1
|
Li X, Gao Y, Han X, Tang S, Li N, Liu X, Ni X. Maresin1 ameliorates postoperative cognitive dysfunction in aged rats by potentially regulating the NF-κB pathway to inhibit astrocyte activation. Exp Gerontol 2023; 176:112168. [PMID: 37055002 DOI: 10.1016/j.exger.2023.112168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is one of the most serious postoperative complications in the elderly population. Perioperative central neuroinflammation is considered to be an important pathological mechanism of POCD, with the activation of astrocytes playing a key role in central neuroinflammation. Maresin1 (MaR1) is a specific pro-resolving mediator synthesized by macrophages in the resolution stage of inflammation, and provides unique anti-inflammatory and pro-resolution effects by limiting excessive neuroinflammation and promoting postoperative recovery. However, the question remains whether MaR1 can have a positive effect on POCD. The objective of this study was to investigate the protective effect of MaR1 on POCD cognitive function in aged rats after splenectomy. Morris water maze test and IntelliCage test showed that splenectomy could cause transient cognitive dysfunction in aged rats; however, the cognitive impairment of rats was significantly mitigated when MaR1 pretreatment was administered. MaR1 significantly alleviated the fluorescence intensity and protein expression of glial fibrillary acidic protein and central nervous system specific protein in the cornu ammonis 1 region of the hippocampus. Simultaneously, the morphology of astrocytes was also severely altered. Further experiments showed that MaR1 inhibited the mRNA and protein expression of several key proinflammatory cytokines-interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus of aged rats following splenectomy. The molecular mechanism underlying this process was explored by evaluating expression of components of the nuclear factor κB (NF-κB) signaling pathway. MaR1 substantially inhibited the mRNA and protein expression of NF-κB p65 and κB inhibitor kinase β. Collectively, these results suggest that MaR1 ameliorated splenectomy-induced transient cognitive impairment in elderly rats, and this neuroprotective mechanism may occur through regulating the NF-κB pathway to inhibit astrocyte activation.
Collapse
Affiliation(s)
- Xiuhua Li
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yubo Gao
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xu Han
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Shaling Tang
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Na Li
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xing Liu
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xinli Ni
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Li X, Han X, Gao Y, Tang S, Yang Y, Zhang C, Ni X. Neuroprotective effects of different doses of Maresin1 pretreatment in aged rats after anesthesia/surgery. Neuroreport 2023; 34:348-356. [PMID: 36966805 PMCID: PMC10065824 DOI: 10.1097/wnr.0000000000001900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 03/28/2023]
Abstract
OBJECTIVE The study is to investigate the neuroprotective effect of different doses of Maresin1 pretreatment in aged rats after anesthesia/surgery and the related mechanisms. METHODS Aged male rats were randomly divided into a control group, an anesthesia/surgery group, and low, medium, and high-dose Maresin1 pretreatment groups, and the hippocampus was taken for study. The Morris water maze was performed to detect the cognitive ability of rats. Western blot and immunofluorescence were used to detect the expression of glial fibrillary acidic protein (GFAP) and central nervous system-specific protein (S100β). The ultrastructure of astrocytes was observed by a transmission electron microscope. Quantitative real-time PCR was used to detect the relative expression of IL-1β, IL-6, and TNF-α mRNA. RESULTS Compared with the control group, the cognition of rats in the anesthesia/surgery group was significantly reduced. The expression of astrocyte markers (GFAP and S100β) in the hippocampus of rats in the anesthesia/surgery group was increased. The levels of hippocampal inflammatory cytokines (TNF-α, IL-1β, and IL-6) were also higher in the anesthesia/surgery group than in the control group. After pretreatment with different doses of Maresin1, the cognitive impairment of rats was alleviated to varying degrees. Maresin1 pretreatment decreased the expression of astrocyte markers and inflammatory factors in the hippocampus of rats after anesthesia/surgery, and improve the microstructures of activated astrocytes, especially in the medium-dose group. CONCLUSION Pretreatment with Maresin1 (especially at medium-dose) showed neuroprotective effects in aged rats after anesthesia/surgery, which may be related to the inhibition of astrocyte activation.
Collapse
Affiliation(s)
- Xiuhua Li
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University
| | - Xu Han
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University
| | - Yubo Gao
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University
| | - Shaling Tang
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University
| | - Yanfang Yang
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinli Ni
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University
| |
Collapse
|
3
|
Liu J, Xie X, Qin K, Xu L, Peng J, Li X, Li X, Liu Z. Dexamethasone and potassium canrenoate alleviate hyperalgesia by competitively regulating IL-6/JAK2/STAT3 signaling pathway during inflammatory pain in vivo and in vitro. Immun Inflamm Dis 2022; 10:e721. [PMID: 36301041 PMCID: PMC9597488 DOI: 10.1002/iid3.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Dexamethasone (Dexa) and potassium canrenoate (Cane) modulate nociceptive behavior via glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) by two mechanisms (genomic and nongenomic pathways). This study was designed to investigate the Dexa- or Cane-mediated nongenomic and genomic effects on mechanical nociception and inflammation-induced changes in interleukin-6 (IL-6) mediated signaling pathway in rats. METHODS Freund's complete adjuvant (FCA) was used to trigger an inflammation of the right hind paw in male Sprague-Dawley rats. First, the mechanical nociceptive behavioral changes were examined following intraplantar administration of GR agonist Dexa and/or MR antagonist Cane in vivo. Subsequently, the protein levels of IL-6, IL-6Rα, JAK2, pJAK2, STAT3, pSTAT3Ser727 , migration inhibitory factor, and cyclooxygenase-2 were assessed by Western blot following intraplantar injection of Dexa or Cane or the combination. Moreover, the molecular docking studies determined the interaction between Dexa, Cane, and IL-6. The competition binding assay was carried out using enzyme-linked immunosorbent assays (ELISA). RESULTS Administration of Dexa and Cane dose-dependently attenuated FCA-induced inflammatory pain. The sub-additive effect of Dexa/Cane combination was elucidated by isobologram analysis, accompanied by decrease in the spinal levels of IL-6, pJAK2, and pSTAT3Ser727 . The molecular docking study demonstrated that both Dexa and Cane displayed a firm interaction with THR138 binding site of IL-6 via a strong hydrogen bond. ELISA revealed that Dexa has a higher affinity to IL-6 than Cane. CONCLUSIONS There was no additive or negative effect of Dexa and Cane, and they modulate the IL-6/JAK2/STAT3 signaling pathway through competitive binding with IL-6 and relieves hypersensitivity during inflammatory pain.
Collapse
Affiliation(s)
- Jie Liu
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiaolan Xie
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Kai Qin
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Le Xu
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Juxiang Peng
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiangyu Li
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiongjuan Li
- Department of Anesthesiology, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenGuangdongChina
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenGuangdongChina
| |
Collapse
|
4
|
Li Y, Zhang Q, Yan W, Wang X, Yu J, Yin C, Zhou Q, Hou Z, Wang Q. Young plasma reverses anesthesia and surgery-induced cognitive impairment in aged rats by modulating hippocampal synaptic plasticity. Front Aging Neurosci 2022; 14:996223. [PMID: 36147703 PMCID: PMC9485610 DOI: 10.3389/fnagi.2022.996223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the protective effect of young plasma on anesthesia- and surgery-induced cognitive impairment and the potential underlying mechanism using bioinformatics, functional enrichment analysis, gene set enrichment analysis, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay, western blot analysis, and transmission electron microscopy. Furthermore, we performed behavioral assessments using the open field test, the novel object recognition test, and the Morris water maze test. We identified 1969 differentially expressed genes induced by young plasma treatment, including 800 upregulated genes and 1169 downregulated genes, highlighting several enriched biological processes (signal release from synapse, postsynaptic density and neuron to neuron synapse). Anesthesia- and surgery-induced cognitive impairment in aged rats was comparatively less severe following young plasma preinfusion. In addition, the decreased levels of synapse-related and tyrosine kinase B/extracellular signal-regulated protein kinase/cyclic adenosine monophosphate response element-binding protein (TrkB/ERK/CREB) signaling pathway-related proteins, dendritic and spine deficits, and ultrastructural changes were ameliorated in aged mice following young plasma preinfusion. Together, these findings suggest that young plasma reverses anesthesia- and surgery-induced cognitive impairment in aged rats and that the mechanism is associated with the activation of the TrkB/ERK/CREB signaling pathway and improvement in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Anesthesiology, Hebei Children’s Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenyu Yan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xupeng Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiaxu Yu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chunping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhou
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiyong Hou
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Yoshida K, Murakawa M, Hosono A. Effects of anesthetics on expression of dopamine and acetylcholine receptors in the rat brain in vivo. J Anesth 2022; 36:436-440. [PMID: 35137267 DOI: 10.1007/s00540-022-03046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/30/2022] [Indexed: 11/26/2022]
Abstract
Dopamine D2 and acetylcholine M1 receptors might be related to post-operative cognitive dysfunction. The aim of the present study is to investigate whether several anesthetics which are used for general anesthesia and/or sedation, affect expression of dopamine D2 and acetylcholine M1 receptors in the rat brain. Thirty-six male rats aged 5-9 weeks old were divided into six groups (n = 6 in each group); five groups for anesthetics and one for control. The five groups were anesthetized with either dexmedetomidine 0.4 µg/kg/min, propofol 50 mg/kg/h, midazolam 25 mg/kg/h, sevoflurane 3.3%, or nitrous oxide 75% for 4 h. Then, the rats were decapitated, and the cerebral cortex, hippocampus, corpus striatum, brain stem, and cerebellum were collected from all rats. Then, real-time polymerase chain reaction was performed to examine the expression of Drd2 (cord dopamine D2 receptor) and Chrm1 (cord acetylcholine M1 receptor). There were no significant differences among the groups regarding Drd2 and Chrm1 mRNA expression of each region of the brain. Postsynaptic changes of dopamine D2 and acetylcholine M1 receptors due to administration of dexmedetomidine, propofol, midazolam, sevoflurane, and nitrous oxide are unlikely to occur at the doses of each anesthetic used in the present study.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Department of Anesthesiology, Fukushima Medical University School of Medicine, 1, Hikariga-oka, Fukushima, 960-1297, Japan.
| | - Masahiro Murakawa
- Department of Anesthesiology, Fukushima Medical University School of Medicine, 1, Hikariga-oka, Fukushima, 960-1297, Japan
| | - Atsuyuki Hosono
- Department of Anesthesiology, Fukushima Medical University School of Medicine, 1, Hikariga-oka, Fukushima, 960-1297, Japan
| |
Collapse
|