1
|
Barcena-Varela M, Monga SP, Lujambio A. Precision models in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01024-w. [PMID: 39663463 DOI: 10.1038/s41575-024-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a global health challenge, and ranks among one of the most prevalent and deadliest cancers worldwide. Therapeutic advances have expanded the treatment armamentarium for patients with advanced HCC, but obstacles remain. Precision oncology, which aims to match specific therapies to patients who have tumours with particular features, holds great promise. However, its implementation has been hindered by the existence of numerous 'HCC influencers' that contribute to the high inter-patient heterogeneity. HCC influencers include tumour-related characteristics, such as genetic alterations, immune infiltration, stromal composition and aetiology, and patient-specific factors, such as sex, age, germline variants and the microbiome. This Review delves into the intricate world of HCC, describing the most innovative model systems that can be harnessed to identify precision and/or personalized therapies. We provide examples of how different models have been used to nominate candidate biomarkers, their limitations and strategies to optimize such models. We also highlight the importance of reproducing distinct HCC influencers in a flexible and modular way, with the aim of dissecting their relative contribution to therapy response. Next-generation HCC models will pave the way for faster discovery of precision therapies for patients with advanced HCC.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Bang HJ, Lee KH, Park MS, Sun EG, Cho SH, Chung IJ, Shim HJ, Bae WK. Dynamic changes in immune cells in humanized liver metastasis and subcutaneous xenograft mouse models. Sci Rep 2024; 14:20338. [PMID: 39223155 PMCID: PMC11369291 DOI: 10.1038/s41598-024-69988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Preclinical drug efficacy and tumor microenvironment (TME) investigations often utilize humanized xenograft mouse models, yet these models typically fall short in replicating the intricate TME. We developed a humanized liver metastasis (LM) model by transplanting human peripheral blood mononuclear cells (PBMCs) and assessed it against the conventional subcutaneous (SC) xenograft model, focusing on immune cell dynamics post-transplantation and immunotherapy response. NOD-scid IL2Rgammanull(NSG) were inoculated with PBMCs to create humanized models. We induced SC and LM models using HCT116 cells, to investigate and compare the distributions and transformations of immune cell subsets, respectively. Both models were subjected to anti-PD-L1 therapy, followed by an analysis the TME analysis. The LM model demonstrated enhanced central tumor infiltration by tumor-infiltrating lymphocytes (TILs) compared to the peripheral pattern of SC model. TIL subpopulations in the LM model showed a progressive increase, contrasting with an initial rise and subsequent decline in the SC model. Post-anti-PD-L1 therapy, the LM model exhibited a significant rise in central and effector memory T cells, a response absents in the SC model. Our study highlights differential TME responses between SC and LM models and introduces a robust humanized LM model that swiftly indicates the potential efficacy of immunotherapies. These insights could streamline the preclinical evaluation of TME-targeting immunotherapeutic agents.
Collapse
Affiliation(s)
- Hyun Jin Bang
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Bio-Medical Sciences Graduate Program (BMSGP), Chonnam National University Research Institute of Medical Science, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Myong Suk Park
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, Republic of Korea
| | - Eun-Gene Sun
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, Republic of Korea
| | - Sang Hee Cho
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, Republic of Korea
| | - Ik-Joo Chung
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Hyun-Jeong Shim
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, Republic of Korea.
| | - Woo Kyun Bae
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, Republic of Korea.
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| |
Collapse
|
3
|
Cigliano A, Liao W, Deiana GA, Rizzo D, Chen X, Calvisi DF. Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges. Biomedicines 2024; 12:1624. [PMID: 39062197 PMCID: PMC11274649 DOI: 10.3390/biomedicines12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Weiting Liao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Giovanni A. Deiana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Davide Rizzo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| |
Collapse
|
4
|
Zhu X, Chen J, Li W, Xu Y, Shan J, Hong J, Zhao Y, Xu H, Ma J, Shen J, Qian C. Hypoxia-Responsive CAR-T Cells Exhibit Reduced Exhaustion and Enhanced Efficacy in Solid Tumors. Cancer Res 2024; 84:84-100. [PMID: 37874330 DOI: 10.1158/0008-5472.can-23-1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/26/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Expanding the utility of chimeric antigen receptor (CAR)-T cells in solid tumors requires improving their efficacy and safety. Hypoxia is a feature of most solid tumors that could be used to help CAR-T cells discriminate tumors from normal tissues. In this study, we developed hypoxia-responsive CAR-T cells by engineering the CAR to be under regulation of hypoxia-responsive elements and selected the optimal structure (5H1P-CEA CAR), which can be activated in the tumor hypoxic microenvironment to induce CAR-T cells with high polyfunctionality. Hypoxia-responsive CAR T cells were in a "resting" state with low CAR expression under normoxic conditions. Compared with conventional CAR-T cells, hypoxia-responsive CAR-T cells maintained lower differentiation and displayed enhanced oxidative metabolism and proliferation during cultivation, and they sowed a capacity to alleviate the negative effects of hypoxia on T-cell proliferation and metabolism. Furthermore, 5H1P-CEA CAR-T cells exhibited decreased T-cell exhaustion and improved T-cell phenotype in vivo. In patient-derived xenograft models, hypoxia-responsive CAR-T cells induced more durable antitumor activity than their conventional counterparts. Overall, this study provides an approach to limit CAR expression to the hypoxic tumor microenvironment that could help to enhance CAR T-cell efficacy and safety in solid tumors. SIGNIFICANCE Engineering CAR-T cells to upregulate CAR expression under hypoxic conditions induces metabolic reprogramming, reduces differentiation, and increases proliferation to enhance their antitumor activity, providing a strategy to improve efficacy and safety.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jun Chen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Wuling Li
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Yanmin Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Juanjuan Shan
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Juan Hong
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Yongchun Zhao
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Huailong Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Jiabin Ma
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Junjie Shen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Cheng Qian
- College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
5
|
Wang L, Piao Y, Guo F, Wei J, Chen Y, Dai X, Zhang X. Current progress of pig models for liver cancer research. Biomed Pharmacother 2023; 165:115256. [PMID: 37536038 DOI: 10.1016/j.biopha.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Preclinical trials play critical roles in assessing the safety and efficiency of novel therapeutic strategies for human diseases including live cancer. However, most therapeutic strategies that were proved to be effective in preclinical cancer models failed in human clinical trials due to the lack of appropriate disease animal models. Therefore, it is of importance and urgent to develop a precise animal model for preclinical cancer research. Liver cancer is one of the most frequently diagnosed cancers with low 5-year survival rate. Recently, porcine attracted increasing attentions as animal model in biomedical research. Porcine liver cancer model may provide a promising platform for biomedical research due to their similarities to human being in body size, anatomical characteristics, physiology and pathophysiology. In this review, we comprehensively summarized and discussed the advantages and disadvantages, rationale, current status and progress of pig models for liver cancer research.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yuexian Piao
- Invasive Technology Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Jiarui Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Bakrania A, To J, Zheng G, Bhat M. Targeting Wnt-β-Catenin Signaling Pathway for Hepatocellular Carcinoma Nanomedicine. GASTRO HEP ADVANCES 2023; 2:948-963. [PMID: 39130774 PMCID: PMC11307499 DOI: 10.1016/j.gastha.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/17/2023] [Indexed: 08/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a high-fatality cancer with a 5-year survival of 22%. The Wnt/β-catenin signaling pathway presents as one of the most upregulated pathways in HCC. However, it has so far not been targetable in the clinical setting. Therefore, studying new targets of this signaling cascade from a therapeutic aspect could enable reversal, delay, or prevention of hepatocarcinogenesis. Although enormous advancement has been achieved in HCC research and its therapeutic management, since HCC often occurs in the context of other liver diseases such as cirrhosis leading to liver dysfunction and/or impaired drug metabolism, the current therapies face the challenge of safely and effectively delivering drugs to the HCC tumor site. In this review, we discuss how a targeted nano drug delivery system could help minimize the off-target toxicities of conventional HCC therapies as well as enhance treatment efficacy. We also put forward the current challenges in HCC nanomedicine along with some potential therapeutic targets from the Wnt/β-catenin signaling pathway that could be used for HCC therapy. Overall, this review will provide an insight to the current advances, limitations and how HCC nanomedicine could change the landscape of some of the undruggable targets in the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey To
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Department of Medical Sciences, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Chen K, Li Y, Wang B, Yan X, Tao Y, Song W, Xi Z, He K, Xia Q. Patient-derived models facilitate precision medicine in liver cancer by remodeling cell-matrix interaction. Front Immunol 2023; 14:1101324. [PMID: 37215109 PMCID: PMC10192760 DOI: 10.3389/fimmu.2023.1101324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Liver cancer is an aggressive tumor originating in the liver with a dismal prognosis. Current evidence suggests that liver cancer is the fifth most prevalent cancer worldwide and the second most deadly type of malignancy. Tumor heterogeneity accounts for the differences in drug responses among patients, emphasizing the importance of precision medicine. Patient-derived models of cancer are widely used preclinical models to study precision medicine since they preserve tumor heterogeneity ex vivo in the study of many cancers. Patient-derived models preserving cell-cell and cell-matrix interactions better recapitulate in vivo conditions, including patient-derived xenografts (PDXs), induced pluripotent stem cells (iPSCs), precision-cut liver slices (PCLSs), patient-derived organoids (PDOs), and patient-derived tumor spheroids (PDTSs). In this review, we provide a comprehensive overview of the different modalities used to establish preclinical models for precision medicine in liver cancer.
Collapse
Affiliation(s)
- Kaiwen Chen
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Bingran Wang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Xuehan Yan
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiying Tao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weizhou Song
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
8
|
Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther 2023; 8:160. [PMID: 37045827 PMCID: PMC10097874 DOI: 10.1038/s41392-023-01419-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Patient-derived xenograft (PDX) models, in which tumor tissues from patients are implanted into immunocompromised or humanized mice, have shown superiority in recapitulating the characteristics of cancer, such as the spatial structure of cancer and the intratumor heterogeneity of cancer. Moreover, PDX models retain the genomic features of patients across different stages, subtypes, and diversified treatment backgrounds. Optimized PDX engraftment procedures and modern technologies such as multi-omics and deep learning have enabled a more comprehensive depiction of the PDX molecular landscape and boosted the utilization of PDX models. These irreplaceable advantages make PDX models an ideal choice in cancer treatment studies, such as preclinical trials of novel drugs, validating novel drug combinations, screening drug-sensitive patients, and exploring drug resistance mechanisms. In this review, we gave an overview of the history of PDX models and the process of PDX model establishment. Subsequently, the review presents the strengths and weaknesses of PDX models and highlights the integration of novel technologies in PDX model research. Finally, we delineated the broad application of PDX models in chemotherapy, targeted therapy, immunotherapy, and other novel therapies.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
9
|
Protocol for chronic hepatitis B virus infection mouse model development by patient-derived orthotopic xenografts. PLoS One 2022; 17:e0264266. [PMID: 35196351 PMCID: PMC8865695 DOI: 10.1371/journal.pone.0264266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
Background According to the World Health Organization, more than 250 million people worldwide are chronically infected with the hepatitis B virus, and almost 800.000 patients die annually of mediated liver disorders. Therefore, adequate biological test systems are needed that could fully simulate the course of chronic hepatitis B virus infection, including in patients with hepatocellular carcinoma. Methods In this study, we will assess the effectiveness of existing protocols for isolation and cultivation of primary cells derived from patients with hepatocellular carcinoma in terms of the yield of viable cells and their ability to replicate the hepatitis B virus using isolation and cultivation methods for adhesive primary cells, flow cytometry and quantitative polymerase chain reaction. Another part of our study will be devoted to evaluating the effectiveness of hepatocellular carcinoma grafting methods to obtain patient-derived heterotopic and orthotopic xenograft mouse avatars using animal X-ray irradiation and surgery procedures and in vivo fluorescent signals visualization and measurements. Our study will be completed by histological methods. Discussion This will be the first extensive comparative study of the main modern methods and protocols for isolation and cultivation primary hepatocellular carcinoma cells and tumor engraftment to the mice. All protocols will be optimized and characterized using the: (1) efficiency of the method for isolation cells from removed hepatocellular carcinoma in terms of their quantity and viability; (2) efficiency of the primary cell cultivation protocol in terms of the rate of monolayer formation and hepatitis B virus replication; (3) efficiency of the grafting method in terms of the growth rate and the possibility of hepatitis B virus persistence and replication in mice. The most effective methods will be recommended for use in translational biomedical research.
Collapse
|
10
|
Shin HY, Lee EJ, Yang W, Kim HS, Chung D, Cho H, Kim JH. Identification of Prognostic Markers of Gynecologic Cancers Utilizing Patient-Derived Xenograft Mouse Models. Cancers (Basel) 2022; 14:cancers14030829. [PMID: 35159096 PMCID: PMC8834149 DOI: 10.3390/cancers14030829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Patient-derived xenografts (PDXs) are important in vivo models for the development of precision medicine. However, challenges exist regarding genetic alterations and relapse after primary treatment. Thus, PDX models are required as a new approach for preclinical and clinical studies. We established PDX models of gynecologic cancers and analyzed their clinical information. We subcutaneously transplanted 207 tumor tissues from patients with gynecologic cancer into nude mice from 2014 to 2019. The successful engraftment rate of ovarian, cervical, and uterine cancer was 47%, 64%, and 56%, respectively. The subsequent passages (P2 and P3) showed higher success and faster growth rates than the first passage (P1). Using gynecologic cancer PDX models, the tumor grade is a common clinical factor affecting PDX establishment. We found that the PDX success rate correlated with the patient’s prognosis, and also that ovarian cancer patients with a poor prognosis had a faster PDX growth rate (p < 0.0001). Next, the gene sets associated with inflammation and immune responses were shown in high-ranking successful PDX engraftment through gene set enrichment analysis and RNA sequencing. Up-regulated genes in successful engraftment were found to correlate with ovarian clear cell cancer patient outcomes via Gene Expression Omnibus dataset analysis.
Collapse
Affiliation(s)
- Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Eun-ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Wookyeom Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Hyo Sun Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Dawn Chung
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
- Correspondence: ; Tel.: +82-02-2019-3430
| |
Collapse
|
11
|
Gu CY, Lee TKW. Preclinical mouse models of hepatocellular carcinoma: An overview and update. Exp Cell Res 2022; 412:113042. [PMID: 35101391 DOI: 10.1016/j.yexcr.2022.113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
12
|
Xu C, Yan L, An Q, Zhang S, Guan X, Wang Z, Lv A, Liu D, Liu F, Dong B, Zhao M, Tian X, Hao C. Establishment and evaluation of retroperitoneal liposarcoma patient-derived xenograft models: an ideal model for preclinical study. Int J Med Sci 2022; 19:1241-1253. [PMID: 35928724 PMCID: PMC9346387 DOI: 10.7150/ijms.70706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Retroperitoneal liposarcoma (RLPS) is one of the most common subtypes of retroperitoneal soft tissue sarcomas. It is characterized by poor sensitivity to radiotherapy and chemotherapy and a low success rate of complete surgical resection. However, there are few reliable preclinical RLPS models for target discovery and therapy research. In this study, we aimed to establish RLPS patient-derived xenograft (PDX) models that are useful for biological research and preclinical drug trials. A total of 56 freshly resected RLPS tissues were subcutaneously transplanted into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice, with subsequent xenotransplantation into second-generation mice. The tumor engraftment rate of first generation PDXs was 44.64%, and higher success rates were obtained from implantations of dedifferentiated, myxous, pleomorphic, high-grade liposarcomas and those with retroperitoneal organ infiltration. The first- and second- generation PDX models preserved the histopathological morphology, gene mutation profiles and MDM2 amplification of the primary tissues. PDX models can also provide the benefit of retaining original tumor biology and microenvironment characteristics, such as abnormal adipose differentiation, elevated Ki67 levels, high microvessel density, cancer-associated fibroblast presence, and tumor-associated macrophage infiltration. Overall survival (OS) and disease-free survival (DFS) of patients with successful first-generation PDX engraftment were significantly poorer than those with failed engraftment. Treatment with MDM2 inhibitor RG7112 significantly suppressed tumor growth of DDLPS PDX in mice. In conclusion, we successfully established RLPS PDX models that were histologically, genetically, and molecularly consistent with the original tissues. These models might provide opportunities for advancing RLPS tumor biology research, facilitating the development of novel drugs, particularly those targeting MDM2 amplification, adipose differentiation process, angiogenesis, cancer-associated fibroblasts, and so on.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qiming An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Gastrointestinal Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Sha Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Daoning Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Faqiang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
13
|
Role of Biobanks for Cancer Research and Precision Medicine in Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 52:1232-1247. [PMID: 34807351 DOI: 10.1007/s12029-021-00759-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a highly complex and deadly cancer. There is an urgent need for new and effective treatment modalities. Since the primary goal in the management of cancer is to cure and improve survival, personalized therapy can increase survival, reduce mortality rates, and improve quality of life. Biobanks hold potential in leading to breakthroughs in biomedical research and precision medicine (PM). They serve as a biorepository, collecting, processing, storing, and supplying specimens and relevant data for basic, translational, and clinical research. OBJECTIVE We aimed to highlight the fundamental role of biobanks, harboring high quality, sustainable collections of patient samples in adequate size and variability, for developing diagnostic, prognostic, and predictive biomarkers to develop and PM approaches in the management of HCC. METHOD We obtained information from previously published articles and BBMRI directory. RESULTS AND CONCLUSION Biobanking of high-quality biospecimens along with patient clinical information provides a fundamental scientific infrastructure for basic, translational, and clinical research. Biobanks that control and eliminate pre-analytical variability of biospecimens, provide a platform to identify reliable biomarkers for the application of PM. We believe, establishing HCC biobanks will empower to underpin molecular mechanisms of HCC and generate strategies for PM. Thus, first, we will review current therapy approaches in HCC care. Then, we will summarize challenges in HCC management. Lastly, we will focus on the best practices for establishing HCC biobanking to support research, translational medicine in the light of new experimental research conducted with the aim of delivering PM for HCC patients.
Collapse
|
14
|
Balasubramanian B, Venkatraman S, Myint KZ, Janvilisri T, Wongprasert K, Kumkate S, Bates DO, Tohtong R. Co-Clinical Trials: An Innovative Drug Development Platform for Cholangiocarcinoma. Pharmaceuticals (Basel) 2021; 14:ph14010051. [PMID: 33440754 PMCID: PMC7826774 DOI: 10.3390/ph14010051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Cholangiocarcinoma (CCA), a group of malignancies that originate from the biliary tract, is associated with a high mortality rate and a concerning increase in worldwide incidence. In Thailand, where the incidence of CCA is the highest, the socioeconomic burden is severe. Yet, treatment options are limited, with surgical resection being the only form of treatment with curative intent. The current standard-of-care remains adjuvant and palliative chemotherapy which is ineffective in most patients. The overall survival rate is dismal, even after surgical resection and the tumor heterogeneity further complicates treatment. Together, this makes CCA a significant burden in Southeast Asia. For effective management of CCA, treatment must be tailored to each patient, individually, for which an assortment of targeted therapies must be available. Despite the increasing numbers of clinical studies in CCA, targeted therapy drugs rarely get approved for clinical use. In this review, we discuss the shortcomings of the conventional clinical trial process and propose the implementation of a novel concept, co-clinical trials to expedite drug development for CCA patients. In co-clinical trials, the preclinical studies and clinical trials are conducted simultaneously, thus enabling real-time data integration to accurately stratify and customize treatment for patients, individually. Hence, co-clinical trials are expected to improve the outcomes of clinical trials and consequently, encourage the approval of targeted therapy drugs. The increased availability of targeted therapy drugs for treatment is expected to facilitate the application of precision medicine in CCA.
Collapse
Affiliation(s)
- Brinda Balasubramanian
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (B.B.); (S.V.); (K.Z.M.)
| | - Simran Venkatraman
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (B.B.); (S.V.); (K.Z.M.)
| | - Kyaw Zwar Myint
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (B.B.); (S.V.); (K.Z.M.)
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Correspondence: ; Tel.: +66-2-201-5606
| |
Collapse
|
15
|
Hassan G, Afify SM, Du J, Seno A, Seno M. Availability of Pluripotent Stem Cells from Normal Cells in Cancer Science. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|