1
|
Fathima S, Al Hakeem WG, Shanmugasundaram R, Lourenco J, Selvaraj RK. The effect of supplemental arginine on the gut microbial homeostasis of broilers during sub-clinical necrotic enteritis challenge. Front Physiol 2024; 15:1463420. [PMID: 39355151 PMCID: PMC11442325 DOI: 10.3389/fphys.2024.1463420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Necrotic enteritis (NE) is an enteric disease of poultry that alters the structure of the gut microbial community causing dysbiosis. This 28 day experiment investigated the effects of 125% and 135% arginine diets on the gut microbial diversity and composition of broilers during a subclinical NE challenge. One hundred and twenty one-day-old chicks were randomly allocated to 4 treatments with six replicates each- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135% diet groups. NE was induced by inoculating 1 × 104 E. maxima sporulated oocysts on day 14 and 1 × 108 CFU C. perfringens on days 19, 20, and 21 of age. The NE challenge significantly decreased the number of observed amplicon sequence variants (p = 0.03), the abundance of the phylum Firmicutes (p < 0.01), and the species Mediterraneibacter cottocaccae (p = 0.01) in the ceca of birds on day 21. The NE challenge significantly increased the Bray-Curtis index (p < 0.01), and the abundance of the phylum Bacteroidota (p < 0.01), family Odoribacteraceae (p < 0.01), genus Odoribacter (p < 0.01), and species O. splanchnicus (p = 0.01) on day 21. During NE, the 125% arginine diet restored the abundance of the phylum Bacteroidota (p = 0.03), family Odoribacteraceae (p = 0.03) and Oscillospiraceae (p = 0.03), genus Odoribacter (p = 0.03), and species O. splanchnicus (p = 0.03) and M. cottocaccae (p < 0.01) on day 21. The 135% arginine diet effectively restored the loss in alpha diversity (p = 0.01) caused by NE, the abundance of the phylum Firmicutes (p = 0.01) and Bacteroidota (p < 0.01), family Oscillospiraceae (p = 0.03) and Odoribacteraceae (p < 0.01), genus Odoribacter (p < 0.01), and species O. splanchnicus (p < 0.01) and M. cottocaccae (p < 0.01) on day 21. On day 28, the treatments had a significant effect on the cecal propionate (p = 0.01), butyrate (p = 0.04), and total SCFA (p = 0.04) concentrations. In conclusion, the 125% and 135% arginine diets restored gut microbial composition during a subclinical NE challenge, but not the cecal SCFA profile. Hence, arginine in combination with other feed additives could be used in restoring gut microbial homeostasis during NE in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Athens, GA, United States
| | - Jeferson Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Mikziński P, Kraus K, Widelski J, Paluch E. Modern Microbiological Methods to Detect Biofilm Formation in Orthopedy and Suggestions for Antibiotic Therapy, with Particular Emphasis on Prosthetic Joint Infection (PJI). Microorganisms 2024; 12:1198. [PMID: 38930580 PMCID: PMC11205407 DOI: 10.3390/microorganisms12061198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Biofilm formation is a serious problem that relatively often causes complications in orthopedic surgery. Biofilm-forming pathogens invade implanted foreign bodies and surrounding tissues. Such a condition, if not limited at the appropriate time, often requires reoperation. This can be partially prevented by selecting an appropriate prosthesis material that prevents the development of biofilm. There are many modern techniques available to detect the formed biofilm. By applying them we can identify and visualize biofilm-forming microorganisms. The most common etiological factors associated with biofilms in orthopedics are: Staphylococcus aureus, coagulase-negative Staphylococci (CoNS), and Enterococcus spp., whereas Gram-negative bacilli and Candida spp. also deserve attention. It seems crucial, for therapeutic success, to eradicate the microorganisms able to form biofilm after the implantation of endoprostheses. Planning the effective targeted antimicrobial treatment of postoperative infections requires accurate identification of the microorganism responsible for the complications of the procedure. The modern microbiological testing techniques described in this article show the diagnostic options that can be followed to enable the implementation of effective treatment.
Collapse
Affiliation(s)
- Paweł Mikziński
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (P.M.); (K.K.)
| | - Karolina Kraus
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (P.M.); (K.K.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland;
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chalubinskiego 4, 50-376 Wroclaw, Poland
| |
Collapse
|
3
|
Tsikopoulos K, Meroni G. Periprosthetic Joint Infection Diagnosis: A Narrative Review. Antibiotics (Basel) 2023; 12:1485. [PMID: 37887186 PMCID: PMC10604393 DOI: 10.3390/antibiotics12101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Replacement of native joints aims to restore patients' quality of life by relieving pain and improving joint function. While periprosthetic joint infection (PJI) affects a small percentage of patients, with an estimated incidence of 1-9% following primary total joint replacement, this postoperative complication necessitates a lengthy hospitalisation, extended antibiotic treatment and further surgery. It is highlighted that establishing the correct diagnosis of periprosthetic infections is critical in order for clinicians to avoid unnecessary treatments in patients with aseptic failure. Of note, the PJI diagnosis could not purely rely upon clinical manifestations given the fact that heterogeneity in host factors (e.g., age and comorbidities), variability in infection period, difference in anatomical location of the involved joint and discrepancies in pathogenicity/virulence of the causative organisms may confound the clinical picture. Furthermore, intra-operative contamination is considered to be the main culprit that can result in early or delayed infection, with the hematogenous spread being the most prevalent mode. To elaborate, early and hematogenous infections often start suddenly, whereas chronic late infections are induced by less virulent bacteria and tend to manifest in a more quiescent manner. Last but not least, viruses and fungal microorganisms exert a role in PJI pathogenesis.
Collapse
Affiliation(s)
- Konstantinos Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, 20133 Milan, Italy;
| |
Collapse
|
4
|
Lara-Taranchenko Y, Corona PS, Rodríguez-Pardo D, Salmerón-Menéndez P, Vicente Ciurans M, García-Martínez MC, Carrera Calderer L. Prosthetic joint infection caused by an atypical gram-negative bacilli: Odoribactersplanchnicus. Anaerobe 2023; 82:102740. [PMID: 37315915 DOI: 10.1016/j.anaerobe.2023.102740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Prosthetic joint infection (PJI) is a devastating complication after total hip arthroplasty. Its management consists of both: a radical debridement and implant retention or exchange (depending on the timing of symptoms) and directed antibiotic therapy. Thus, the isolation of atypical microorganisms implies a challenge, where anaerobes are responsible for only 4% of cases. However, Odoribacter splanchnicus has not been reported as a cause of PJI yet. We present an 82 year-old woman who was diagnosed with hip PJI. A radical debridement, prosthetic withdrawal, and spacer introduction was performed. Despite the directed antibiotic therapy against E. coli which was first isolated, the patient persisted clinically febrile. An anaerobic Gram-negative rod was isolated and finally, Odoribacter splanchnicus was identified and confirmed by 16S rRNA gene sequencing. Then, antibiotic bitherapy with ciprofloxacin and metronidazole was started until 6 weeks after surgery. The patient had no signs of infection recurrence after then. This case report also shows the importance of genomic identification of rare microorganisms causing PJI, and also allows setting a directed antibiotic therapy which is crucial for infection eradication.
Collapse
Affiliation(s)
- Yuri Lara-Taranchenko
- Orthopaedic Surgery Department, Vall d'Hebron University Hospital, Universitat Autonoma de Barcelona, Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Pablo S Corona
- Septic and Reconstructive Surgery Unit, Orthopaedic Surgery Department, Vall d'Hebron University Hospital, Universitat Autonoma de Barcelona, Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Dolors Rodríguez-Pardo
- Infectious Diseases Department, Vall d'Hebron University Hospital, Universitat Autonoma de Barcelona, Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Paula Salmerón-Menéndez
- Microbiology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Marina Vicente Ciurans
- Microbiology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | | | - Lluís Carrera Calderer
- Septic and Reconstructive Surgery Unit, Orthopaedic Surgery Department, Vall d'Hebron University Hospital, Universitat Autonoma de Barcelona, Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
5
|
Jimenez‐Alesanco A, Eckhard U, Asencio del Rio M, Vega S, Guevara T, Velazquez‐Campoy A, Gomis‐Rüth FX, Abian O. Repositioning small molecule drugs as allosteric inhibitors of the BFT-3 toxin from enterotoxigenic Bacteroides fragilis. Protein Sci 2022; 31:e4427. [PMID: 36173175 PMCID: PMC9514063 DOI: 10.1002/pro.4427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/11/2022]
Abstract
Bacteroides fragilis is an abundant commensal component of the healthy human colon. However, under dysbiotic conditions, enterotoxigenic B. fragilis (ETBF) may arise and elicit diarrhea, anaerobic bacteremia, inflammatory bowel disease, and colorectal cancer. Most worrisome, ETBF is resistant to many disparate antibiotics. ETBF's only recognized specific virulence factor is a zinc-dependent metallopeptidase (MP) called B. fragilis toxin (BFT) or fragilysin, which damages the intestinal mucosa and triggers disease-related signaling mechanisms. Thus, therapeutic targeting of BFT is expected to limit ETBF pathogenicity and improve the prognosis for patients. We focused on one of the naturally occurring BFT isoforms, BFT-3, and managed to repurpose several approved drugs as BFT-3 inhibitors through a combination of biophysical, biochemical, structural, and cellular techniques. In contrast to canonical MP inhibitors, which target the active site of mature enzymes, these effectors bind to a distal allosteric site in the proBFT-3 zymogen structure, which stabilizes a partially unstructured, zinc-free enzyme conformation by shifting a zinc-dependent disorder-to-order equilibrium. This yields proBTF-3 incompetent for autoactivation, thus ablating hydrolytic activity of the mature toxin. Additionally, a similar destabilizing effect is observed for the activated protease according to biophysical and biochemical data. Our strategy paves a novel way for the development of highly specific inhibitors of ETBF-mediated enteropathogenic conditions.
Collapse
Affiliation(s)
- Ana Jimenez‐Alesanco
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC‐CSIC‐BIFIUniversidad de ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
| | - Ulrich Eckhard
- Proteolysis Laboratory, Department of Structural BiologyMolecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC)BarcelonaCataloniaSpain
| | - Marta Asencio del Rio
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC‐CSIC‐BIFIUniversidad de ZaragozaZaragozaSpain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon)ZaragozaSpain
| | - Sonia Vega
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC‐CSIC‐BIFIUniversidad de ZaragozaZaragozaSpain
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural BiologyMolecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC)BarcelonaCataloniaSpain
| | - Adrian Velazquez‐Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC‐CSIC‐BIFIUniversidad de ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon)ZaragozaSpain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd)MadridSpain
| | - Francesc Xavier Gomis‐Rüth
- Proteolysis Laboratory, Department of Structural BiologyMolecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC)BarcelonaCataloniaSpain
| | - Olga Abian
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC‐CSIC‐BIFIUniversidad de ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon)ZaragozaSpain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd)MadridSpain
| |
Collapse
|
6
|
Alberca GGF, Cardoso NSS, Solis-Castro RL, Nakano V, Alberca RW. Intestinal inflammation and the microbiota: Beyond diversity. World J Gastroenterol 2022; 28:3274-3278. [PMID: 36051343 PMCID: PMC9331525 DOI: 10.3748/wjg.v28.i26.3274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/05/2021] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
The recent manuscript entitled “Relationship between clinical features and intestinal microbiota in Chinese patients with ulcerative colitis” reported a difference in the intestinal microbiota of patients with ulcerative colitis according to the severity of the colitis. The influence of the intestinal microbiota on the development and progress of gastrointestinal disorders is well established. Besides the diversity in the microbiome, the presence of virulence factors and toxins by commensal bacteria may affect an extensive variety of cellular processes, contributing to the induction of a proinflammatory environment.
Collapse
Affiliation(s)
- Gabriela Gama Freire Alberca
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Naiane Samira Souza Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Rosa Liliana Solis-Castro
- Departamento Académico de Biología Bioquímica, Facultad de Ciencias de la Salud, Universidad Nacional de Tumbes, Pampa Grande 24000, Tumbes, Peru
| | - Viviane Nakano
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Ricardo Wesley Alberca
- Laboratorio de Dermatologia e Imunodeficiencias, Departamento de Dermatologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| |
Collapse
|
7
|
Yekani M, Baghi HB, Vahed SZ, Ghanbari H, Hosseinpur R, Azargun R, Azimi S, Memar MY. Tightly controlled response to oxidative stress; an important factor in the tolerance of Bacteroides fragilis. Res Microbiol 2021; 172:103798. [PMID: 33485914 DOI: 10.1016/j.resmic.2021.103798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/01/2022]
Abstract
The exposure of Bacteroides fragilis to highly oxygenated tissues induces an oxidative stress due to a shift from the reduced condition of the gastrointestinal tract to an aerobic environment of host tissues. The potent and effective responses to reactive oxygen species (ROS) make the B. fragilis tolerant to atmospheric oxygen for several days. The response to oxidative stress in B. fragilis is a complicated event that is induced and regulated by different agents. In this review, we will focus on the B. fragilis response to oxidative stress and present an overview of the regulators of responses to oxidative stress in this bacterium.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Ghanbari
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasul Hosseinpur
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Robab Azargun
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Somayeh Azimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Stone AH, King PJ. Simultaneous combined retroperitoneal and posterior hip approach for the treatment of iliopsoas abscess with extension to a metal-on-metal prosthetic hip joint. Arthroplast Today 2019; 5:269-275. [PMID: 31516963 PMCID: PMC6728528 DOI: 10.1016/j.artd.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022] Open
Abstract
Iliopsoas abscess is an uncommon entity that has only rarely been associated with periprosthetic hip infection; to our knowledge, these are the first reported cases in patients with metal-on-metal (MoM) hip arthroplasty. We report 2 cases of iliopsoas abscess and concomitant periprosthetic hip infection in patients with a history of MoM hip arthroplasty. Case 1 presented with an acute infection 18 months after revision total hip arthroplasty (THA) for instability and adverse local tissue reaction after MoM THA. Case 2 presented with an acute infection in a previously well-functioning MoM THA. Both cases were treated with combined hip and retroperitoneal approaches and required more aggressive and longer treatment than is typical for periprosthetic infection, but ultimately resulted in successful revision THAs. We outline the treatment of these 2 patients and review the previously reported literature.
Collapse
Affiliation(s)
- Andrea H Stone
- Department of Surgical Research, Anne Arundel Medical Center, Annapolis, MD, USA
| | - Paul J King
- Center for Joint Replacement, Anne Arundel Medical Center, Annapolis, MD, USA
| |
Collapse
|
9
|
Rodríguez Duque JC, Galindo Rubín P, González Humara B, Quesada Sanz AA, Busta Vallina MB, Fernández-Sampedro M. Fusobacterium nucleatum prosthetic hip infection: Case report and review of the literature of unusual anaerobic prosthetic joint infection. Anaerobe 2018; 54:75-82. [PMID: 30118892 DOI: 10.1016/j.anaerobe.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 12/26/2022]
Abstract
The anaerobic Gram-negative rod Fusobacterium nucleatum is an oral commensal and periodontal pathogen that has been associated with a wide variety of infections, yet it is extremely rare to be associated with prosthetic joint infection. After an exhaustive literature review, only two cases of prosthetic joint infection by F. nucleatum have been previously reported. To our knowledge, the case we report on here is the first combined with periprosthetic abscess and related with hemochromatosis. We therefore sought to provide a comprehensive literature review of case reports or series of less commonly encountered anaerobic microorganisms isolated from prosthetic joint infections.
Collapse
Affiliation(s)
- J C Rodríguez Duque
- Infectious Diseases Unit, Department of Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, School of Medicine, University of Cantabria, Santander, Spain.
| | - P Galindo Rubín
- Department of Orthopaedic Surgery, Hospital Universitario Marqués de Valdecilla-IDIVAL, School of Medicine, University of Cantabria, Santander, Spain.
| | - B González Humara
- Department of Radiology, Hospital Universitario Marqués de Valdecilla-IDIVAL, School of Medicine, University of Cantabria, Santander, Spain.
| | - A A Quesada Sanz
- Service of Microbiology, Hospital Universitario Marqués de Valdecilla-IDIVAL, School of Medicine, University of Cantabria, Santander, Spain.
| | - M B Busta Vallina
- Department of Orthopaedic Surgery, Hospital Universitario Marqués de Valdecilla-IDIVAL, School of Medicine, University of Cantabria, Santander, Spain.
| | - M Fernández-Sampedro
- Infectious Diseases Unit, Department of Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|