1
|
Nasrallah NA, Zhou H, Smith PA, Sears CR. DNA Repair Capacity for Personalizing Risk and Treatment Response - Assay Development and Optimization in Human Peripheral Blood Mononuclear Cells (PBMCs). DNA Repair (Amst) 2022; 111:103274. [DOI: 10.1016/j.dnarep.2022.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 11/03/2022]
|
2
|
Hua L, Chen S, Wei M, Shen Y, Long J, Lin Z, Meng Y, Guo C, Huang H, Tu X, Yao M. Predictive Value of ERCC1 mRNA Level from Receiver-Operator Characteristic and Pretreatment EBV-DNA Virus Load in Stage II Nasopharyngeal Carcinoma Patients Receiving Intensity-Modulated Radiotherapy with Concurrent Cisplatin. Cancer Biother Radiopharm 2021; 37:2-10. [PMID: 33764811 DOI: 10.1089/cbr.2020.4474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The molecular mechanisms underlying chemoresistance are still poorly understood in nasopharyngeal cancer; the protein expression of ERCC1 in DNA repair genes has been reported related to resistance platinum and predicting treatment outcomes in various malignant carcinomas, but the benefit for predicting outcomes with optimal cutoff value of ERCC1mRNA is controversial. The level of plasma Epstein-Barr virus (EBV) DNA is positively correlated with clinical stages of nasopharyngeal carcinoma (NPC). The predictive value of ERCC1mRNA from receiver-operator characteristic (ROC) and EBV-DNA level for stratified treatment with stage II NPC is exactly unclear. This study aims to assess the predictive value of combined EBV-DNA and ERCC1 in stage II nasopharyngeal cancer (NPC) patients treated with intensity-modulated radiotherapy (IMRT) with concurrent cisplatin, and provide guidance for future stratified treatment. Methods: A total of 86 stage II NPC patients who received IMRT and concurrent cisplatin-based chemotherapy with or without cisplatin-based adjuvant chemotherapy had measurements of ERCC1 mRNA, and pretreatment EBV-DNA levels were analyzed by real-time PCR (RT-PCR). Associations of ERCC1 mRNA and pretreatment EBV-DNA levels with clinical characteristics and survivals were evaluated. Results: Cutoff value of ERCC1 mRNA obtained from ROC curve was used, and there were significant differences in progression-free survival (PFS) and overall survival (OS) and overall response rate (ORR) between high expression group and low expression group (p = 0.021 and 0.030 and 0.000, respectively). Patients with pretreatment EBV-DNA <2000 copies/mL had significantly better PFS and ORR (p = 0.024 and 0.043, respectively) and a marginally significant impact on OS (p = 0.062) than those with pretreatment EBV-DNA ≥2000 copies/mL. Patients were divided into three groups by combination of ERCC1 mRNA and EBV-DNA level: ERCC1 mRNA low expression/pre-EBV-DNA <2000 copies/mL, ERCC1 mRNA low expression/pre-EBV-DNA ≥2000 copies/mL, and ERCC1 mRNA high expression/pre-EBV-DNA ≥2000 copies/mL. There were significant differences in ORR among the three groups (p = 0.005). The median follow-up was 62 months (range 22-84) with a follow-up rate of 90.70%. In these groups by combination of ERCC1 mRNA and EBV-DNA level, 1, 3, 5-year OS were 100%, 100%, 100%; 100%, 94.1%, 90.9%; and 100%, 85%, 72.9%, respectively (p = 0.038); 1, 3, 5-year PFS were 100%, 100%, 100%; 97.1%, 91.2%, 84.8%; and 95%, 85%, 71.4%, respectively (p = 0.028). Multivariate analysis showed that combination of ERCC1 mRNA and EBV-DNA levels remained independent prognostic factor but not ERCC1 mRNA and EBV-DNA alone. Conclusions: Combined ERCC1 mRNA and pre-EBV-DNA is a better prognostic biomarker in stage II NPC patients treated with concurrent chemoradiation. Patients with ERCC1 mRNA high expression/pre-EBV-DNA ≥2000 copies/mL may benefit from more aggressive treatment.
Collapse
Affiliation(s)
- Li Hua
- Department of Oncology, the Forth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shaojun Chen
- Department of Oncology, the Forth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Mengzhuan Wei
- Department of Oncology, the Forth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yongqi Shen
- Department of Oncology, The Liuzhou Railway Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jianxin Long
- Department of Oncology, Qinzhou Hospital of Traditional Chinese Medicine, Qinzhou, China
| | - Zhan Lin
- Department of Oncology, The Yulin First People's Hospital, Yulin, China
| | - Yiliang Meng
- Department of Oncology, The Baishe People's Hospital, Baishe, China
| | - Chengxian Guo
- Clinical Pharmacology Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Haixin Huang
- Department of Oncology, the Forth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xiaoning Tu
- Department of Head and Neck Surgery, the Forth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Min Yao
- Department of Radiation Onclogy, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Rochigneux P, Garcia AJ, Chanez B, Madroszyk A, Olive D, Garon EB. Medical Treatment of Lung Cancer: Can Immune Cells Predict the Response? A Systematic Review. Front Immunol 2020; 11:1036. [PMID: 32670271 PMCID: PMC7327092 DOI: 10.3389/fimmu.2020.01036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/29/2020] [Indexed: 01/23/2023] Open
Abstract
The landscape for medical treatment of lung cancer has irreversibly changed since the development of immuno-oncology (IO). Yet, while immune checkpoint blockade (ICB) revealed that T lymphocytes play a major role in lung cancer, the precise dynamic of innate and adaptive immune cells induced by anticancer treatments including chemotherapy, targeted therapy, and/or ICB is poorly understood. In lung cancer, studies evaluating specific immune cell populations as predictors of response to medical treatment are scarce, and knowledge is fragmented. Here, we review the different techniques allowing the detection of immune cells in the tumor and blood (multiplex immunohistochemistry and immunofluorescence, RNA-seq, DNA methylation pattern, mass cytometry, functional tests). In addition, we present data that consider different baseline immune cell populations as predictors of response to medical treatments of lung cancer. We also review the potential for assessing dynamic changes in cell populations during treatment as a biomarker. As powerful tools for immune cell detection and data analysis are available, clinicians and researchers could increase understanding of mechanisms of efficacy and resistance in addition to identifying new targets for IO by developing translational studies that decipher the role of different immune cell populations during lung cancer treatments.
Collapse
Affiliation(s)
- Philippe Rochigneux
- Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France.,Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France.,Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Alejandro J Garcia
- Cytometry Core Laboratory, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Brice Chanez
- Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France
| | - Anne Madroszyk
- Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Edward B Garon
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Interplay between BRCA1 and GADD45A and Its Potential for Nucleotide Excision Repair in Breast Cancer Pathogenesis. Int J Mol Sci 2020; 21:ijms21030870. [PMID: 32013256 PMCID: PMC7037490 DOI: 10.3390/ijms21030870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
A fraction of breast cancer cases are associated with mutations in the BRCA1 (BRCA1 DNA repair associated, breast cancer type 1 susceptibility protein) gene, whose mutated product may disrupt the repair of DNA double-strand breaks as BRCA1 is directly involved in the homologous recombination repair of such DNA damage. However, BRCA1 can stimulate nucleotide excision repair (NER), the most versatile system of DNA repair processing a broad spectrum of substrates and playing an important role in the maintenance of genome stability. NER removes carcinogenic adducts of diol-epoxy derivatives of benzo[α]pyrene that may play a role in breast cancer pathogenesis as their accumulation is observed in breast cancer patients. NER deficiency was postulated to be intrinsic in stage I of sporadic breast cancer. BRCA1 also interacts with GADD45A (growth arrest and DNA damage-inducible protein GADD45 alpha) that may target NER machinery to actively demethylate genome sites in order to change the expression of genes that may be important in breast cancer. Therefore, the interaction between BRCA1 and GADD45 may play a role in breast cancer pathogenesis through the stimulation of NER, increasing the genomic stability, removing carcinogenic adducts, and the local active demethylation of genes important for cancer transformation.
Collapse
|
5
|
Xiao M, Cui S, Zhang L, Yu T, Zhang G, Zhang Q, Li L, Cai Y, Jin C, Yang J, Wu S, Lu X. AC138128.1 an Intronic lncRNA originating from ERCC1 Implies a Potential Application in Lung Cancer Treatment. J Cancer 2019; 10:3608-3617. [PMID: 31333777 PMCID: PMC6636308 DOI: 10.7150/jca.31832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the most devastating tumors with a high incidence and mortality worldwide. Polymorphisms and expression of ERCC1 commonly predicted the occurrence and prognosis of lung cancer. However, few studies have focused on long non-coding RNAs related to ERCC1 though some studies reminded the importance of its post-transcriptional regulation. In the present study, an intronic lncRNA AC138128.1 originated from ERCC1 was firstly identified in microarray chip and database, and its possibility as a novel biomarker to predict lung cancer treatment was further discussed. Firstly, the qRT-PCR data showed that AC138128.1 expression was much lower in lung cancer comparing with its para-cancer tissues, which further analyzed by ROC curve. Similarly, the difference was also verified in 16HBE, A549 and LK2 cells. Then AC138128.1 expression was found to have an increasing trend in a dose or time-dependent manner after cisplatin treatment. Finally, the subcellular distribution of AC138128.1 reminded that AC138128.1 was mainly expressed in the nucleus. Interestingly a positive relationship between AC138128.1 and ERCC1 expression was only found in cancer tissues, which reminded AC138128.1 may be involved in the regulation of ERCC1. Therefore, as a preliminary exploration of the lncRNA originated from ERCC1, the present study suggested AC138128.1 is of potential value in predicting platinum analogue benefit in lung cancer.
Collapse
Affiliation(s)
- Mingyang Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Su Cui
- Dept. of Thoracic Surgery Ward 2, The first Hospital of China Medical University, Shenyang, P.R. China
| | - Liang Zhang
- Dept. of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang, P.R. China
| | - Tao Yu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Guopei Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Qianye Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Liuli Li
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Yuan Cai
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Cuihong Jin
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Jinghua Yang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Shengwen Wu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Xiaobo Lu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| |
Collapse
|
6
|
Zhu X, Zhang L, Hu Y, Zhang J. Identification of suitable reference genes for real-time qPCR in homocysteine-treated human umbilical vein endothelial cells. PLoS One 2018; 13:e0210087. [PMID: 30596787 PMCID: PMC6312244 DOI: 10.1371/journal.pone.0210087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
The imbalance in homocysteine (Hcy) metabolism has been implicated in the pathogenesis of human diseases, including cardiovascular and neurodegenerative disorders. When attempting to identify gene expression profiles using quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), the selection of suitable reference genes is important. Here, the expression levels of 10 commonly used reference genes were assessed for normalization of RT-qPCR in Hcy-treated human umbilical vein endothelial cells (HUVECs) and control cells. The suitability of eight selected candidate genes was comparatively analyzed across the tested samples and separately ranked by four programs, geNorm, NormFinder, BestKeeper, and the ΔCt method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was the most stable gene in the final ranking using the RankAggreg package. Surprisingly, the β-actin (ACTB) levels decreased significantly in Hcy-treated HUVECs compared with control HUVECs (P<0.05), and further study indicated that Hcy suppressed the expression of ACTB by upregulating the miR-145-5p level in Hcy-treated HUVECs. Our data suggest that GAPDH can be used as a reliable reference gene, while ACTB cannot; normalization of gene expression in RT-qPCR experiments in Hcy-treated HUVECs. The data, which identifies a suitable reference gene in Hcy-treated HUVECs, will contribute to the design of an effective and accurate method for quantitation of gene expression.
Collapse
Affiliation(s)
- Xia Zhu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Cardiology, Urumqi Friendship Hospital, Urumqi, China
| | - Lujun Zhang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
- * E-mail: (LZ); (JZ)
| | - Yangxi Hu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianliang Zhang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
- * E-mail: (LZ); (JZ)
| |
Collapse
|
7
|
Gong J, Xu L, Li Z, Hu X, Liu J, Teng Y, Jin B, Zhao M, Shi J, Guo T, Shi X, Cheng Y, Liu Y, Qu X. A Clinical Prognostic Score to Predict Survival of Advanced or Metastatic Non-Small Cell Lung Cancer (NSCLC) Patients Receiving First-Line Chemotherapy: A Retrospective Analysis. Med Sci Monit 2018; 24:8264-8271. [PMID: 30446633 PMCID: PMC6252050 DOI: 10.12659/msm.911026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although several complicated models have been built to evaluate the prognosis of NSCLC patients receiving chemotherapy, simple economic models are still needed to give a preliminary survival assessment of these patients. MATERIAL AND METHODS This study retrospectively assessed the clinical and biological parameters of 223 patients with advanced NSCLC. Univariate and multivariate analyses of overall survival (OS) and progression-free survival (PFS) for the parameters and the prognostic score were assessed. RESULTS Performance status (PS) score=1, smoking history, fibrinogenemia, thrombocytosis, increased lactate dehydrogenase (LDH) level, and anemia were independent predictors of poor prognosis in the univariate analysis of OS and were assessed in multivariate analysis. There was a significant difference in PS=1 (HR=2.134, p<0.0001), increased LDH level (HR=1.508, p=0.014), thrombocytosis (HR=1.547, p=0.012), and smoking history (HR=1.491, p=0.008), based on which the patients were classified into 3 risk groups: low risk (0-1 points), moderate risk (2 points), and high risk (3-5 points). At p values of <0.0001, the median OS was 565, 340, and 273 days and the median progression-free survival was 250, 209, and 135 days, respectively in these 3 risk groups. CONCLUSIONS We established a new prognostic score model using PS, LDH level, PLT count, and smoking history to predict the survival of patients receiving first-line chemotherapy for advanced NSCLC, which might be useful in clinical practice.
Collapse
Affiliation(s)
- Jing Gong
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jing Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yuee Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Bo Jin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jing Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Tianshu Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xiaonan Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yu Cheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|