1
|
Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal 2024; 22:265. [PMID: 38741195 DOI: 10.1186/s12964-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cisplatin (CDDP) is a widely used first-line chemotherapeutic drug in various cancers. However, CDDP resistance is frequently observed in cancer patients. Therefore, it is required to evaluate the molecular mechanisms associated with CDDP resistance to improve prognosis among cancer patients. Integrins are critical factors involved in tumor metastasis that regulate cell-matrix and cell-cell interactions. They modulate several cellular mechanisms including proliferation, invasion, angiogenesis, polarity, and chemo resistance. Modification of integrin expression levels can be associated with both tumor progression and inhibition. Integrins are also involved in drug resistance of various solid tumors through modulation of the tumor cell interactions with interstitial matrix and extracellular matrix (ECM). Therefore, in the present review we discussed the role of integrin protein family in regulation of CDDP response in tumor cells. It has been reported that integrins mainly promoted the CDDP resistance through interaction with PI3K/AKT, MAPK, and WNT signaling pathways. They also regulated the CDDP mediated apoptosis in tumor cells. This review paves the way to suggest the integrins as the reliable therapeutic targets to improve CDDP response in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Martínez-Val A, Fort K, Koenig C, Van der Hoeven L, Franciosa G, Moehring T, Ishihama Y, Chen YJ, Makarov A, Xuan Y, Olsen JV. Hybrid-DIA: intelligent data acquisition integrates targeted and discovery proteomics to analyze phospho-signaling in single spheroids. Nat Commun 2023; 14:3599. [PMID: 37328457 PMCID: PMC10276052 DOI: 10.1038/s41467-023-39347-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Achieving sufficient coverage of regulatory phosphorylation sites by mass spectrometry (MS)-based phosphoproteomics for signaling pathway reconstitution is challenging, especially when analyzing tiny sample amounts. To address this, we present a hybrid data-independent acquisition (DIA) strategy (hybrid-DIA) that combines targeted and discovery proteomics through an Application Programming Interface (API) to dynamically intercalate DIA scans with accurate triggering of multiplexed tandem mass spectrometry (MSx) scans of predefined (phospho)peptide targets. By spiking-in heavy stable isotope labeled phosphopeptide standards covering seven major signaling pathways, we benchmark hybrid-DIA against state-of-the-art targeted MS methods (i.e., SureQuant) using EGF-stimulated HeLa cells and find the quantitative accuracy and sensitivity to be comparable while hybrid-DIA also profiles the global phosphoproteome. To demonstrate the robustness, sensitivity, and biomedical potential of hybrid-DIA, we profile chemotherapeutic agents in single colon carcinoma multicellular spheroids and evaluate the phospho-signaling difference of cancer cells in 2D vs 3D culture.
Collapse
Affiliation(s)
- Ana Martínez-Val
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Kyle Fort
- Thermo Fisher Scientific, Bremen, Germany
| | - Claire Koenig
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Leander Van der Hoeven
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Yue Xuan
- Thermo Fisher Scientific, Bremen, Germany.
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Juarez-Moreno K, Chávez-García D, Hirata G, Vazquez-Duhalt R. Monolayer (2D) or spheroids (3D) cell cultures for nanotoxicological studies? Comparison of cytotoxicity and cell internalization of nanoparticles. Toxicol In Vitro 2022; 85:105461. [PMID: 36049398 DOI: 10.1016/j.tiv.2022.105461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Two-dimensional (2D) cell culture monolayers are commonly used for toxicological assessments of nanomaterials. Despite their facile handling, they exhibit several constraints due to their structural and complexity differences with three-dimensional (3D) in vitro cell models, such as spheroids. Here, we conducted a comparative nanotoxicological study of fibroblasts (L929) and melanoma (B16-F10) cells, grown in 2D and 3D arrangements. The cytotoxicity, reactive oxygen species (ROS) production, genotoxicity, cell morphology complexity, and uptake of silver nanoparticles (AgNPs) and folic acid-functionalized upconversion nanoparticles (FA-UCNPs) were compared in the two culture arrangements. AgNPs cytotoxicity was higher in spheroids than in monolayer cultures. Furthermore, apoptotic cell percentages and ROS production were higher in 3D than in 2D cell cultures. More importantly, 2D cultures required twice the concentration of AgNPs than the 3D cell models to reach a considerable DNA damage index (c.a. 200). Therefore, spheroids are more sensitive to the genotoxic effects of AgNPs. FA-UCNPs exerted negligible cell toxicity in 2D and 3D cell models. Moreover, AgNPs induced disaggregation and downsizing of spheroids in a facile and concentration-dependent manner. Internalization of FA-UCNPs in spheroids was 20% higher than in the 2D cell arrangements. Collectively, our findings, demonstrated that spheroids are a more sensitive model than monolayers for the assessment of nanoparticle biocompatibility and internalization.
Collapse
Affiliation(s)
- Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, México.
| | | | - Gustavo Hirata
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, México
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, México
| |
Collapse
|
4
|
Guimarães PPG, Viana CTR, Pereira LX, Gontijo SML, Campos PP, Andrade SP, Santos RAS, Sinisterra RD. Sulfonamide-Functionalized Polymeric Nanoparticles For Enhanced In Vivo Colorectal Cancer Therapy. Curr Drug Deliv 2021; 19:676-685. [PMID: 34325632 DOI: 10.2174/1567201818666210729110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer in the world. 5-Fluorouracil (5-FU) is a conventional and most effective drug used in the clinic for the treatment of CRC. However, the clinical use of 5-FU is limited due to the acquired resistance and systemic toxicity, such as hepatotoxicity and gastrointesti-nal toxicity. OBJECTIVE Recent advances in nanomedicine are being exploited to develop nanoparticle platforms to overcome resistance and therapeutic delivery of active molecules. Here, we develop 5-FU loaded sulfadiazine-poly(lactide-co-glycolide) nanoparticles (SUL-PLGA NPs) to be applied in the colorectal cancer model. METHODS We assessed the in vivo efficacy of the SUL-PLGA NPs to enhance the antitumor effect of 5-FU. RESULTS In vivo treatment with 5-FU-SUL-PLGA NPs significantly reduced tumor growth in a colon cancer xen-ograft model compared to free 5-FU and 5-FU loaded non-targeted NPs. Treatment with 5-FU-SUL-PLGA NPs also increased blood vessel diameters within tumors, which could act in conjunction to enhance antitumor effi-cacy. In addition, 5-FU-SUL-PLGA NPs significantly reduced liver mass and lung mass, which are the most common metastasis sites of CRC, and decreased liver hepatotoxicity compared to free 5-FU drug and 5-FU loaded non-targeted NPs. CONCLUSION Our findings suggest that the use of 5-FU-SUL-PLGA NPs is a promising strategy to enhance 5-FU efficacy against CRC.
Collapse
Affiliation(s)
- Pedro Pires Goulart Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte - MG. Brazil
| | - Celso Tarso Rodrigues Viana
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte - MG. Brazil
| | - Luciana Xavier Pereira
- Nursing Department, Universidade Federal de Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa - Bom Sucesso, CEP 57309-005, Arapiraca - AL. Brazil
| | - Savio Morato Lacerda Gontijo
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte-MG. Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte - MG. Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte - MG. Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte - MG. Brazil
| | - Rubén D Sinisterra
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte - MG. Brazil
| |
Collapse
|
5
|
Abid M, Naveed M, Azeem I, Faisal A, Faizan Nazar M, Yameen B. Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil. Int J Pharm 2020; 586:119605. [DOI: 10.1016/j.ijpharm.2020.119605] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
|
6
|
Fontoura JC, Viezzer C, Dos Santos FG, Ligabue RA, Weinlich R, Puga RD, Antonow D, Severino P, Bonorino C. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110264. [PMID: 31761183 DOI: 10.1016/j.msec.2019.110264] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 12/24/2022]
Abstract
In vitro drug screening is widely used in the development of new drugs, because they constitute a cost-effective approach to select compounds with more potential for therapy. They are also an attractive alternative to in vivo testing. However, most of these assays are done in two-dimensional culture models, where cells are grown on a polystyrene or glass flat surface. In order to develop in vitro models that would more closely resemble physiological conditions, three-dimensional models have been developed. Here, we introduce two novel fully synthetic scaffolds produced using the polymer polyhydroxybutyrate (PHB): a Solvent-Casting Particle-Leaching (SCPL) membrane; and an electrospun membrane, to be used for 3D cultures of B16 F10 murine melanoma cells and 4T1 murine breast cancer cells. A 2D cell culture system in regular tissue culture plates and a classical 3D model where cells are grown on a commercially available gel derived from Engelbreth-Holm Swarm (EHS) tumor were used for comparison with the synthetic scaffolds. Cells were also collected from in vivo tumors grown as grafts in syngeneic mice. Morphology, cell viability, response to chemotherapy and gene expression analysis were used to compare all systems. In the electrospun membrane model, cells were grown on nanometer-scale fibers and in the SCPL membrane, which provides a foam-like structure for cell growth, pore sizes varied. Cells grown on all 3D models were able to form aggregates and spheroids, allowing for increased cell-cell contact when compared with the 2D system. Cell morphology was also more similar between 3D systems and cells collected from the in vivo tumors. Cells grown in 3D models showed an increase in resistance to dacarbazine, and cisplatin. Gene expression analysis also revealed similarities among all 3D platforms. The similarities between the two synthetic systems to the classic EHS gel model highlight their potential application as cost effective substitutes in drug screening, in which fully synthetic models could represent a step towards higher reproducibility. We conclude PHB synthetic membranes offer a valuable alternative for 3D cultures.
Collapse
Affiliation(s)
- Julia C Fontoura
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde, Porto Alegre, RS, Brazil
| | - Christian Viezzer
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | - Rosane A Ligabue
- Laboratório de Caracterização de Materiais, PUCRS, Porto Alegre, RS, Brazil
| | | | - Renato D Puga
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Dyeison Antonow
- Institute of Petroleum and Natural Resources (IPR), Tecnopuc, PUCRS, Porto Alegre, RS, Brazil
| | | | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde, Porto Alegre, RS, Brazil; Department of Surgery, School of Medicine, University of California at San Diego, United States.
| |
Collapse
|
7
|
Li NN, Meng XS, Bao YR, Wang S, Li TJ. Evidence for the Involvement of COX-2/VEGF and PTEN/Pl3K/AKT Pathway the Mechanism of Oroxin B Treated Liver Cancer. Pharmacogn Mag 2018; 14:207-213. [PMID: 29720833 PMCID: PMC5909317 DOI: 10.4103/pm.pm_119_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/13/2017] [Indexed: 12/23/2022] Open
Abstract
Background Oroxin B (OB) is one of flavonoids isolated from traditional Chinese herbal medicine Oroxylum indicum (L.) Vent. Recent studies suggest that flavonoids have obvious anti-liver tumors effect, but the precise molecular mechanism is still unclear. Objective The current study was performed to investigate the antitumor effects of OB on human hepatoma cell line SMMC-772 and explore the part of molecular mechanisms in this process. Materials and Methods MTT method, terminal deoxynucleotidyl transferase dUTP nick end labeling assay and flow cytometry were utilized to detect the inhibition of proliferation and the apoptosis after treating OB in of SMMC-7721 cells. The mRNA and proteins expressions of COX-2, vascular endothelial growth factor (VEGF), phosphatidylinositol-3-kinase (PI3K), p-AKT, and PTEN were measured by a real-time polymerase chain reaction and Western Blot method. Results The results showed that OB inhibited proliferation of SMMC-7721 cell in a dose-dependent manner, and induced its apoptosis. Moreover, OB unregulated PTEN and downregulated COX-2, VEGF, p-AKT, and PI3K. Conclusion Our results demonstrated that OB significantly inhibits proliferation and induce apoptosis, which may be strongly associated with the inhibiting COX-2/VEGF and PTEN/PI3K/AKT pathway signaling pathway in SMMC-7721 cells, OB potentially be used as a novel therapeutic agent for liver cancer. SUMMARY OB (Oroxin B) is one of the effective flavonoid components of traditional Chinese medicine O. indicum (L.)OB can inhibite the proliferation and promoted apoptosis of the human hepatoma cell line SMMC 7721OB plays a role of antitumor effect may to regulate COX 2/VEGF and PTEN/PI3K/AKT pathways directly or indirectly. Abbreviations used: OB: Oroxin B; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; COX-2: cyclooxygenase-2; PI3K: phosphatidylinositol 3 kinase; PTEN: Phosphatase and tensin homolog deleted on chromosome ten; VEGF: Vascular endothelial growth factor; RT-PCR: Reverse transcription polymerase chain reaction; DAPI: Diamidino 2 phenylindole; PBS: Phosphate buffer saline; FITC: Fluorescein isothiocyanate; PI: Propidium Iodide; RIPA: Radio immunoprecipitation assay lysis buffer; PMSF: Phenylmethanesulfonyl fluoride; PAGE: Polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Nan-Nan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xian-Sheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China
| | - Yong-Rui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China
| | - Tian-Jiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China
| |
Collapse
|
8
|
He J, Zhou J, Yang W, Zhou Q, Liang X, Pang X, Li J, Pan F, Liang H. Dexamethasone affects cell growth/apoptosis/chemosensitivity of colon cancer via glucocorticoid receptor α/NF-κB. Oncotarget 2017; 8:67670-67683. [PMID: 28978062 PMCID: PMC5620202 DOI: 10.18632/oncotarget.18802] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/02/2017] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids are effective to treat lymphoma and leukemia. Their effect in colon cancer remains far from clear. Here, we found that glucocorticoid receptor (GR) α protein level was dramatically lower in colon cancer than in lymphoma. Colon cell lines LoVo and HCT116 were GRα-rich and GRα was not detectable in HT29 or SW480. Dexamethasone significantly inhibited cell growth of GRα-rich cell lines and did not significantly affect GRα-negative cell lines. Dexamethasone induced apoptosis and increased chemosensitivity of GRα-rich cell lines. Knockdown of GRα significantly attenuated dexamethasone effects on cell growth, apoptosis and chemosensitivity. NF-κB p65 significantly correlated with GRα in colon cancer samples. Dexamethasone decreased NF-κB p65 activity. Knockdown of NF-κB p65 increased apoptosis. Our data demonstrate GRα protein level is dramatically lower in colon cancer than in lymphoma. Dexamethasone inhibits cell growth, induces apoptosis and enhances chemosensitivity in colon cancer, at least partly, via GRα and NF-κB.
Collapse
Affiliation(s)
- Jianming He
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.,Department of Radiotherapy, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Jinming Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weiwen Yang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qi Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xi Liang
- Department of Radiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Xueli Pang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Feng Pan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
9
|
The interplay between histone deacetylases and rho kinases is important for cancer and neurodegeneration. Cytokine Growth Factor Rev 2017; 37:29-45. [PMID: 28606734 DOI: 10.1016/j.cytogfr.2017.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/24/2022]
Abstract
Rho associated coiled-coil containing kinases (ROCKs) respond to defined extra- and intracellular stimuli to control cell migration, cell proliferation, and apoptosis. Histone deacetylases (HDACs) are epigenetic modifiers that regulate nuclear and cytoplasmic signaling through the deacetylation of histones and non-histone proteins. ROCK and HDAC functions are important compounds of basic and applied research interests. Recent evidence suggests a physiologically important interplay between HDACs and ROCKs in various cells and organisms. Here we summarize the crosstalk between these enzymatic families and its implications for cancer and neurodegeneration.
Collapse
|
10
|
He J, Pei L, Jiang H, Yang W, Chen J, Liang H. Chemoresistance of colorectal cancer to 5-fluorouracil is associated with silencing of the BNIP3 gene through aberrant methylation. J Cancer 2017; 8:1187-1196. [PMID: 28607593 PMCID: PMC5463433 DOI: 10.7150/jca.18171] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/12/2017] [Indexed: 12/27/2022] Open
Abstract
Purpose To investigate the correlation between chemoresistance of colorectal cancer to 5-fluorouracil and BNIP3 and the underlying mechanism. Methods BNIP3 protein in specimens was evaluated using immunohistochemistry. Semi-quantitative reverse transcription PCR and Western blot was employed to assay gene expression. The promoter methylation status of BNIP3 was examined by methylation-specific PCR. Drug sensitivity was assayed using MTT assay. Results Specimens from 81 patients with colorectal cancer receiving 5-fluorouracil-based chemotherapy were analyzed. BNIP3 expression was negative in 42 cancer samples. The mean score of BNIP3 in cancer was 1.8±0.2 and it was 3.7±0.5 in adjacent colorectum (p<0.05). The response rate of the BNIP3 positive group was 63.6% and that of the negative group was 36.4% (p=0.021). The median PFS of the BNIP3 positive group was 9.25 months and that of the BNIP3 negative group was 6.5 months (p=0.011). BNIP3 mRNA was not detectable in 4 of 8 colorectal cell lines and all these 4 cell lines displayed BNIP3 methylated allele only. Other 4 cell lines what expressed detectable BNIP3 displayed BNIP3 unmethylated allele only or both unmethylated and methylated alleles. 5-Aza dramatically increased BNIP3 expression. Knockdown of DNMT1 increased BNIP3. Knockdown of DNMT3B alone did not detectably change BNIP3 expression while knockdown of both DNMT1 and DNMT3B increased BNIP3 expression more than knockdown of DNMT1 alone. Knockdown of BNIP3 decreased chemosensitivity to 5-fluorouracil and increasing BNIP3 through demethylation increased chemosensitivity. Conclusion Chemoresistance of colorectal cancer to 5-fluorouracil is associated with silencing of the BNIP3 gene through aberrant methylation via DNMT1/DNMT3B.
Collapse
Affiliation(s)
- Jianming He
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China.,Department Of Oncology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| | - Li Pei
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Heng Jiang
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Weiwen Yang
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jianfang Chen
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Houjie Liang
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|