1
|
Hu SL, Liu SC, Lin CY, Fong YC, Wang SS, Chen LC, Yang SF, Tang CH. Genetic associations of visfatin polymorphisms with clinicopathologic characteristics of prostate cancer in Taiwanese males. Int J Med Sci 2024; 21:2494-2501. [PMID: 39439457 PMCID: PMC11492887 DOI: 10.7150/ijms.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
The most general cancer in men is prostate cancer (PCa), with its risk increasing due to age and obesity. Visfatin, a member of adipokines, is related to cancer progression and metastasis, but its relationship in PCa remains undetermined. In addition, no knowledge is available regarding relations between visfatin polymorphisms and clinicopathological characteristics in PCa. We sought to investigate the functions of four visfatin gene polymorphisms and clinicopathological characteristics on the hazard of developing PCa in 695 Taiwanese males with PCa. Carriers of the GA+AA heterozygote of SNP rs61330082 were at a markedly higher risk of biochemical recurrence than those with the GG genotype. Visfatin rs61330082 and rs11977021 were related with a high risk of perineural invasion, lymphovascular invasion, and biochemical recurrence in prostate-specific antigen (PSA) > 10 PCa patients. The Cancer Genome Atlas database noted that visfatin mRNA level did not prominently differ with pathological T/N stage and overall survival. This finding is the first to document a connection between visfatin polymorphisms and clinicopathological characteristics of PCa in Taiwanese males.
Collapse
Affiliation(s)
- Sung-Lin Hu
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Shan-Chi Liu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chia-Yen Lin
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Shian-Shiang Wang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Li-Chai Chen
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
2
|
Brzecka A, Martynowicz H, Daroszewski C, Majchrzak M, Ejma M, Misiuk-Hojło M, Somasundaram SG, Kirkland CE, Kosacka M. The Modulation of Adipokines, Adipomyokines, and Sleep Disorders on Carcinogenesis. J Clin Med 2023; 12:jcm12072655. [PMID: 37048738 PMCID: PMC10094938 DOI: 10.3390/jcm12072655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Obesity and sarcopenia, i.e., decreased skeletal muscle mass and function, are global health challenges. Moreover, people with obesity and sedentary lifestyles often have sleep disorders. Despite the potential associations, metabolic disturbances linking obesity, sarcopenia, and sleep disorders with cancer are neither well-defined nor understood fully. Abnormal levels of adipokines and adipomyokines originating from both adipose tissue and skeletal muscles are observed in some patients with obesity, sarcopenia and sleep disorders, as well as in cancer patients. This warrants investigation with respect to carcinogenesis. Adipokines and adipomyokines may exert either pro-carcinogenic or anti-carcinogenic effects. These factors, acting independently or together, may significantly modulate the incidence and progression of cancer. This review indicates that one of the possible pathways influencing the development of cancer may be the mutual relationship between obesity and/or sarcopenia, sleep quantity and quality, and adipokines/adipomyokines excretion. Taking into account the high proportion of persons with obesity and sedentary lifestyles, as well as the associations of these conditions with sleep disturbances, more attention should be paid to the individual and combined effects on cancer pathophysiology.
Collapse
Affiliation(s)
- Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland
| | - Helena Martynowicz
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Cyryl Daroszewski
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland
| | - Maciej Majchrzak
- Department of Thoracic Surgery, Wroclaw Medical University, Ludwika Pasteura 1, Grabiszyńska105, 53-439 Wroclaw, Poland
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, 223 West Main Street, Salem, WV 26426, USA
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, 223 West Main Street, Salem, WV 26426, USA
| | - Monika Kosacka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland
| |
Collapse
|
3
|
Chang SLY, Yang PJ, Lin YY, Jiang YJ, Liu PI, Huang CL, Yang SF, Tang CH. Genetic Associations of Visfatin Polymorphisms with EGFR Status and Clinicopathologic Characteristics in Lung Adenocarcinoma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15172. [PMID: 36429891 PMCID: PMC9690642 DOI: 10.3390/ijerph192215172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Lung adenocarcinoma (LUAD) is the most common histologic type of lung cancer. Mutations of the epidermal growth factor receptor (EGFR) gene are among the most common genetic alterations in LUAD and are the targets of EGFR tyrosine kinase inhibitors. The enzyme visfatin is involved in the generation of the oxidized form of nicotinamide adenine dinucleotide (NAD+) and regulation of intracellular adenosine triphosphate (ATP), critical processes in cancer cell survival and growth. This study explored the relationship between visfatin single nucleotide polymorphisms (SNPs) with EGFR status and the clinicopathologic development of LUAD in a cohort of 277 Taiwanese men and women with LUAD. Allelic discrimination of four visfatin SNPs rs11977021, rs61330082, rs2110385 and rs4730153 was determined using a TaqMan Allelic Discrimination assay. We observed higher prevalence rates of advanced (T3/T4) tumors and distant metastases in EGFR wild-type patients carrying the rs11977021 CT + TT and rs61330082 GA + AA genotypes, respectively, compared with patients carrying the CC and GG genotypes. EGFR wild-type patients carrying the rs11977021 CT + TT genotypes were also more likely to develop severe (stage III/IV) malignancy compared with patients carrying the CC genotype. An analysis that included all patients found that the association persisted between the rs11977021 CT + TT and rs61330082 GA + AA genotypes and the development of T3/T4 tumors compared with patients carrying the rs11977021 CC and rs61330082 GG genotypes. In conclusion, these data indicate that visfatin SNPs may help to predict tumor staging in LUAD, especially in patients with EGFR wild-type status.
Collapse
Affiliation(s)
- Sunny Li-Yun Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Po-Jen Yang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yen-You Lin
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ya-Jing Jiang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan
| | - Po-I Liu
- Department of General Thoracic Surgery, Asia University Hospital, Taichung 41354, Taiwan
| | - Chang-Lun Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan
- Division of General Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
4
|
Jiang FC, Li GS, Luo JY, Huang ZG, Dang YW, Chen G, He J, Gao L, Tang YX, Wei GG, Dai WB, Feng ZB. Downregulation of zinc finger protein 71 expression in oral squamous cell carcinoma tissues and its underlying molecular mechanism. Pathol Res Pract 2022; 238:154109. [PMID: 36115333 DOI: 10.1016/j.prp.2022.154109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patients with oral squamous cell carcinoma (OSCC) have poor prognoses due to a limited understanding of the pathogenesis of OSCC. Zinc finger protein (ZNF) is the largest transcription factor family in the human genome and exert diverse and important functions. Nevertheless, the exact expression status and molecular mechanism of ZNF71 have not been described in OSCC. Therefore, this study aimed to identify the specific expression level of ZNF71 in OSCC tissues and to further interpret the potential molecular mechanism of ZNF71 in the pathogenesis of OSCC. METHODS In-house immunohistochemical staining of 116 OSCC samples and 29 non-OSCC samples was employed to detect the expression status of ZNF71 at the protein level of OSCC tissues. Single-cell RNA sequencing data from 7 OSCC samples was used to explore the expression landscape of ZNF71 in different cell types from OSCC tissues. High-throughput RNA sequencing data and gene chips data from 893 OSCC samples and 301 non-OSCC samples were utilized to identify the specific expression level of ZNF71 at the bulk mRNA level of OSCC tissues. Here, standardized mean difference (SMD) value was applied to calculate the expression differences between OSCC group and non-OSCC group. Multiple datasets were included; hence, the results were considered to be more reliable. Sensitivity analysis was conducted to evaluate the stability of the results. Enrichment analysis and immune infiltration analysis were used to explore the underlying molecular mechanism of ZNF71 in OSCC. RESULTS ZNF71 was significantly downregulated in OSCC tissues at the protein level (SMD = -1.96, 95 % confidence interval [95 % CI]: -2.43 to -1.50). ZNF71 was absent in various cell types from OSCC tissues including cancerous epithelial cells and tumor-infiltrating immune cells. ZNF71 was downregulated in OSCC tissues at the bulk mRNA level (SMD = -0.38, 95 % CI: -0.75 to -0.02). Enrichment analysis showed that positively and differentially co-expressed genes mainly concentrated on "herpes simplex virus 1 infection" and "regulation of plasma membrane bounded cell projection organization", and negatively and differentially co-expressed genes mainly participated in "cell cycle" and "DNA metabolic process". Moreover, the putative target genes of ZNF71 mainly participated in "cellular respiration" and "protein catabolic process". Finally, immune infiltration analysis revealed that ZNF71 expression was positively correlated with multiple immune cells including activated B cells, memory B cells, and natural killer (NK) cells, and negatively correlated with various immune cells, including CD56 bright NK cells, neutrophil, and immature dendritic cells. CONCLUSION The downregulation of ZNF71 may influence the initiation and promotion of OSCC by reducing immune infiltration, accelerating cell cycle progression, and affecting metabolic process, and this requires further research.
Collapse
Affiliation(s)
- Fang-Cheng Jiang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Guo-Sheng Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Gan-Guan Wei
- Department of Otorhinolaryngology Head and Neck Surgery, 923 hospital of People's Liberation Army, 52 Zhiwu Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Wen-Bin Dai
- Department of Pathology, Liuzhou People's Hospital, 8 Wenchang Road, Chengzhong District, Liuzhou, Guangxi Zhuang Autonomous Region 545006, PR China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|