1
|
Bouloussa H, Durand Z, Gibon E, Chen AF, Grant M, Saleh-Mghir A, Mirza M, Stutzman B, Vergari C, Yue J, Anzala N, Bonnot D, Albac S, Bouloussa O, Croisier D. A novel antibacterial compound decreases MRSA biofilm formation without the use of antibiotics in a murine model. J Orthop Res 2024; 42:202-211. [PMID: 37283215 DOI: 10.1002/jor.25638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
Despite significant advancements in material science, surgical site infection (SSI) rates remain high and prevention is key. This study aimed to demonstrate the in vivo safety and antibacterial efficacy of titanium implants treated with a novel broad-spectrum biocidal compound (DBG21) against methicillin-resistant Staphylococcus aureus (MRSA). Titanium (Ti) discs were covalently bound with DBG21. Untreated Ti discs were used as controls. All discs were implanted either untreated for 44 control mice or DBG21-treated for 44 treated mice. After implantation, 1 × 107 colony forming units (CFU) of MRSA were injected into the operating site. Mice were killed at 7 and 14 days to determine the number of adherent bacteria (biofilm) on implants and in the peri-implant surrounding tissues. Systemic and local toxicity were assessed. At both 7 and 14 days, DBG21-treated implants yielded a significant decrease in MRSA biofilm (3.6 median log10 CFU [99.97%] reduction [p < 0.001] and 1.9 median log10 CFU [98.7%] reduction [p = 0.037], respectively) and peri-implant surrounding tissues (2.7 median log10 CFU/g [99.8%] reduction [p < 0.001] and 5.6 median log10 CFU/g [99.9997%] reduction [p < 0.001], respectively). There were no significant differences between control and treated mice in terms of systemic and local toxicity. DBG-21 demonstrated a significant decrease in the number of biofilm bacteria without associated toxicity in a small animal implant model of SSI. Preventing biofilm formation has been recognized as a key element of preventing implant-related infections.
Collapse
Affiliation(s)
| | - Zoe Durand
- DeBogy Molecular Inc., Farmington, Connecticut, USA
| | | | - Antonia F Chen
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Grant
- Section of Infectious Diseases, New Haven, Connecticut, USA
| | - Azzam Saleh-Mghir
- UVSQ-Inserm, UMR 1173 Infection and Inflammation, Montigny-le-Bretonneux, France
| | - Mohsin Mirza
- DeBogy Molecular Inc., Farmington, Connecticut, USA
| | | | - Claudio Vergari
- Arts et Métiers Sciences et Technologie, Institut de Biomécanique Humaine Georges Charpak, Paris, France
| | - James Yue
- CT Orthopaedic Specialists, Department of Surgery, Frank H Netter School of Medicine Quinnipiac University, North Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
2
|
Bouloussa H, Mirza M, Ansley B, Jilakara B, Yue JJ. Implant Surface Technologies to Prevent Surgical Site Infections in Spine Surgery. Int J Spine Surg 2023; 17:S75-S85. [PMID: 38135445 PMCID: PMC10753351 DOI: 10.14444/8563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Spine surgeries are occurring more frequently worldwide. Spinal implant infections are one of the most common complications of spine surgery, with a rate of 0.7% to 11.9%. These implant-related infections are a consequence of surface polymicrobial biofilm formation. New technologies to combat implant-related infections are being developed as their burden increases; however, none have reached the market stage in spine surgery. Conferring antimicrobial properties to biomaterials relies on either surface coating (physical, chemical, or combined) or surface modification (physical, chemical, or combined). Such treatment can also result in toxicity and the progression of antimicrobial resistance. This narrative review will discuss "late-stage" antimicrobial technologies (mostly validated in vivo) that use these techniques and may be incorporated onto spine implants to decrease the burden of implant-related health care-acquired infections (HAIs). Successfully reducing this burden will greatly improve the quality of life in spine surgery. Familiarity with upcoming surface technologies will help spine surgeons understand the anti-infective strategies designed to address the rapidly worsening challenge of implant-related health care-acquired infections.
Collapse
Affiliation(s)
- Houssam Bouloussa
- Department of Orthopaedic Surgery, University of Missouri, Kansas City, MO, USA
| | - Mohsin Mirza
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Brant Ansley
- Department of Orthopaedic Surgery, University of Missouri, Kansas City, MO, USA
| | - Bharadwaj Jilakara
- Department of Orthopaedic Surgery, University of Missouri, Kansas City, MO, USA
| | - James J Yue
- CT Orthopaedic Specialists, Hamden, CT, USA
- Department of Surgery, Quinnipiac University, Hamden, CT, USA
| |
Collapse
|
3
|
Garabano G, Pereira S, Alamino LP, Munera MA, Ernst G, Bidolegui F, Pesciallo CA. Antibiotic cement-coated rigid locked nails in infected femoral and tibial nonunion. Reoperation rates of commercial versus custom-made nails. Injury 2023; 54 Suppl 6:110650. [PMID: 36858895 DOI: 10.1016/j.injury.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
INTRODUCTION The objective of this study is to assess bone union, infection control, and reoperation rates in a series of patients with infected femoral or tibial nonunion treated with antibiotic-cement-coated rigid nails and to compare the results obtained with custom-made nails versus commercial nails. METHODS We retrospectively analyzed a series of consecutive patients with infected nonunion of the femur or the tibia treated with antibiotic-cement-coated rigid nails between January 2010 and 2020. We assessed patients' distinctive characteristics, initial injury, type of nail used (custom-made nail with vancomycin or commercial nail with gentamicin), success rate (bone union + infection control), reoperation rate, and failure rate. Comparative analyses were conducted between reoperated and non-reoperated patients regarding the type of nail used. A multivariate regression analysis was performed to assess the risk variables that impacted reoperation rates. RESULTS We included 54 patients with 22 (40.74%) infected femoral nonunions and 32 (59.25%) tibial nonunions, who were treated with 38 (70.37%) custom-made antibiotic-cement coated nails and 16 (29.62%) commercial nails. Bone union and infection control were achieved in 51 (94.44%) cases. The reoperation rate was 40.74% (n = 22), and the failure rate was 5.55% (n = 3). The use of custom-made nails was associated with a higher risk of reoperation (Odds Ratio 4.71; 95% Confidence Interval 1.10 - 20.17; p = 0.036). CONCLUSION Antibiotic-cement-coated nails reached a 94.44% success rate. Nails manufactured in the OR coated with vancomycin cement were associated with a higher risk of reoperation than commercial nails loaded with gentamicin cement. LEVEL OF EVIDENCE III comparative, observational, non-randomized.
Collapse
Affiliation(s)
- Germán Garabano
- Orthopaedic and Trauma Surgery Department, British Hospital of Buenos Aires, Perdriel 74, C1280 AEB, Buenos Aires, Argentina.
| | - Sebastian Pereira
- Orthopaedic and Trauma Surgery Department, Sirio - Libanes Hospital, Campana 4658, C1419, Buenos Aires, Argentina
| | - Leonel Perez Alamino
- Orthopaedic and Trauma Surgery Department, British Hospital of Buenos Aires, Perdriel 74, C1280 AEB, Buenos Aires, Argentina
| | - Mateo Alzate Munera
- Orthopaedic and Trauma Surgery Department, Sirio - Libanes Hospital, Campana 4658, C1419, Buenos Aires, Argentina
| | - Glenda Ernst
- Scientific Advisory Committee, British Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Fernando Bidolegui
- Orthopaedic and Trauma Surgery Department, Sirio - Libanes Hospital, Campana 4658, C1419, Buenos Aires, Argentina
| | - Cesar Angel Pesciallo
- Orthopaedic and Trauma Surgery Department, British Hospital of Buenos Aires, Perdriel 74, C1280 AEB, Buenos Aires, Argentina
| |
Collapse
|
4
|
Hirose C. CORR Insights®: Is Ankle Arthrodesis With an Ilizarov External Fixator an Effective Treatment for Septic Ankle Arthritis? A Study With a Minimum of 6 Years of Follow-up. Clin Orthop Relat Res 2023; 481:726-727. [PMID: 36455100 PMCID: PMC10013648 DOI: 10.1097/corr.0000000000002505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 12/05/2022]
|
5
|
Weber J, Henssler L, Zeman F, Pfeifer C, Alt V, Nerlich M, Huber M, Herbst T, Koller M, Schneider-Brachert W, Kerschbaum M, Holzmann T. Nanosilver/DCOIT-containing surface coating effectively and constantly reduces microbial load in emergency room surfaces. J Hosp Infect 2023; 135:90-97. [PMID: 36958698 DOI: 10.1016/j.jhin.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Colonization of near-patient surfaces in hospitals plays an important role as a source of healthcare-associated infections. Routine disinfection methods only result in short-term elimination of pathogens. AIM To investigate the efficiency of a newly developed antimicrobial coating containing nanosilver in long-term reduction of bacterial burden in hospital surfaces to close the gap between routine disinfection cycles. METHODS In this prospective, double-blinded trial, frequently touched surfaces of a routinely used treatment room in an emergency unit of a level-I hospital were treated with a surface coating (nanosilver/DCOIT-coated surface, NCS) containing nanosilver particles and another organic biocidal agent (4,5-dichloro-2-octyl-4-isothiazolin-3-one, DCOIT), whereas surfaces of another room were treated with a coating missing both the nanosilver- and DCOIT-containing ingredient and served as control. Bacterial contamination of the surfaces was examined using contact plates and liquid-based swabs daily for a total trial duration of 90 days. After incubation, total microbial counts and species were assessed. FINDINGS In a total of 2880 antimicrobial samples, a significant reduction of the overall bacterial load was observed in the NCS room (median: 0.31 cfu/cm2; interquartile range: 0.00-1.13) compared with the control coated surfaces (0.69 cfu/cm2; 0.06-2.00; P < 0.001). The nanosilver- and DCOIT-containing surface coating reduced the relative risk of a critical bacterial load (defined as >5 cfu/cm2) by 60% (odds ratio 0.38, P < 0.001). No significant difference in species distribution was detected between NCS and control group. CONCLUSION Nanosilver-/DCOIT-containing surface coating has shown efficiency for sustainable reduction of bacterial load of frequently touched surfaces in a clinical setting.
Collapse
Affiliation(s)
- J Weber
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - L Henssler
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany.
| | - F Zeman
- Center of Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - C Pfeifer
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany; Department of Orthopedic Trauma and Hand Surgery, Innklinikum Altötting-Mühldorf, Altötting, Germany
| | - V Alt
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Nerlich
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Huber
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - T Herbst
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Koller
- Center of Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - W Schneider-Brachert
- Institute of Medical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - M Kerschbaum
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - T Holzmann
- Institute of Medical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Zarghami V, Ghorbani M, Bagheri KP, Shokrgozar MA. Improving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:46. [PMID: 35596852 PMCID: PMC9124168 DOI: 10.1007/s10856-022-06666-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/22/2022] [Indexed: 05/31/2023]
Abstract
Methicillin resistance Staphylococcus aureus bacteria (MRSA) are serious hazards of bone implants. The present study was aimed to use the potential synergistic effects of Melittin and tetracycline to prevent MRSA associated bone implant infection. Chitosan/bioactive glass nanoparticles/tetracycline composite coatings were deposited on hydrothermally etched titanium substrate. Melittin was then coated on composite coatings by drop casting method. The surfaces were analyzed by FTIR, XRD, and SEM instruments. Tetracycline in coatings revealed multifunctional behaviors include bone regeneration and antibacterial activity. Releasing ALP enzyme from MC3T3 cells increased by tetracycline, so it is suitable candidate as osteoinductive and antibacterial agent in orthopedic implants coatings. Melittin increased the proliferation of MC3T3 cells. Composite coatings with combination of tetracycline and Melittin eradicate all MRSA bacteria, while coatings with one of them could no t eradicate all of the bacteria. In conclusion, chitosan/bioactive glass/tetracycline/Melittin coating can be suggested as a multifunctional bone implant coating because of its osteogenic and promising antibacterial activity. Graphical abstract.
Collapse
Affiliation(s)
- Vahid Zarghami
- Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Mohammad Ghorbani
- Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Tehran, Iran.
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.
| | - Kamran Pooshang Bagheri
- Venom & Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|