1
|
Yuan Y, Xu J, Jiang Q, Yang C, Wang N, Liu X, Piao HL, Lu S, Zhang X, Han L, Liu Z, Cai J, Liu F, Chen S, Liu J. Ficolin 3 promotes ferroptosis in HCC by downregulating IR/SREBP axis-mediated MUFA synthesis. J Exp Clin Cancer Res 2024; 43:133. [PMID: 38698462 PMCID: PMC11067213 DOI: 10.1186/s13046-024-03047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Targeting ferroptosis has been identified as a promising approach for the development of cancer therapies. Monounsaturated fatty acid (MUFA) is a type of lipid that plays a crucial role in inhibiting ferroptosis. Ficolin 3 (FCN3) is a component of the complement system, serving as a recognition molecule against pathogens in the lectin pathway. Recent studies have reported that FCN3 demonstrates inhibitory effects on the progression of certain tumors. However, whether FCN3 can modulate lipid metabolism and ferroptosis remains largely unknown. METHODS Cell viability, BODIPY-C11 staining, and MDA assay were carried out to detect ferroptosis. Primary hepatocellular carcinoma (HCC) and xenograft models were utilized to investigate the effect of FCN3 on the development of HCC in vivo. A metabonomic analysis was conducted to assess alterations in intracellular and HCC intrahepatic lipid levels. RESULTS Our study elucidates a substantial decrease in the expression of FCN3, a component of the complement system, leads to MUFA accumulation in human HCC specimens and thereby significantly promotes ferroptosis resistance. Overexpression of FCN3 efficiently sensitizes HCC cells to ferroptosis, resulting in the inhibition of the oncogenesis and progression of both primary HCC and subcutaneous HCC xenograft. Mechanistically, FCN3 directly binds to the insulin receptor β (IR-β) and its pro-form (pro-IR), inhibiting pro-IR cleavage and IR-β phosphorylation, ultimately resulting in IR-β inactivation. This inactivation of IR-β suppresses the expression of sterol regulatory element binding protein-1c (SREBP1c), which subsequently suppresses the transcription of genes related to de novo lipogenesis (DNL) and lipid desaturation, and consequently downregulates intracellular MUFA levels. CONCLUSIONS These findings uncover a novel regulatory mechanism by which FCN3 enhances the sensitivity of HCC cells to ferroptosis, indicating that targeting FCN3-induced ferroptosis is a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Yanmei Yuan
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junting Xu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Quanxin Jiang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ning Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaolong Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sijia Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xianjing Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhiyan Liu
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai, 200032, China.
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
2
|
Sun J, Zhang Z, Cai J, Li X, Xu X. Identification of Hub Genes in Liver Hepatocellular Carcinoma Based on Weighted Gene Co-expression Network Analysis. Biochem Genet 2024:10.1007/s10528-024-10803-8. [PMID: 38683466 DOI: 10.1007/s10528-024-10803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Liver hepatocellular carcinoma (LIHC) is a malignant cancer with high incidence and poor prognosis. To investigate the correlation between hub genes and progression of LIHC and to provided potential prognostic markers and therapy targets for LIHC. Our study mainly used The Cancer Genome Atlas (TCGA) LIHC database and the gene expression profiles of GSE54236 from the Gene Expression Omnibus (GEO) to explore the differential co-expression genes between LIHC and normal tissues. The differential co-expression genes were extracted by Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene expression analysis methods. The Genetic Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were carried out to annotate the function of differential genes. Then the hub genes were validated using protein-protein interaction (PPI) network. And the expression level and prognostic analysis were performed. The probable associations between the expression of hub genes and both tumor purity and infiltration of immune cells were explored by TIMER. A total of 68 differential co-expression genes were extracted. These genes were mainly enriched in complement activation (biological process), collagen trimer (cellular component), carbohydrate binding and receptor ligand activity (molecular function) and cytokine - cytokine receptor interaction. Then we demonstrated that the 10 hub genes (CFP, CLEC1B, CLEC4G, CLEC4M, FCN2, FCN3, PAMR1 and TIMD4) were weakly expressed in LIHC tissues, the qRT-PCR results of clinical samples showed that six genes were significantly downregulated in LIHC patients compared with adjacent tissues. Worse overall survival (OS) and disease-free survival (DFS) in LIHC patients were associated with the lower expression of CFP, CLEC1B, FCN3 and TIMD4. Ten hub genes had positive association with tumor purity. CFP, CLEC1B, FCN3 and TIMD4 could serve as novel potential molecular targets for prognosis prediction in LIHC.
Collapse
Affiliation(s)
- Jiawei Sun
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 31005, China
| | - Zizhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiaru Cai
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 31005, China
| | - Xiaoping Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 31005, China.
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 31005, China.
| |
Collapse
|
3
|
Chen CC, Lee TL, Tsai IT, Hsuan CF, Hsu CC, Wang CP, Lu YC, Lee CH, Chung FM, Lee YJ, Wei CT. Tissue Expression of Growth Differentiation Factor 11 in Patients with Breast Cancer. Diagnostics (Basel) 2024; 14:701. [PMID: 38611614 PMCID: PMC11011301 DOI: 10.3390/diagnostics14070701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Protein growth differentiation factor 11 (GDF11) plays crucial roles in cellular processes, including differentiation and development; however, its clinical relevance in breast cancer patients is poorly understood. We enrolled 68 breast cancer patients who underwent surgery at our hospital and assessed the expression of GDF11 in tumorous, ductal carcinoma in situ (DCIS), and non-tumorous tissues using immunohistochemical staining, with interpretation based on histochemical scoring (H-score). Our results indicated higher GDF11 expressions in DCIS and normal tissues compared to tumorous tissues. In addition, the GDF11 H-score was lower in the patients with a tumor size ≥ 2 cm, pathologic T3 + T4 stages, AJCC III-IV stages, Ki67 ≥ 14% status, HER2-negative, and specific molecular tumor subtypes. Notably, the patients with triple-negative breast cancer exhibited a loss of GDF11 expression. Spearman correlation analysis revealed associations between GDF11 expression and various clinicopathological characteristics, including tumor size, stage, Ki67, and molecular subtypes. Furthermore, GDF11 expression was positively correlated with mean corpuscular hemoglobin concentration and negatively correlated with neutrophil count, as well as standard deviation and coefficient of variation of red cell distribution width. These findings suggest that a decreased GDF11 expression may play a role in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Chia-Chi Chen
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (C.-H.L.)
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (I.-T.T.); (C.-F.H.)
- Department of Physical Therapy, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Occupational Therapy, I-Shou University, Kaohsiung 82445, Taiwan
| | - Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (I.-T.T.); (C.-F.H.)
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chin-Feng Hsuan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (I.-T.T.); (C.-F.H.)
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80794, Taiwan
| | - Chia-Chang Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
- Health Examination Center, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80794, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yung-Chuan Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Chien-Hsun Lee
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (C.-H.L.)
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
| | - Yau-Jiunn Lee
- Lee’s Endocrinologic Clinic, Pingtung 90000, Taiwan;
| | - Ching-Ting Wei
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of General Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
4
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|