1
|
Blanco-Doval A, Barron LJR, Bustamante MÁ, Aldai N. Characterization and monitoring of changes during lactation in the profile of multiple bioactive compounds of milk from grazing mares. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39420862 DOI: 10.1002/jsfa.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mare milk has often been considered a food product with potential functional properties. However, the bioactive compound composition of mare milk, including vitamins and other minor bioactive compounds, as well as factors affecting this composition have scarcely been studied. Therefore, the present study aimed to characterize the changes during lactation in the content of water- and fat-soluble vitamins and total polyphenols, and the total antioxidant capacity of mare milk from semi-extensive farms. A total of 310 individual milk samples from 18 mares belonging to three commercial farms and 12 lactation times were analyzed. Ascorbic acid (vitamin C), thiamine (vitamin B1), riboflavin (vitamin B2), nicotinic acid and niacinamide (vitamins B3), pantothenic acid (vitamin B5), pyridoxal and pyridoxine (vitamins B6), folic acid (vitamin B9), cyanocobalamin (vitamin B12), tocopherols and tocotrienols (vitamin E) and retinol and retinyl esters (vitamin A) were quantified using liquid chromatography. Total polyphenols and antioxidant capacity assays were analyzed using spectrophotometry. RESULTS The concentration of most bioactive compounds tended to decline as lactation progressed, with the exception of polyphenols and the total antioxidant capacity that oscillated during lactation. On the other hand, the effect of the different semi-extensive management of the farms was only significant for vitamin B3 content. CONCLUSION To the best of our knowledge, the present study provides the most in-depth description of the vitamin profile of mare milk as well as new insights into polyphenol content and antioxidant capacity of mare milk. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Blanco-Doval
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Luis Javier R Barron
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - María Ángeles Bustamante
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Lei Z, Shi Y, Zou J, Zhang X, Xin B, Guo D, Sun J, Luan F. A review of the polysaccharides against fatigue and the underlying mechanism. Int J Biol Macromol 2024; 275:133601. [PMID: 38969031 DOI: 10.1016/j.ijbiomac.2024.133601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Fatigue is a common physiological state that affects normal human activities. Prolonged fatigue induces a variety of diseases and seriously affects human health, so it is imperative to discover nutritional dietary supplements and treatments without side effects, among which natural anti-fatigue polysaccharides have shown great potential. Polysaccharides, a class of biomolecules produced by a variety of organisms such as plants, animals, bacteria and algae, have attracted much attention in recent years due to their anti-fatigue activity and fewer side effects. This review summarizes the classification, dosage and experimental models of polysaccharides with anti-fatigue activity obtained from different natural sources. We also review the fatigue-relieving effects of these polysaccharides through mechanisms such as modulating oxidative damage, regulating energy metabolism and influencing intestinal flora, as well as the effects of molecular weights, monosaccharide compositions, structural features and chemical modifications of the polysaccharides on their anti-fatigue activities to support their potential application value in functional foods and pharmaceuticals. New valuable insights for future research on natural polysaccharides are also presented in the field of natural production of bio-based functional materials, functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
3
|
Si Q, Sun W, Liang B, Chen B, Meng J, Xie D, Feng L, Jiang P. Systematic Metabolic Profiling of Mice with Sleep-Deprivation. Adv Biol (Weinh) 2024; 8:e2300413. [PMID: 37880935 DOI: 10.1002/adbi.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Adequate sleep is essential for the biological maintenance of physical energy. Lack of sleep can affect thinking, lead to emotional anxiety, reduce immunity, and interfere with endocrine and metabolic processes, leading to disease. Previous studies have focused on long-term sleep deprivation and the risk of cancer, heart disease, diabetes, and obesity. However, systematic metabolomics analyses of blood, heart, liver, spleen, kidney, brown adipose tissue, and fecal granules have not been performed. This study aims to systematically assess the metabolic changes in the target organs caused by sleep deprivation in vivo, to search for differential metabolites and the involved metabolic pathways, to further understand the impact of sleep deprivation on health, and to provide strong evidence for the need for early intervention.
Collapse
Affiliation(s)
- Qingying Si
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Benhui Liang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
| | - Beibei Chen
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| |
Collapse
|
4
|
Bian X, Wang Y, Yang R, Ma Y, Dong W, Guo C, Gao W. Anti-fatigue properties of the ethanol extract of Moringa oleifera leaves in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37062935 DOI: 10.1002/jsfa.12628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Moringa oleifera (M. oleifera) leaves are rich in nutrients and bioactive ingredients. This study was aimed at evaluating the anti-fatigue effect of the ethanol extract of M. oleifera leaves (MLEE) on mice and its primary mechanism of action using a weight-loaded forced swimming test. In the present study, MLEE was prepared by ultrasound-assisted extraction, and its anti-fatigue effect and antioxidant capacity were evaluated in mice. Mice were administrated MLEE (320 mg kg-1 body weight) for 15 days. RESULTS MLEE supplementation significantly increased levels of glucose and non-esterified fatty acids (NEFA), while decreasing levels of lactate and blood urea nitrogen in serum (P < 0.05); the levels of glycogen in the liver and muscle were also increased, as was the activity of glycogen synthase and the level of NEFA in muscle (P < 0.05). According to a Western blot analysis, MLEE increased the expression of AMPKα1, JNK, AKT and STAT3 in the muscle of mice. CONCLUSION Our findings indicate that MLEE has an anti-fatigue effect via the AMPK-linked route, which enables it to control energy metabolism and enhance antioxidant enzyme activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Yawen Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Renren Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Yuying Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Weiyun Dong
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| |
Collapse
|
5
|
Ginseng Pectin WGPA Alleviates Exercise-Induced Fatigue by Enhancing Gluconeogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7973380. [PMID: 36569345 PMCID: PMC9788872 DOI: 10.1155/2022/7973380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
With the development of medicine and sport science, growing attention has been paid to the recovery of exercise-induced fatigue. Ginseng pectin has been shown to be important for a variety of biological functions. Although many studies suggest that ginseng pectin plays an important role in the alleviation of exercise-induced fatigue, the underlying mechanism still remains unclear. In this study, C57BL/6J mice were subjected to a wheel apparatus for exhaustive exercise and fed with ginseng pectin WGPA (acidic fraction of water-soluble ginseng polysaccharides) afterwards. Subsequently, a series of physiological and biochemical indexes, such as blood lactic acid, blood glucose, muscle glycogen, insulin, and glucagon, is evaluated. Meanwhile, enzymatic activity and mRNA level of key enzymes involved in hepatic gluconeogenesis are analyzed. Our results demonstrate that the treatment of ginseng pectin WGPA can result in enhanced gluconeogenesis and decreased insulin and in turn facilitate the recovery of exercise-induced fatigue. In response to WGPA treatment, both phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase) activity were upregulated, indicating that these two enzymes play a critical role in WGPA-induced upregulation in gluconeogenesis. Moreover, mRNA level of G6Pase, but not PEPCK, was increased upon WGPA treatment, suggesting that G6Pase expression is regulated by WGPA. Importantly, the presence of WGPA downregulated insulin both in vivo and in vitro, suggesting the upregulation in gluconeogenesis may be due to alterations in insulin. Together, we provide evidence that ginseng pectin WGPA is able to alleviate exercise-induced fatigue by reducing insulin and enhancing gluconeogenesis.
Collapse
|
6
|
Spore Powder of Paecilomyces hepiali Shapes Gut Microbiota to Relieve Exercise-Induced Fatigue in Mice. Nutrients 2022; 14:nu14142973. [PMID: 35889929 PMCID: PMC9323605 DOI: 10.3390/nu14142973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Paecilomyces hepiali, a fungal strain isolated from natural Ophiocordyceps sinensis, contains similar pharmacologically active components, has been used widely as a substitute of O. sinensis in functional food and medicine. However, the components and anti-fatigue effects of P.hepiali spores and their mechanisms of action are largely unknown. Here, we compared the chemical composition in P.hepiali spore (HPS) and mycelium (HPM) by liquid chromatography with tandem mass spectrometry analysis. We found 85 metabolites with significant differences, and HPS contains more L-Malic acid, Oxalacetic acid, Fructose-1,6-bisphosphate, and L-Arginine than HPM. Then we evaluated their anti-fatigue effects and regulatory effects on the gut microbiota in mice. The forced swimming time (SW) was only significantly increased in HPS groups: the high and low dose of the HPS group was 101% and 72% longer than the control group, respectively. Both HPS and HPM treatment decreased lactic acid, blood urea nitrogen, creatine kinase while increased lactate dehydrogenase (LDH) levels in the blood. Moreover, mice treated with HPS and HPM showed less skeletal muscle fiber spacing and breakage. The relative abundance of Alistips, Eubacterium, Bacterium, Parasutterella, and Olsenella in the gut microbiota of the HPS group was higher than that in the HPM group through 16S rRNA gene sequencing analysis. These changes may be related to the regulation of nucleotide, amino acid, and carbohydrate metabolism. Correlation analysis between the gut microbiota and fatigue-related indicators suggested that Alistips, Clostridium, Akkermansia, Olsenella, and Lactobacillus were positively correlated with the SW and LDH content. Our findings demonstrated that HPS has beneficial anti-fatigue effects by regulating gut microbiota.
Collapse
|
7
|
Tai HJ, Lee MC, Hsu YJ, Kuo CY, Huang CC, Wang MF. Sea Bass Essence from Lates calcarifer Improves Exercise Performance and Anti-Fatigue in Mice. Metabolites 2022; 12:metabo12060531. [PMID: 35736463 PMCID: PMC9227615 DOI: 10.3390/metabo12060531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Sea bass (Lates calcarifer) is rich in protein, amino acids, and long-chain omega 3 (omega-3), which have many health benefits. In East Asian food culture, soup is often eaten as a nutritional supplement. The purpose of this study was to investigate the benefits of Hi-Q sea bass essence (SBE) supplementation for improved exercise performance and anti-fatigue. Fifty male Institute of Cancer Research (ICR) mice were divided to five groups (10 mice/group) and administered different doses of SBE (EC): (1) vehicle (water); (2) isocaloric (0.94 g casein/kg/mice/day); (3) SBE-1X (1.04 g/kg/mice/day); (4) SBE-2X (2.08 g/kg/mice/day); and (5) SBE-4X (4.16 g/kg/mice/day). We found that SBE supplementation significantly improved more than 1.96-fold endurance exercise performance (p < 0.05) and more than 1.13-fold glycogen storage in the liver and muscles (p < 0.05), and had dose-dependent by SBE dose (p < 0.05). In addition, supplementation with SBE at different doses had significant effects on the fatigue-related biochemical markers, i.e., lactate, ammonia, and blood urea nitrogen (BUN) levels were reduced significantly (p < 0.05), and were also dose-dependent. In conclusion, supplementation with SBE for 4 weeks was able to effectively improve exercise performance and had an anti-fatigue effect. In addition, it did not cause any physiological or histopathological damage.
Collapse
Affiliation(s)
- Hong-Jun Tai
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Chun-Yen Kuo
- Program in Health and Social Welfare for Indigenous Peoples, Providence University, Taichung 43301, Taiwan;
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
- Correspondence: (C.-C.H.); (M.-F.W.); Tel.: +886-3-328-3201 (ext. 2409) (C.-C.H.); +886-4-042-632-8001 (M.-F.W.)
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
- Correspondence: (C.-C.H.); (M.-F.W.); Tel.: +886-3-328-3201 (ext. 2409) (C.-C.H.); +886-4-042-632-8001 (M.-F.W.)
| |
Collapse
|
8
|
Yan K, Gao H, Liu X, Zhao Z, Gao B, Zhang L. Establishment and identification of an animal model of long-term exercise-induced fatigue. Front Endocrinol (Lausanne) 2022; 13:915937. [PMID: 36093084 PMCID: PMC9459130 DOI: 10.3389/fendo.2022.915937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022] Open
Abstract
In competitive sports, the training load is close to the human physiological limit, which will inevitably lead to exercise-induced fatigue. If fatigue cannot be recovered in time, it will eventually lead to excessive training and affect sport performance. Therefore, fatigue has become an important part of the physical function assessment for athletes. This paper will review animal models of long-term exercise-induced fatigue, modeling schemes of mice under treadmill and swimming training, phenotypes of long-term exercise-induced fatigue (e.g., nervous system damage, myocardial cell damage, bone mineral density changes, and skeletal muscle damage), and fatigue indicators. The relationship between physiological indicators and biomarkers and long-term exercise-induced fatigue is analyzed to promote exercise-induced fatigue monitoring. This paper attempts to provide a reference for the selection of animal models of long-term exercise-induced fatigue and provide a new theoretical basis for medical supervision and recovery of exercise-induced fatigue.
Collapse
Affiliation(s)
- Kai Yan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Haoyang Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaohua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhonghan Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Lingli Zhang, ; Bo Gao,
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lingli Zhang, ; Bo Gao,
| |
Collapse
|
9
|
Effect of repeated bouts of fasting and refeeding on body composition and proteolysis gene expression in skeletal muscles and liver of C57BL/6J mice. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Teichert J, Cais-Sokolińska D, Bielska P, Danków R, Chudy S, Kaczyński ŁK, Biegalski J. Milk fermentation affects amino acid and fatty acid profile of mare milk from Polish Coldblood mares. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|