1
|
Sakhi H, Arabi M, Ghaemi A, Movafagh A, Sheikhpour M. Oncolytic viruses in lung cancer treatment: a review article. Immunotherapy 2024; 16:75-97. [PMID: 38112057 DOI: 10.2217/imt-2023-0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Lung cancer has a high morbidity rate worldwide due to its resistance to therapy. So new treatment options are needed to improve the outcomes of lung cancer treatment. This study aimed to evaluate the effectiveness of oncolytic viruses (OVs) as a new type of cancer treatment. In this study, 158 articles from PubMed and Scopus from 1994 to 2022 were reviewed on the effectiveness of OVs in the treatment of lung cancer. The oncolytic properties of eight categories of OVs and their interactions with treatment options were investigated. OVs can be applied as a promising immunotherapy option, as they are reproduced selectively in different types of cancer cells, cause tumor cell lysis and trigger efficient immune responses.
Collapse
Affiliation(s)
- Hanie Sakhi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mohadeseh Arabi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Abolfazl Movafagh
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
2
|
Ghaleh HEG, Vakilzadeh G, Zahiri A, Farzanehpour M. Investigating the potential of oncolytic viruses for cancer treatment via MSC delivery. Cell Commun Signal 2023; 21:228. [PMID: 37667271 PMCID: PMC10478302 DOI: 10.1186/s12964-023-01232-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/16/2023] [Indexed: 09/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted considerable interest as a promising approach for cancer treatment due to their ability to undergo tumor-trophic migration. MSCs possess the unique ability to selectively migrate to tumors, making them an excellent candidate for targeted delivery of oncolytic viruses (OVs) to treat isolated tumors and metastatic malignancies. OVs have attracted attention as a potential treatment for cancer due to their ability to selectively infect and destroy tumor cells while sparing normal cells. In addition, OVs can induce immunogenic cell death and contain curative transgenes in their genome, making them an attractive candidate for cancer treatment in combination with immunotherapies. In combination with MSCs, OVs can modulate the tumor microenvironment and trigger anti-tumor immune responses, making MSC-releasing OVs a promising approach for cancer treatment. This study reviews researches on the use of MSC-released OVs as a novel method for treating cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Gazal Vakilzadeh
- Applied Virology Research Center, Baqiyatallah University of Medical sciences, Tehran, Iran
| | - Ali Zahiri
- Students Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical sciences, Tehran, Iran.
| |
Collapse
|
3
|
Baietti MF, Sewduth RN. Novel Therapeutic Approaches Targeting Post-Translational Modifications in Lung Cancer. Pharmaceutics 2023; 15:pharmaceutics15010206. [PMID: 36678835 PMCID: PMC9865455 DOI: 10.3390/pharmaceutics15010206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is one of the most common cancers worldwide. It consists of two different subtypes: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Despite novel therapeutic options such as immunotherapy, only 20% of lung cancer patients survive the disease after five years. This low survival rate is due to acquired drug resistance and severe off-target effects caused by currently used therapies. Identification and development of novel and targeted therapeutic approaches are urgently required to improve the standard of care for lung cancer patients. Here, we describe the recent development of novel drug-delivery approaches, such as adenovirus, lipid nanoparticles, and PROTACs, that have been tested in clinical trials and experimentally in the context of fundamental research. These different options show that it is now possible to target protein kinases, phosphatases, ubiquitin ligases, or protein modifications directly in lung cancer to block disease progression. Furthermore, the recent acceptance of RNA vaccines using lipid nanoparticles has further revealed therapeutic options that could be combined with chemo-/immunotherapies to improve current lung cancer therapies. This review aims to compare recent advances in the pharmaceutical research field for the development of technologies targeting post-translational modifications or protein modifiers involved in the tumorigenesis of lung cancer.
Collapse
Affiliation(s)
- Maria Francesca Baietti
- TRACE, Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence: (M.F.B.); (R.N.S.)
| | - Raj Nayan Sewduth
- VIB-KU Leuven Center for Cancer Biology, Herestraat 49, 3000 Leuven, Belgium
- Correspondence: (M.F.B.); (R.N.S.)
| |
Collapse
|
4
|
Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-based Vehicle to Carry Recombinant Viruses. Stem Cell Rev Rep 2021; 18:523-543. [PMID: 34319509 DOI: 10.1007/s12015-021-10207-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Evasion of growth suppression is among the prominent hallmarks of cancer. Phosphatase and tensin homolog (PTEN) and p53 tumor-suppressive pathways are compromised in most human cancers, including glioblastoma (GB). Hence, these signaling pathways are an ideal point of focus for novel cancer therapeutics. Recombinant viruses can selectivity kill cancer cells and carry therapeutic genes to tumors. Specifically, oncolytic viruses (OV) have been successfully employed for gene delivery in GB animal models and showed potential to neutralize immunosuppression at the tumor site. However, the associated systemic immunogenicity, inefficient transduction of GB cells, and inadequate distribution to metastatic tumors have been the major bottlenecks in clinical studies. Mesenchymal stem cells (MSCs), with tumor-tropic properties and immune privilege, can improve OVs targeting. Remarkably, combining the two approaches can address their individual issues. Herein, we summarize findings to advocate the reactivation of tumor suppressors p53 and PTEN in GB treatment and use MSCs as a "Trojan horse" to carry oncolytic viral cargo to disseminated tumor beds. The integration of MSCs and OVs can emerge as the new paradigm in cancer treatment.
Collapse
|
5
|
Mohamadi A, Pagès G, Hashemzadeh MS. The Important Role of Oncolytic Viruses in Common Cancer Treatments. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394716666200211120906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oncolytic viruses (OV) are considered as promising tools in cancer treatment. In addition
to direct cytolysis, the stimulation of both innate and adaptive immune responses is the most
important mechanism in oncolytic virotherapy that finally leads to the long-standing tumor retardations
in the advanced melanoma clinical trials. The OVs have become a worthy method in cancer
treatment, due to their several biological advantages including (1) the selective replication in
cancer cells without affecting normal cells; (2) the lack of resistance to the treatment; (3) cancer
stem cell targeting; (4) the ability to be spread; and (5) the immune response induction against the
tumors. Numerous types of viruses; for example, Herpes simplex viruses, Adenoviruses, Reoviruses,
Poliovirus, and Newcastle disease virus have been studied as a possible cancer treatment
strategy. Although some viruses have a natural orientation or tropism to cancer cells, several others
need attenuation and genetic manipulation to increase the safety and tumor-specific replication activity.
Two important mechanisms are involved in OV antitumor responses, which include the tumor
cell death due to virus replication, and also induction of immunogenic cell death as a result of
the immune system responses against the tumor cells. Furthermore, the high efficiency of OV on
antitumor immune response stimulation can finally lead to a significant tumor shrinkage.
Collapse
Affiliation(s)
- Amir Mohamadi
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gilles Pagès
- Centre Antoine Lacassagne, University of Cote d’Azur, Nice, France
| | | |
Collapse
|
6
|
Weng CF, Huang CJ, Wu MH, Lee HHC, Ling TY. Co-Expression of Coxsackievirus/Adenovirus Receptors and Desmoglein 2 in Lung Adenocarcinoma: A Comprehensive Analysis of Bioinformatics and Tissue Microarrays. J Clin Med 2020; 9:jcm9113693. [PMID: 33217893 PMCID: PMC7698609 DOI: 10.3390/jcm9113693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction: Coxsackievirus/adenovirus receptors (CARs) and desmoglein-2 (DSG2) are similar molecules to adenovirus-based vectors in the cell membrane. They have been found to be associated with lung epithelial cell tumorigenesis and can be useful markers in predicting survival outcome in lung adenocarcinoma (LUAD). Methods: A gene ontology enrichment analysis disclosed that DSG2 was highly correlated with CAR. Survival analysis was then performed on 262 samples from the Cancer Genome Atlas, forming “Stage 1A” or “Stage 1B”. We therefore analyzed a tissue microarray (TMA) comprised of 108 lung samples and an immunohistochemical assay. Computer counting software was used to calculate the H-score of the immune intensity. Cox regression and Kaplan–Meier analyses were used to determine the prognostic value. Results: CAR and DSG2 genes are highly co-expressed in early stage LUAD and associated with significantly poorer survival (p = 0.0046). TMA also showed that CAR/DSG2 expressions were altered in lung cancer tissue. CAR in the TMA was correlated with proliferation, apoptosis, and epithelial–mesenchymal transition (EMT), while DSG2 was associated with proliferation only. The Kaplan–Meier survival analysis revealed that CAR, DSG2, or a co-expression of CAR/DSG2 was associated with poorer overall survival. Conclusions: The co-expression of CAR/DSG2 predicted a worse overall survival in LUAD. CAR combined with DSG2 expression can predict prognosis.
Collapse
Affiliation(s)
- Ching-Fu Weng
- Division of Pulmonary Medicine, Department of Internal Medicine, Hsinchu Cathay General Hospital, Hsinchu 300, Taiwan;
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 100, Taiwan
| | - Chi-Jung Huang
- Medical Research Center, Cathay General Hospital, Taipei 106, Taiwan;
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
| | - Mei-Hsuan Wu
- Teaching and Research Center, Hsinchu Cathay General Hospital, Hsinchu 300, Taiwan;
| | - Henry Hsin-Chung Lee
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- Department of Surgery, Hsinchu Cathay General Hospital, Hsinchu 300, Taiwan
- Graduate Institute of Translational and Interdisciplinary Medicine, College of Health Sciences and Technology, National Central University, Taoyuan 320, Taiwan
- Correspondence: (H.H.-C.L.); (T.-Y.L.); Tel.: +886-3-527-8999 (ext. 61346) (H.H.-C.L.); +886-2-2312-3456 (ext. 88322) (T.-Y.L.)
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (H.H.-C.L.); (T.-Y.L.); Tel.: +886-3-527-8999 (ext. 61346) (H.H.-C.L.); +886-2-2312-3456 (ext. 88322) (T.-Y.L.)
| |
Collapse
|
7
|
Expanding the Spectrum of Adenoviral Vectors for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12051139. [PMID: 32370135 PMCID: PMC7281331 DOI: 10.3390/cancers12051139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Adenoviral vectors (AdVs) have attracted much attention in the fields of vaccine development and treatment for diseases such as genetic disorders and cancer. In this review, we discuss the utility of AdVs in cancer therapies. In recent years, AdVs were modified as oncolytic AdVs (OAs) that possess the characteristics of cancer cell-specific replication and killing. Different carriers such as diverse cells and extracellular vesicles are being explored for delivering OAs into cancer sites after systemic administration. In addition, there are also various strategies to improve cancer-specific replication of OAs, mainly through modifying the early region 1 (E1) of the virus genome. It has been documented that oncolytic viruses (OVs) function through stimulating the immune system, resulting in the inhibition of cancer progression and, in combination with classical immune modulators, the anti-cancer effect of OAs can be even further enforced. To enhance the cancer treatment efficacy, OAs are also combined with other standard treatments, including surgery, chemotherapy and radiotherapy. Adenovirus type 5 (Ad5) has mainly been explored to develop vectors for cancer treatment with different modulations. Only a limited number of the more than 100 identified AdV types were converted into OAs and, therefore, the construction of an adenovirus library for the screening of potential novel OA candidates is essential. Here, we provide a state-of-the-art overview of currently performed and completed clinic trials with OAs and an adenovirus library, providing novel possibilities for developing innovative adenoviral vectors for cancer treatment.
Collapse
|
8
|
Aloperine in combination with therapeutic adenoviral vector synergistically suppressed the growth of non-small cell lung cancer. J Cancer Res Clin Oncol 2020; 146:861-874. [DOI: 10.1007/s00432-020-03157-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022]
|
9
|
Muhammad T, Sakhawat A, Khan AA, Ma L, Gjerset RA, Huang Y. Mesenchymal stem cell-mediated delivery of therapeutic adenoviral vectors to prostate cancer. Stem Cell Res Ther 2019; 10:190. [PMID: 31238944 PMCID: PMC6593580 DOI: 10.1186/s13287-019-1268-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 01/04/2023] Open
Abstract
Background There is an urgent need for targeted biological therapies for prostate cancer with greater efficacy and less toxicity, particularly for metastatic disease, where current therapies are not curative. Therapeutic adenoviral vectors or oncolytic adenoviruses offer the possibility of a competent, nontoxic therapeutic alternative for prostate cancer. However, free viral particles must be delivered locally, an approach that does not address metastatic disease, and they display poor tumor penetration. To fully exploit the potential of these vectors, we must develop methods that improve intratumoral dissemination and allow for systemic delivery. This study establishes a proof-of-principle rationale for a novel human mesenchymal stem (stromal) cell-based approach to improving vector delivery to tumors. Methods/results We have generated mesenchymal stem cell-derived packaging cells for adenoviruses (E1-modified mesenchymal stem cells) by modifying human mesenchymal stem cells with the adenovirus (type C) E1A/B genes needed for viral replication. Using cell-based assays, we have demonstrated that two adenoviral vectors, replication-defective adenovirus expressing p14 and p53 or conditionally replicating oncolytic adenovirus, packaged by E1A/B-modified mesenchymal stem cells, suppress the growth of prostate cancer cells in culture. Using subcutaneous xenograft models for human prostate cancer in mice, we have shown that E1A/B-modified mesenchymal stem cells display tumor tropism in tumor-bearing nude mice, that E1A/B-modified mesenchymal stem cells disseminate well within tumors, and that replication-defective adenovirus expressing p14 and p53 or conditionally replicating oncolytic adenovirus-loaded E1-modified mesenchymal stem cells suppresses tumor growth in mice. Conclusion The results show that this approach, if optimized, could circumvent the obstacles to efficient gene delivery encountered with current gene delivery approaches and provide an effective, nontoxic therapeutic alternative for metastatic disease.
Collapse
Affiliation(s)
- Tahir Muhammad
- College of life sciences and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Ali Sakhawat
- College of life sciences and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Aamir Ali Khan
- College of life sciences and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Ling Ma
- College of life sciences and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Ruth A Gjerset
- Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | - Yinghui Huang
- College of life sciences and Bio-engineering, Beijing University of Technology, Beijing, China.
| |
Collapse
|
10
|
Sakhawat A, Ma L, Muhammad T, Khan AA, Chen X, Huang Y. A tumor targeting oncolytic adenovirus can improve therapeutic outcomes in chemotherapy resistant metastatic human breast carcinoma. Sci Rep 2019; 9:7504. [PMID: 31097752 PMCID: PMC6522519 DOI: 10.1038/s41598-019-43668-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most prevalent malignancy in women, which remains untreatable once metastatic. The treatment of advanced breast cancer is restricted due to chemotherapy resistance. We previously investigated anti-cancer potential of a tumor selective oncolytic adenovirus along with cisplatin in three lung cancer cells; A549, H292, and H661, and found it very efficient. To our surprise, this virotherapy showed remarkable cytotoxicity to chemo-resistant cancer cells. Here, we extended our investigation by using two breast cancer cells and their resistant sublines to further validate CRAd’s anti-resistance properties. Results of in vitro and in vivo analyses recapitulated the similar anti-tumor potential of CRAd. Based on the molecular analysis through qPCR and western blotting, we suggest upregulation of coxsackievirus-adenovirus receptor (CAR) as a selective vulnerability of chemotherapy-resistant tumors. CAR knockdown and overexpression experiments established its important involvement in the success of CRAd-induced tumor inhibition. Additionally, through transwell migration assay we demonstrate that CRAd might have anti-metastatic properties. Mechanistic analysis show that CRAd pre-treatment could reverse epithelial to mesenchymal transition in breast cancer cells, which needs further verification. These insights may prove to be a timely opportunity for the application of CRAd in recurrent drug-resistant cancers.
Collapse
Affiliation(s)
- Ali Sakhawat
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Ling Ma
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Tahir Muhammad
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Aamir Ali Khan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Xuechai Chen
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China.
| |
Collapse
|
11
|
Cisplatin Synergistically Enhances Antitumor Potency of Conditionally Replicating Adenovirus via p53 Dependent or Independent Pathways in Human Lung Carcinoma. Int J Mol Sci 2019; 20:ijms20051125. [PMID: 30841620 PMCID: PMC6429304 DOI: 10.3390/ijms20051125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/09/2019] [Accepted: 02/27/2019] [Indexed: 01/31/2023] Open
Abstract
Cisplatin is ranked as one of the most powerful and commonly prescribed anti-tumor chemotherapeutic agents which improve survival in many solid tumors including non-small cell lung cancer. However, the treatment of advanced lung cancer is restricted due to chemotherapy resistance. Here, we developed and investigated survivin promoter regulating conditionally replicating adenovirus (CRAd) for its anti-tumor potential alone or in combination with cisplatin in two lung cancer cells, H23, H2126, and their resistant cells, H23/CPR, H2126/CPR. To measure the expression of genes which regulate resistance, adenoviral transduction, metastasis, and apoptosis in cancer cells, RT-PCR and Western blotting were performed. The anti-tumor efficacy of the treatments was evaluated through flow cytometry, MTT and transwell assays. This study demonstrated that co-treatment with cisplatin and CRAd exerts synergistic anti-tumor effects on chemotherapy sensitive lung cancer cells and monotherapy of CRAd could be a practical approach to deal with chemotherapy resistance. Combined treatment induced stronger apoptosis by suppressing the anti-apoptotic molecule Bcl-2, and reversed epithelial to mesenchymal transition. In conclusion, cisplatin synergistically increased the tumor-killing of CRAd by (1) increasing CRAd transduction via enhanced CAR expression and (2) increasing p53 dependent or independent apoptosis of lung cancer cell lines. Also, CRAd alone proved to be a very efficient anti-tumor agent in cancer cells resistant to cisplatin owing to upregulated CAR levels. In an exciting outcome, we have revealed novel therapeutic opportunities to exploit intrinsic and acquired resistance to enhance the therapeutic index of anti-tumor treatment in lung cancer.
Collapse
|