1
|
Zhang J, Li H, Deng Q, Huang AM, Qiu W, Wang L, Xiang Z, Yang R, Liang J, Liu Z. Correlation between omega-3 intake and the incidence of diabetic retinopathy based on NHANES from 2005 to 2008. Acta Diabetol 2024; 61:997-1005. [PMID: 38625392 DOI: 10.1007/s00592-024-02267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
AIMS To identify correlations between omega-3 intake and incidence of diabetic retinopathy (DR). METHODS This was a cross-sectional study using data from participants over age 40 in the National Health and Nutrition Examination Survey (NHANES) 2005-2008. Metrics included participants' intake of omega-3 fatty acids, specifically three types of representative polyunsaturated fatty acids, DR prevalence, and demographic characteristics. Multiple logistic regression models were used to assess the relationship between omega-3 intake and DR. RESULTS Of the 1243 participants included in this study, omega-3 intake was lower in patients with DR relative to those without DR. Of the three polyunsaturated fatty acids within the omega-3 fatty acid family that we focused on, participants without DR consumed more docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) than those with DR. In contrast, there was no significant difference in the intake of eicosapentaenoic acid (EPA). Higher omega-3 intake was associated with a decreased risk of DR. In a crude model, the odds ratio (OR) was 0.548 (95% CI 0.315, 0.951; p = 0.033). In the fully adjusted model of omega-3 (model II), the adjusted OR was 0.525 (95% CI 0.306, 0.901; p = 0.021). DPA and DHA were also associated with a decreased risk of DR. In the full adjustment model (model II) of DPA and DHA, the adjusted ORs were 0.0002 (95% CI 0.000, 0.166; p = 0.014) and 0.293 (95% CI 0.105, 0.819; p = 0.020). Subgroup analysis showed that the protective effect of omega-3 against DR was more significant in younger patients (p value = 0.015). CONCLUSIONS In this cross-sectional study of the U.S. general population, we found that increased intake of omega-3 and its components, specifically DPA and DHA were negatively associated with DR incidence. This suggests that omega-3 may be a potential protective factor for DR and may help to prevent or delay the onset and progression of DR.
Collapse
Affiliation(s)
- Jingyu Zhang
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Huangdong Li
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Qian Deng
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
- Zhejiang Provincal People's Hospital Bijie Hospital, Bijie, 551700, Guizhou, China
| | - Amy Michelle Huang
- Department of Ophthalmology, University of Colorado, Aurora, CO, 80045, USA
| | - Wangjian Qiu
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
- Department of Ophthalmology, Shenzhen Songgang District People's Hospital, Shenzhen, 518105, China
| | - Li Wang
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zheng Xiang
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Ruiming Yang
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jiamian Liang
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zhiping Liu
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
2
|
Chiticaru EA, Ioniță M. A Novel Approach Using Reduced Graphene Oxide for the Detection of ALP and RUNX2 Osteogenic Biomarkers. Curr Issues Mol Biol 2024; 46:4489-4505. [PMID: 38785540 PMCID: PMC11119758 DOI: 10.3390/cimb46050272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
In this work, we propose a new technique involving the modification of commercial screen-printed carbon electrodes with electrochemically reduced graphene oxide to serve as the starting point of a future electrochemical biosensor for the detection of two osteogenic biomarkers: alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2). The electrodes were characterized after each modification by cyclic voltammetry and electrochemical impedance spectroscopy, showing the appropriate electrochemical characteristics for each modification type. The results obtained from scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements are well correlated with each other, demonstrating the successful modification of the electrodes with graphene oxide and its subsequent reduction. The bioreceptors were immobilized on the electrodes by physical adsorption, which was confirmed by electrochemical methods, structural characterization, and contact angle measurements. Finally, the functionalized electrodes were incubated with the specific target analytes and the detection relied on monitoring the electrochemical changes occurring after the hybridization process. Our results indicated that the pilot platform has the ability to detect the two biomarkers up to 1 nM, with increased sensitivity observed for RUNX2, suggesting that after further optimizations, it has a high potential to be employed as a future biosensor.
Collapse
Affiliation(s)
- Elena Alina Chiticaru
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Mariana Ioniță
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| |
Collapse
|
3
|
Wang X, Mijiti W, Jia Q, Yi Z, Ma J, Zhou Z, Xie Z. Exploration of altered miRNA expression and function in MSC-derived extracellular vesicles in response to hydatid antigen stimulation. Front Microbiol 2024; 15:1381012. [PMID: 38601938 PMCID: PMC11004373 DOI: 10.3389/fmicb.2024.1381012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Background Hydatid disease is caused by Echinococcus parasites and can affect various tissues and organs in the body. The disease is characterized by the presence of hydatid cysts, which contain specific antigens that interact with the host's immune system. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can regulate immunity through the secretion of extracellular vesicles (EVs) containing microRNAs (miRNAs). Methods In this study, hydatid antigens were isolated from sheep livers and mice peritoneal cavities. MSCs derived from mouse bone marrow were treated with different hydatid antigens, and EVs were isolated and characterized from the conditioned medium of MSCs. Small RNA library construction, miRNA target prediction, and differential expression analysis were conducted to identify differentially expressed miRNAs. Functional enrichment and network construction were performed to explore the biological functions of the target genes. Real-time PCR and Western blotting were used for miRNA and gene expression verification, while ELISA assays quantified TNF, IL-1, IL-6, IL-4, and IL-10 levels in cell supernatants. Results The study successfully isolated hydatid antigens and characterized MSC-derived EVs, demonstrating the impact of antigen concentration on MSC viability. Key differentially expressed miRNAs, such as miR-146a and miR-9-5p, were identified, with functional analyses revealing significant pathways like Endocytosis and MAPK signaling associated with these miRNAs' target genes. The miRNA-HUB gene regulatory network identified crucial miRNAs and HUB genes, such as Traf1 and Tnf, indicating roles in immune modulation and osteogenic differentiation. Protein-protein interaction (PPI) network analysis highlighted central HUB genes like Akt1 and Bcl2. ALP activity assays confirmed the influence of antigens on osteogenic differentiation, with reduced ALP activity observed. Expression analysis validated altered miRNA and chemokine expression post-antigen stimulation, with ELISA analysis showing a significant reduction in CXCL1 expression in response to antigen exposure. Conclusion This study provides insights into the role of MSC-derived EVs in regulating parasite immunity. The findings suggest that hydatid antigens can modulate the expression of miRNAs in MSC-derived EVs, leading to changes in chemokine expression and osteogenic capacity. These findings contribute to a better understanding of the immunomodulatory mechanisms involved in hydatid disease and provide potential therapeutic targets for the development of new treatment strategies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Wubulikasimu Mijiti
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Qiyu Jia
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zhifei Yi
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Junchao Ma
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Ziyu Zhou
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zengru Xie
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Ürümqi, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Xinjiang Medical University, Ürümqi, Xinjiang, China
| |
Collapse
|
4
|
Li J, Zou Z, Su X, Xu P, Du H, Li Y, Li Z, Guo L, Lin N, Xu Y. Cistanche deserticola improves ovariectomized-induced osteoporosis mainly by regulating lipid metabolism: Insights from serum metabolomics using UPLC/Q-TOF-MS. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117570. [PMID: 38110131 DOI: 10.1016/j.jep.2023.117570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche deserticola (C. deserticola) is an edible and traditional medicine widely used in China, which has been confirmed to be effective in the treatment of postmenopausal osteoporosis (PMOP). Despite its proven efficacy, the exact role of C. deserticola in bone metabolism and its underlying mechanism has remained unclear. AIM OF THE STUDY In this research, we employed an in vivo model utilizing ovariectomized (OVX) rats to characterize the anti-osteoporotic activity and metabolic mechanism of the ethanol extract of C. deserticola (CHE). MATERIALS AND METHODS Fifty female Sprague-Dawley (SD) rats were randomly divided into five groups including sham operation group, model group, 0.1 g/kg estradiol valerate (EV) group as the positive control, low (0.6 g/kg) and high (1.2 g/kg) dosage CHE groups. Biochemical parameter analyses and histopathological experiments were conducted to assess the pharmacodynamic effects. Metabolomic analysis was conducted on serum samples to examine the metabolic profiles, identify potential biomarkers, and elucidate the metabolic pathways associated with CHE in OVX rats. RESULTS CHE treatment demonstrated significant anti-osteoporosis activity by regulating serum biochemical markers of bone turnover, improving cancellous bone structure, and reversing the decrease in bone mineral density. Furthermore, the clinical equivalent dose group (CHL) achieved superior overall outcomes. The main interventions of CHE on OVX rats involved the modulation of several key pathways, including steroid hormone biosynthesis, arachidonic acid metabolism, tyrosine and tryptophan metabolism, biotin metabolism, regulation of TRP channels by inflammatory mediators, primary bile acid biosynthesis, regulation of lipolysis in adipocytes, and bile secretion. 23 potential efficacy-related biomarkers within the metabolic network were identified. Among them, long-chain unsaturated fatty acids (eg. DHA and docosapentaenoic acid), steroid hormones, amino acids and carbohydrates were strongly correlated with bone resorption and formation markers. Additionally, it was observed four pathways (nucleotide, carbon, amino acid, and lipid metabolism) were implicated in the effects of CHE. CONCLUSION This study demonstrates that CHE improves bone loss in PMOP mainly through regulating lipid metabolism pathways, which provides an evidence base for CHE treatment of PMOP.
Collapse
Affiliation(s)
- Jiashan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China
| | - Zhao Zou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China
| | - Panyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China
| | - Hanqian Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China
| | - Yuan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China
| | - Zehui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China
| | - Li Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China.
| | - Ying Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China.
| |
Collapse
|
5
|
Wang Y, Gao Y, Wang Y, Zhang H, Qin Q, Xu Z, Liu S, Wang X, Qu Y, Liu Y, Jiang X, He H. GDNF promotes the proliferation and osteogenic differentiation of jaw bone marrow mesenchymal stem cells via the Nr4a1/PI3K/Akt pathway. Cell Signal 2023:110721. [PMID: 37230200 DOI: 10.1016/j.cellsig.2023.110721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
How to efficiently regenerate jawbone defects caused by trauma, jaw osteomyelitis, tumors, or intrinsic genetic diseases is still challenging. Ectoderm-derived jawbone defect has been reported to be regenerated by selectively recruiting cells from its embryonic origin. Therefore, it is important to explore the strategy for promoting ectoderm-derived jaw bone marrow mesenchymal stem cells (JBMMSCs) on the repair of homoblastic jaw bone. Glial cell-derived neurotrophic factor (GDNF) is an important growth factor and is essential in the process of proliferation, migration and differentiation of nerve cells. However, whether GDNF promoting the function of JBMMSCs and the relative mechanism are not clear. Our results showed that activated astrocytes and GDNF were induced in the hippocampus after mandibular jaw defect. In addition, the expression of GDNF in the bone tissue around the injured area was also significantly increased after injury. Data from in vitro experiments demonstrated that GDNF could effectively promote the proliferation and osteogenic differentiation of JBMMSCs. Furthermore, when implanted in the defected jaw bone, JBMMSCs pretreated with GDNF exhibited enhanced repair effect compared with JBMMSCs without treatment. Mechanical studies found that GDNF induced the expression of Nr4a1 in JBMMSCs, activated PI3K/Akt signaling pathway and then enhanced the proliferation and osteogenic differentiation capacities of JBMMSCs. Our studies reveal that JBMMSCs are good candidates for repairing jawbone injury and pretreated with GDNF is an efficient strategy for enhancing bone regeneration.
Collapse
Affiliation(s)
- Yadi Wang
- Medical School of Chinese PLA, Beijing 100853, China; Department of periodontology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yang Gao
- Department of orthopaedics, The Fourth Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100048, China
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xinyuan Wang
- Medical School of Chinese PLA, Beijing 100853, China; Department of periodontology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yannv Qu
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yihan Liu
- Department of periodontology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Huixia He
- Department of periodontology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|