopausal women with declined sexual desire. Age, mode of delivery, and monthly income are major risk factors involved in the development of SUI.
Collapse
Affiliation(s)
- Tao Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Jun Zhang
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Hong-Ling Zhang
- College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xue-Hui Ding
- Department of Obstetrics and Gynecology, Central Hospital of Hefeng County, Enshi, 445000, China
| | - Zi-Jie Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shi Lu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
|
26
|
Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle 2019; 10:501-516. [PMID: 30843380 PMCID: PMC6596399 DOI: 10.1002/jcsm.12416] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Winkler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
27
|
Hussain SM, Bray R. Urethral bulking agents for female stress urinary incontinence. Neurourol Urodyn 2019; 38:887-892. [DOI: 10.1002/nau.23924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Sadiya M. Hussain
- Department of UrogynaecologyKingston HospitalKingston upon ThamesLondon
| | - Rhiannon Bray
- Department of UrogynaecologyKingston HospitalKingston upon ThamesLondon
| |
Collapse
|
28
|
Itkonen Freitas AM, Rahkola-Soisalo P, Mikkola TS, Mentula M. Current treatments for female primary stress urinary incontinence. Climacteric 2019; 22:263-269. [DOI: 10.1080/13697137.2019.1568404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- A.-M. Itkonen Freitas
- Department of Obstetrics and Gynaecology, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | - P. Rahkola-Soisalo
- Department of Obstetrics and Gynaecology, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | - T. S. Mikkola
- Department of Obstetrics and Gynaecology, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | - M. Mentula
- Department of Obstetrics and Gynaecology, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| |
Collapse
|
29
|
Gallo F, Ninotta G, Schenone M, Cortese P, Giberti C. Advances in stem cell therapy for male stress urinary incontinence. Expert Opin Biol Ther 2019; 19:293-300. [PMID: 30709326 DOI: 10.1080/14712598.2019.1578343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Among the several options that have been proposed in recent years for the management of male stress urinary incontinence (SUI), stem cell therapy represents a new frontier in treatment. The aim of this paper is to update the current status of stem cell therapy in animal and human studies for the management of iatrogenic male SUI. AREAS COVERED A literature review was conducted based on MEDLINE/PubMed searches for English articles using a combination of the following keywords: stem cell therapy, urinary incontinence, prostatectomy, regenerative medicine, mesenchymal stem cells. EXPERT OPINION The few studies reported in the literature have demonstrated short-term safety and promising results of stem cell therapy in treating male SUI. However, many aspects need to be clarified before stem cell therapy can be introduced into daily urologic practice. In fact, important issues such as the limitations of these studies in terms of small sample sizes and short follow-ups, the incomplete knowledge of the mechanism of action of stem cells, the technical details regarding the delivery method and the best sources of stem cells, the safety risks regarding genomic or epigenetic changes and potential immune reactions in the longer term need to be identified in more stringent clinical trials.
Collapse
Affiliation(s)
- Fabrizio Gallo
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Gaetano Ninotta
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Maurizio Schenone
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Pierluigi Cortese
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Claudio Giberti
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| |
Collapse
|
30
|
Future Research Directions in the Design of Versatile Extracellular Matrix in Tissue Engineering. Int Neurourol J 2018; 22:S66-75. [PMID: 30068068 PMCID: PMC6077942 DOI: 10.5213/inj.1836154.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
Native and artificial extracellular matrices (ECMs) have been widely applied in biomedical fields as one of the most effective components in tissue regeneration. In particular, ECM-based drugs are expected to be applied to treat diseases in organs relevant to urology, because tissue regeneration is particularly important for preventing the recurrence of these diseases. Native ECMs provide a complex in vivo architecture and native physical and mechanical properties that support high biocompatibility. However, the applications of native ECMs are limited due to their tissue-specificity and chemical complexity. Artificial ECMs have been fabricated in an attempt to create a broadly applicable scaffold by using controllable components and a uniform formulation. On the other hands, artificial ECMs fail to mimic the properties of a native ECM; consequently, their applications in tissues are also limited. For that reason, the design of a versatile, hybrid ECM that can be universally applied to various tissues is an emerging area of interest in the biomedical field.
Collapse
|
31
|
Akın Y, Young M, Elmussareh M, Charalampogiannis N, Gözen AS. The Novel and Minimally Invasive Treatment Modalities for Female Pelvic Floor Muscle Dysfunction; Beyond the Traditional. Balkan Med J 2018; 35:358-366. [PMID: 29952311 PMCID: PMC6158473 DOI: 10.4274/balkanmedj.2018.0869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pelvic floor dysfunction is a clinical entity that is prevalent among female patients. Determining the exact underlying cause of pelvic floor dysfunction is difficult, and surgical intervention for this clinical entity may be challenging. Pelvic floor dysfunction can affect the quality of life of the patient by causing stress urinary incontinence, pelvic organ prolapse, or both. Well-defined surgical treatment options, minimally invasive approaches, and novel techniques for the treatment of pelvic floor dysfunction have been recently introduced. Here, we evaluated the management options available for patients with stress urinary incontinence and pelvic organ prolapse. We searched Medline and EMBASE databases for relevant articles by using the keywords “pelvic floor dysfunction,” “minimally invasive procedures,” “stress urinary incontinence,” “pelvic organ prolapse,” and “novel techniques”. Traditional treatment options for stress urinary incontinence and pelvic organ prolapse are beyond the scope of our review. Laparoscopic and robotic surgical treatments for pelvic floor dysfunction continue to evolve and develop. These minimally invasive techniques will soon replace open procedures. Alternative novel treatment modalities have also been developed from novel human-compatible materials and are emerging as successful treatments for stress urinary incontinence. The development of these various treatment options has implications for future surgical practice in the field of uro-gynecology.
Collapse
Affiliation(s)
- Yiğit Akın
- Department of Urology, İzmir Katip Çelebi University School of Medicine, İzmir, Turkey
| | - Matthew Young
- Clinic of Urology, Mid Yorkshire Hospitals NHS Trust, Wakefield, The United Kingdom
| | - Muhammad Elmussareh
- Clinic of Urology, Mid Yorkshire Hospitals NHS Trust, Wakefield, The United Kingdom
| | | | - Ali Serdar Gözen
- Department of Urology, SLK-Kliniken Heilbronn, University of Heidelberg, Heilbronn, Germany
| |
Collapse
|