1
|
Niu Y, Guo D, Wei Y, Li J, Bai Y, Liu Z, Jia X, Chen Z, Li L, Shi B, Zhang X, Zhao Z, Hu J, Wang J, Liu X, Li S. Comparative Transcriptome Analysis of mRNA and miRNA during the Development of Longissimus Dorsi Muscle of Gannan Yak and Tianzhu White Yak. Animals (Basel) 2024; 14:2278. [PMID: 39123804 PMCID: PMC11311108 DOI: 10.3390/ani14152278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The Gannan yak, a superior livestock breed found on the Tibetan Plateau, exhibits significantly enhanced body size, weight, and growth performance in comparison to the Tianzhu white yak. MiRNAs play a pivotal role in regulating muscle growth by negatively modulating target genes. In this study, we found the average diameter, area, and length of myofibers in Gannan yaks were significantly higher than those of Tianzhu white yaks. Further, we focused on analyzing the longissimus dorsi muscle from both Gannan yaks and Tianzhu white yaks through transcriptome sequencing to identify differentially expressed (DE)miRNAs that influence skeletal muscle development. A total of 254 DE miRNAs were identified, of which 126 miRNAs were up-regulated and 128 miRNAs were down-regulated. GO and KEGG enrichment analysis showed that the target genes of these DE miRNAs were significantly enriched in signaling pathways associated with muscle growth and development. By constructing a DE miRNA- DE mRNA interaction network, we screened 18 key miRNAs, and notably, four of the candidates (novel-m0143-3p, novel-m0024-3p, novel-m0128-5p, and novel-m0026-3p) targeted six genes associated with muscle growth and development (DDIT4, ADAMTS1, CRY2, AKIRIN2, SIX1, and FOXO1). These findings may provide theoretical references for further studies on the role of miRNAs in muscle growth and development in Gannan yaks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.N.); (D.G.); (Y.W.); (J.L.); (Y.B.); (Z.L.); (X.J.); (Z.C.); (L.L.); (B.S.); (X.Z.); (J.H.); (J.W.); (X.L.); (S.L.)
| | | | | | | | | |
Collapse
|
2
|
Guilherme JPLF, Semenova EA, Larin AK, Yusupov RA, Generozov EV, Ahmetov II. Genomic Predictors of Brisk Walking Are Associated with Elite Sprinter Status. Genes (Basel) 2022; 13:genes13101710. [PMID: 36292594 PMCID: PMC9602420 DOI: 10.3390/genes13101710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Brisk walkers are physically more active, taller, have reduced body fat and greater physical fitness and muscle strength. The aim of our study was to determine whether genetic variants associated with increased walking pace were overrepresented in elite sprinters compared to controls. A total of 70 single-nucleotide polymorphisms (SNPs) previously identified in a genome-wide association study (GWAS) of self-reported walking pace in 450,967 European individuals were explored in relation to sprinter status. Genotyping of 137 Russian elite sprinters and 126 controls was performed using microarray technology. Favorable (i.e., high-speed-walking) alleles of 15 SNPs (FHL2 rs55680124 C, SLC39A8 rs13107325 C, E2F3 rs4134943 T, ZNF568 rs1667369 A, GDF5 rs143384 G, PPARG rs2920503 T, AUTS2 rs10452738 A, IGSF3 rs699785 A, CCT3 rs11548200 T, CRTAC1 rs2439823 A, ADAM15 rs11264302 G, C6orf106 rs205262 A, AKAP6 rs12883788 C, CRTC1 rs11881338 A, NRXN3 rs8011870 G) were identified as having positive associations with sprinter status (p < 0.05), of which IGSF3 rs699785 survived correction for multiple testing (p = 0.00004) and was linked (p = 0.042) with increased proportions of fast-twitch muscle fibers of m. vastus lateralis in physically active men (n = 67). Polygenic analysis revealed that individuals with ≥18 favorable alleles of the 15 SNPs have an increased odds ratio of being an elite sprinter when compared to those with ≤17 alleles (OR: 7.89; p < 0.0001). Using UK Biobank data, we also established the association of 14 favorable alleles with low BMI and fat percentage, 8 alleles with increased handgrip strength, and 7 alleles with increased height and fat-free mass. In conclusion, we have identified 15 new genetic markers associated with sprinter status.
Collapse
Affiliation(s)
- João Paulo L. F. Guilherme
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
- Correspondence: (J.P.L.F.G.); (I.I.A.)
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Rinat A. Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Laboratory of Molecular Genetics, Central Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
- Correspondence: (J.P.L.F.G.); (I.I.A.)
| |
Collapse
|
3
|
Xue F, Wu J, Feng W, Hao T, Liu Y, Wang W. MicroRNA‑141 inhibits the differentiation of bone marrow‑derived mesenchymal stem cells in steroid‑induced osteonecrosis via E2F3. Mol Med Rep 2022; 26:234. [PMID: 35616132 PMCID: PMC9178681 DOI: 10.3892/mmr.2022.12750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) affects the life of patients. MicroRNA-141 (miR-141) has been found associated with proliferation of bone marrow-derived mesenchymal stem cells (BMSCs). E2F transcription factor 3 (E2F3) has been identified as the target of miR-141 to regulate cell proliferation. The aim of the present study was to investigate whether miR-141 and E2F3 were involved in the osteogenic differentiation of BMSCs during ONFH. BMSCs from 4-week-old Sprague-Dawley rats were transduced with miR-141 mimic or inhibitor lentiviruses. Alkaline phosphatase staining was performed to confirm osteogenic differentiation. Reverse transcription-quantitative PCR, luciferase reporter assays and western blot analysis were also used to examine the interaction between E2F3 and miR-141 in BMSCs from the control and ONFH rats. The lentiviral transductions were carried out successfully. The mRNA expression levels of miR-141 in ONFH were upregulated, while those of E2F3 were downregulated compared with the control rat. The luciferase reporter assays indicated that miR-141 could target E2F3. miR-141 knockdown upregulated the mRNA expression levels of E2F3. In addition, osteogenic differentiation of BMSCs was inhibited following miR-141 overexpression, but increased following miR-141 knockdown, as evidenced by the results of the alkaline phosphatase staining and western blot analysis. In conclusion, miR-141 inhibits the osteogenic differentiation of BMSCs in ONFH by targeting E2F3. These two molecules may represent novel candidates to examine in order to investigate the mechanism underlying ONFH.
Collapse
Affiliation(s)
- Fei Xue
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Jian Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Wei Feng
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Ting Hao
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Yuan Liu
- Department of Orthopedic Surgery, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia Autonomous Region 010010, P.R. China
| | - Wenbo Wang
- Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
4
|
Bär SI, Dittmer A, Nitzsche B, Ter-Avetisyan G, Fähling M, Klefenz A, Kaps L, Biersack B, Schobert R, Höpfner M. Chimeric HDAC and the cytoskeleton inhibitor broxbam as a novel therapeutic strategy for liver cancer. Int J Oncol 2022; 60:73. [PMID: 35485292 PMCID: PMC9097774 DOI: 10.3892/ijo.2022.5363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Broxbam, also known as N-hydroxy-4-{1-methoxy-4-[4′-(3′-bromo-4′,5′-dimethoxyphenyl)-oxazol-5′-yl]-2-phenoxy} butanamide, is a novel chimeric inhibitor that contains two distinct pharmacophores in its molecular structure. It has been previously demonstrated to inhibit the activity of histone deacetylases (HDAC) and tubulin polymerisation, two critical components required for cancer growth and survival. In the present study, the potential suitability of broxbam for the treatment of liver cancer was investigated. The effects of broxbam on cell proliferation and apoptosis, in addition to the under-lying molecular mechanism of action, were first investigated in primary liver cancer cell lines Huh7, HepG2, TFK1 and EGI1. Real-time proliferation measurements made using the iCEL-Ligence system and viable cell number counting following crystal violet staining) revealed that broxbam time- and dose-dependently reduced the proliferation of liver cancer cell lines with IC50 values <1 µM. In addition, a significant inhibition of the growth of hepatoblastoma microtumours on the chorioallantoic membranes (CAM) of fertilised chicken eggs by broxbam was observed according to results from the CAM assay, suggesting antineoplastic potency in vivo. Broxbam also exerted apoptotic effects through p53- and mitochondria-driven caspase-3 activation in Huh7 and HepG2 cells according to data from western blotting (p53 and phosphorylated p53), mitochondrial membrane potential measurements (JC-1 assay) and fluorometric capsase-3 measurements. Notably, no contribution of unspecific cytotoxic effects mediated by broxbam were observed from LDH-release measurements. HDAC1, -2, -4 and -6 expression was measured by western blotting and the HDAC inhibitory potency of broxbam was next evaluated using subtype-specific HDAC enzymatic assays, which revealed a largely pan-HDAC inhibitory activity with the most potent inhibition observed on HDAC6. Silencing HDAC6 expression in Huh7 cells led to a drop in the expression of the proliferation markers Ki-67 and E2F3, suggesting that HDAC6 inhibition by broxbam may serve a predomi-nant role in their antiproliferative effects on liver cancer cells. Immunofluorescence staining of cytoskeletal proteins (α-tubulin & actin) of broxbam-treated HepG2 cells revealed a pronounced inhibition of tubulin polymerisation, which was accompanied by reduced cell migration as determined by wound healing scratch assays. Finally, data from zebrafish angiogenesis assays revealed marked antiangiogenic effects of broxbam in vivo, as shown by the suppression of subintestinal vein growth in zebrafish embryos. To conclude, the pleiotropic anticancer activities of this novel chimeric HDAC- and tubulin inhibitor broxbam suggest that this compound is a promising candidate for liver cancer treatment, which warrants further pre-clinical and clinical evaluation.
Collapse
Affiliation(s)
- Sofia Isolde Bär
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Alexandra Dittmer
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Gohar Ter-Avetisyan
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Michael Fähling
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Adrian Klefenz
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Leonard Kaps
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| |
Collapse
|
5
|
Zhang Y, Shao Y, Lv Z, Li C. MiR-210 regulates coelomocyte proliferation through targeting E2F3 in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:583-590. [PMID: 32835852 DOI: 10.1016/j.fsi.2020.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
MiR-210 plays a crucial role in cell survival, migration, and regeneration in vertebrates. In our previous work, the expression of miR-210 was considerably induced in diseased Apostichopus japonicus with skin ulcer syndrome (SUS). To further explore the mechanism of miR-210 in regulating the SUS, this study identified E2F transcription factor 3 (E2F3), a candidate target of miR-210, from the sea cucumber A. japonicus via RNA-seq and RACE (designated as AjE2F3). A 1992 bp fragment representing the full-length cDNA of AjE2F3 was obtained, which includes an ORF of 1194 bp encoding a polypeptide of 398 amino acids with a molecular weight of 44.43 kDa. Expression profiling analysis suggested that the expression of AjE2F3 decreased while that of miR-210 increased in Vibrio splendidus-challenged sea cucumber coelomocytes. Dual-luciferase reporter assay revealed that miR-210 targeted AjE2F3 via binding to the 3'UTR region from 108 nt to 128 nt. MiR-210 overexpression in cultured coelomocytes repressed AjE2F3 at the mRNA level and reduced cell proliferation in vitro. Consistently, AjE2F3 overexpression significantly promoted coelomocyte proliferation, as assessed by MTT in vitro. Overall, our results indicated that miR-210 can suppress coelomocyte proliferation by targeting AjE2F3 in pathogen-challenged sea cucumbers.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
6
|
Deng YJ, Ren EH, Yuan WH, Zhang GZ, Wu ZL, Xie QQ. GRB10 and E2F3 as Diagnostic Markers of Osteoarthritis and Their Correlation with Immune Infiltration. Diagnostics (Basel) 2020; 10:diagnostics10030171. [PMID: 32235747 PMCID: PMC7151213 DOI: 10.3390/diagnostics10030171] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
This study aimed to find potential diagnostic markers for osteoarthritis (OA) and analyze the role of immune cells infiltration in this pathology. We used OA datasets from the Gene Expression Omnibus database. First, R software was used to identify differentially expressed genes (DEGs) and perform functional correlation analysis. Then least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination algorithms were used to screen and verify the diagnostic markers of OA. Finally, CIBERSORT was used to evaluate the infiltration of immune cells in OA tissues, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. A total of 458 DEGs were screened in this study. GRB10 and E2F3 (AUC = 0.962) were identified as diagnostic markers of OA. Immune cell infiltration analysis found that resting mast cells, T regulatory cells, CD4 memory resting T cells, activated NK cells, and eosinophils may be involved in the OA process. In addition, GRB10 was correlated with NK resting cells, naive CD4 + T cells, and M1 macrophages, while E2F3 was correlated with resting mast cells. In conclusion, GRB10 and E2F3 can be used as diagnostic markers of osteoarthritis, and immune cell infiltration plays an important role in the occurrence and progression of OA.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi-Qi Xie
- Correspondence: ; Tel.: +86-15719612948
| |
Collapse
|