1
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
2
|
Tuncer SB, Celik B, Kılıc Erciyas S, Sukruoglu Erdogan O, Pasin O, Avsar M, Kurt Gultaslar B, Adamnejad Ghafour A, Uyaroglu G, Akdeniz Odemis D, Yazıcı H. Aberrant miR-3135b and miR-1273g-3p expression in the peripheral blood samples of BRCA1/2 (±) ovarian cancer patients. Heliyon 2024; 10:e23876. [PMID: 38234891 PMCID: PMC10792459 DOI: 10.1016/j.heliyon.2023.e23876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024] Open
Abstract
Ovarian cancer (OC) ranks as the eighth most prevalent malignancy among women globally. The short non-coding RNA molecules, microRNAs (miRNAs) target multiple mRNAs and regulate the gene expression. Here in this study, we aimed to validate miR-3135b and miR-1273g-3p as novel biomarkers for prognostic and diagnostic factor OC. After RNA isolation, we analyzed the miR-3135b and miR-1273g-3p expression in peripheral blood samples derived from 150 OC patients. Subsequently, we compared their expression levels with 100 healthy controls. The differences of miR-3135b and miR-1273g-3p expression were detected using the Quantitative Real Time-PCR (qRT-PCR) technique following miRNA-specific cDNA synthesis pursing miRNA separation. The miR-3135b and miR-1273g-3p were higher in OC patients who tested positive for BRCA1/2 compared to BRCA-negative patients, and healthy cases. The level of miR-3135b demonstrated a roughly 4.82-fold increase in OC patients in comparison to the healthy cases, while miR-1273g-3p expression exhibited a roughly 6.77-fold increase. The receiver operating characteristic (ROC) analysis has demonstrated the potential of miR-3135b and miR-1273g-3p as markers for distinguishing between OC patients and healthy controls. The higher expressions of miR-3135b and miR-1273g-3p could be associated with OC development. Moreover, miR-3135b may have a diagnostic potential and miR-1273g-3p may have both diagnostic and prognostic potential in OC cell differentiation. The string analysis has revealed an association between miR-1273g-3p and the MDM2 gene, suggesting a potential link to tumor formation through the proteasomal degradation of the TP53 tumor suppressor gene. Additionally, the analysis indicates an association of miR-1273g-3p with CHEK1, a gene involved in checkpoint-mediated cell cycle arrest. String analysis also indicates that miR-3135b is associated with the MAPK1 gene, causing activation of the oncogenesis cascade. In conclusion, miR-1273g-3p, and miR-3135b exhibit significant potential as diagnostic markers. However, further research is needed to comprehensively investigate these miRNAs diagnostic and predictive characteristics in a larger cohort.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Betul Celik
- Molecular Biology Department, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Seda Kılıc Erciyas
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Ozge Pasin
- Faculty of Medicine, Department of Biostatistics, Bezmialem Vakıf University, Istanbul, Türkiye
| | - Mukaddes Avsar
- Department of Medical Services and Techniques, Istanbul Aydın University, Istanbul, Türkiye
| | - Busra Kurt Gultaslar
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | | | - Gamze Uyaroglu
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Hulya Yazıcı
- Department of Medical Biology, Istanbul Arel University, Istanbul, Türkiye
| |
Collapse
|
3
|
Liu D, Li X, Zeng B, Zhao Q, Chen H, Zhang Y, Chen Y, Wang J, Xing HR. Exosomal microRNA-4535 of Melanoma Stem Cells Promotes Metastasis by Inhibiting Autophagy Pathway. Stem Cell Rev Rep 2023; 19:155-169. [PMID: 35296991 DOI: 10.1007/s12015-022-10358-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 01/29/2023]
Abstract
High mortality rate and poor survival in melanoma are associated with efficient metastatic colonization. The underlying mechanisms remain elusive. Elucidating the role of exosomes in mediating the interactions between cancer cells and the metastatic microenvironment has been focused on cancer cell derived exosomes in modulating the functions of stromal cells. Whether cancer stem cells (CSCs) can modify the metastatic properties of non-CSC cells, and whether exosomal crosstalk plays a role have not been demonstrated prior to this report. In this study, a paired M14 melanoma derivative cell line, i.e., melanoma parental cell (MPC) and its CSC derivative cell line melanoma stem cell (MSC) were employed. We demonstrated that exosomal crosstalk betwen MSCs and non-CSC MPCs is a new mechanism that underlies melanoma metastasis. Low metastatic melanoma cells (MPCs) can acquire the "metastatic power" from highly metastatic melanoma CSCs (MSCs). We illustrated an uncharacterized microRNA, miR-4535 in mediating such exosomal crosstalk. MSCs deliver its exosomal miR-4535 to the targeted MPCs. Upon entering MPCs, miR-4535 augments metastatic colonization of MPCs by inactivating the autophagy pathway.
Collapse
Affiliation(s)
- Doudou Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoshuang Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Qiting Zhao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuhan Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuting Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - H Rosie Xing
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Najafi F, Kelaye SK, Kazemi B, Foruzandeh Z, Allahverdizadeh F, Vakili S, Rad KK, Derakhshani M, Solali S, Alivand MR. The role of miRNA-424 and miR-631 in various cancers: Focusing on drug resistance and sensitivity. Pathol Res Pract 2022; 239:154130. [DOI: 10.1016/j.prp.2022.154130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
|
5
|
Cho JG, Kim SW, Lee A, Jeong HN, Yun E, Choi J, Jeong SJ, Chang W, Oh S, Yoo KH, Lee JB, Yoon S, Lee MS, Park JH, Jung MH, Kim SW, Kim KH, Suh DS, Choi KU, Choi J, Kim J, Kwon BS. MicroRNA-dependent inhibition of WEE1 controls cancer stem-like characteristics and malignant behavior in ovarian cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:803-822. [PMID: 36159587 PMCID: PMC9463562 DOI: 10.1016/j.omtn.2022.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/17/2022] [Indexed: 01/22/2023]
|
6
|
Xuan J, Liu Y, Liu J, Zeng X, Wang H. New Insights into Hematopoietic Stem Cell Expansion to Stimulate Repopulation of the Adult Blood System for Transplantation. Life (Basel) 2022; 12:life12050716. [PMID: 35629383 PMCID: PMC9146250 DOI: 10.3390/life12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Successful engraftment of hematopoietic stem cells (HSCs) and progenitor cells (HSPCs) may be considered as a basis for the repopulation of the blood cells after transplantation in adults. Therefore, in vivo and ex vivo expansion of HSCs holds great promise for clinical applications. In this review, the mechanisms of HSC expansion will be discussed, considering the previous studies and works of literature. This is aimed to identify the signaling pathways that regulate HSC expansion and improve the application of engraftment in disease management. The following aspects will be included: (i) Stimulation of HSCs growth in vivo through gene regulation and cytokines activation; (ii) direct or indirect induction of HSC expansion by regulating signaling pathways; (iii) addition to assisting cells to help in the proliferation of HSCs; (iv) changing of living environment in the HSCs cultures via adjusting components and forms of cultures; (v) enhancement of HSC expansion by incorporating substances, such as extracellular vesicles (EVs), UM171, among others. In this review, recent new findings that provide us with new insights into HSC expansion methods have been summarized. Furthermore, these findings will also provide more possibilities for the development of some novel strategies for expanding and engrafting HSCs applied for treatments of some hematopoietic disorders.
Collapse
Affiliation(s)
- Jiangying Xuan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Yingxia Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
| | - Jinhui Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
| | - Xiaoping Zeng
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
| | - Hongmei Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
- Correspondence: ; Tel.: +86-137-6700-4966
| |
Collapse
|
7
|
Sequence Requirements for miR-424-5p Regulating and Function in Cancers. Int J Mol Sci 2022; 23:ijms23074037. [PMID: 35409396 PMCID: PMC8999618 DOI: 10.3390/ijms23074037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
MiRNAs (microRNAs) are the most abundant family of small noncoding RNAs in mammalian cells. Increasing evidence shows that miRNAs are crucial regulators of individual development and cell homeostasis by controlling various biological processes. Therefore, miRNA dysfunction can lead to human diseases, especially in cancers with high morbidity and mortality worldwide. MiRNAs play different roles in these processes. In recent years, studies have found that miR-424-5p is closely related to the occurrence, development, prognosis and treatment of tumors. This review discusses how miR-424-5p plays a role in different kinds of cancers from different stages of tumors, including its roles in (i) promoting or inhibiting tumorigenesis, (ii) regulating tumor development in the tumor microenvironment and (iii) participating in cancer chemotherapy. This review provides a deep discussion of the latest findings on miR-424-5p and its importance in cancer, as well as a mechanistic analysis of the role of miR-424-5p in various tissues through target gene verification and pathway analysis.
Collapse
|
8
|
Skryabin GO, Komelkov AV, Zhordania KI, Bagrov DV, Vinokurova SV, Galetsky SA, Elkina NV, Denisova DA, Enikeev AD, Tchevkina EM. Extracellular Vesicles from Uterine Aspirates Represent a Promising Source for Screening Markers of Gynecologic Cancers. Cells 2022; 11:cells11071064. [PMID: 35406627 PMCID: PMC8997481 DOI: 10.3390/cells11071064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are key factors of intercellular communication, performing both local and distant transfers of bioactive molecules. The increasingly obvious role of EVs in carcinogenesis, similarity of molecular signatures with parental cells, precise selection and high stability of cargo molecules make exosomes a promising source of liquid biopsy markers for cancer diagnosis. The uterine cavity fluid, unlike blood, urine and other body fluids commonly used to study EVs, is of local origin and therefore enriched in EVs secreted by cells of the female reproductive tract. Here, we show that EVs, including those corresponding to exosomes, could be isolated from individual samples of uterine aspirates (UA) obtained from epithelial ovarian cancer (EOC) patients and healthy donors using the ultracentrifugation technique. First, the conducted profiling of small RNAs (small RNA-seq) from UA-derived EVs demonstrated the presence of non-coding RNA molecules belonging to various classes. The analysis of the miRNA content in EVs from UA performed on a pilot sample revealed significant differences in the expression levels of a number of miRNAs in EVs obtained from EOC patients compared to healthy individuals. The results open up prospects for using UA-derived EVs as a source of markers for the diagnostics of gynecological cancers, including EOC.
Collapse
Affiliation(s)
- Gleb O. Skryabin
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Andrey V. Komelkov
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
- Correspondence: ; Tel.: +7-926-482-9147
| | - Kirill I. Zhordania
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Dmitry V. Bagrov
- Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 111234 Moscow, Russia;
| | - Svetlana V. Vinokurova
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Sergey A. Galetsky
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Nadezhda V. Elkina
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Darya A. Denisova
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Adel D. Enikeev
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Elena M. Tchevkina
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| |
Collapse
|
9
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A Review on the Role of miR-1246 in the Pathoetiology of Different Cancers. Front Mol Biosci 2022; 8:771835. [PMID: 35047553 PMCID: PMC8762223 DOI: 10.3389/fmolb.2021.771835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
miR-1246 is a microRNA firstly recognized through application of a high throughput sequencing technique in human embryonic stem cells. Subsequent studies have shown the role of this microRNA in the carcinogenesis. miR-1246 has been found to exert oncogenic roles in colorectal, breast, renal, oral, laryngeal, pancreatic and ovarian cancers as well as melanoma and glioma. In lung, cervical and liver cancers, studies have reported contradictory results regarding the role of miR-1246. miR-1246 has been reported to regulate activity of RAF/MEK/ERK, GSK3β, Wnt/β-catenin, JAK/STAT, PI3K/AKT, THBS2/MMP and NOTCH2 pathways. In addition to affecting cell cycle progression and proliferation, miR-1246 can influence stemness and resistance of cancer cells to therapeutics. In the current review, we describe the summary of in vitro and in vivo studies about the influence of miR-1246 in carcinogenesis in addition to studies that measured expression levels of miR-1246 in clinical samples.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Bi X, Lv X, Liu D, Guo H, Yao G, Wang L, Liang X, Yang Y. METTL3 promotes the initiation and metastasis of ovarian cancer by inhibiting CCNG2 expression via promoting the maturation of pri-microRNA-1246. Cell Death Discov 2021; 7:237. [PMID: 34497267 PMCID: PMC8426370 DOI: 10.1038/s41420-021-00600-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is a common gynecological malignant tumor with a high mortality rate and poor prognosis. There is inadequate knowledge of the molecular mechanisms underlying ovarian cancer. We examined the expression of methyltransferase-like 3 (METTL3) in tumor specimens using RT-qPCR, immunohistochemistry, and Western blot analysis, and tested the methylation of METTL3 by MSP. Levels of METTL3, miR-1246, pri-miR-1246 and CCNG2 were then analyzed and their effects on cell biological processes were also investigated, using in vivo assay to validate the in vitro findings. METTL3 showed hypomethylation and high expression in ovarian cancer tissues and cells. Hypomethylation of METTL3 was pronounced in ovarian cancer samples, which was negatively associated with patient survival. Decreased METTL3 inhibited the proliferation and migration of ovarian cancer cells and promoted apoptosis, while METTL3 overexpression exerted opposite effects. Mechanistically, METTL3 aggravated ovarian cancer by targeting miR-1246, while miR-1246 targeted and inhibited CCNG2 expression. High expression of METTL3 downregulated CCNG2, promoted the metabolism and growth of transplanted tumors in nude mice, and inhibited apoptosis. The current study highlights the promoting role of METTL3 in the development of ovarian cancer, and presents new targets for its treatment.
Collapse
Affiliation(s)
- Xuehan Bi
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Dajiang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Hongtao Guo
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Guang Yao
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Lijuan Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
11
|
Duan J, Cai H, Huang Y, Shi L. SNAI2-Induced CircMTO1 Promotes Cell Proliferation and Inhibits Apoptosis Through the miR-320b/MCL1 Axis in Human Granulosa-Like Tumor Cells. Front Genet 2021; 12:689916. [PMID: 34413875 PMCID: PMC8369758 DOI: 10.3389/fgene.2021.689916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), one of the most common types of endocrine diseases, is characterized by a high prevalence among women of reproductive-age. However, its pathogenesis and molecular mechanisms remain unclear. CircMTO1 has been reported to participate in numerous biological processes, but, its role in PCOS progression remains unknown. In the current study, we elucidated the expression and circRNA characterization of circMTO1 in human granulosa-like tumor cells. We found that circMTO1 knockdown promoted human granulosa-like tumor cell proliferation and inhibited its apoptosis rate. Next, we explored the underlying molecular mechanisms by using a series of experiments. Our results revealed the effect of the novel circMTO1/miR-320b/MCL1 axis in human granulosa-like tumor cells. Furthermore, we found that the expression of circMTO1 was induced by Snail family transcriptional repressor 2 (SNAI2) in human granulosa-like tumor cells. Our results may provide potential targets for PCOS research and a novel direction for the diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Jie Duan
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology, Women and Children's Hospital of Hubei Province, Wuhan, China
| | - Hongning Cai
- Department of Gynecology II, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology II, Women and Children's Hospital of Hubei Province, Wuhan, China
| | - Yanming Huang
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology, Women and Children's Hospital of Hubei Province, Wuhan, China
| | - Liangyan Shi
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology, Women and Children's Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
12
|
Cirillo PDR, Margiotti K, Fabiani M, Barros-Filho MC, Sparacino D, Cima A, Longo SA, Cupellaro M, Mesoraca A, Giorlandino C. Multi-analytical test based on serum miRNAs and proteins quantification for ovarian cancer early detection. PLoS One 2021; 16:e0255804. [PMID: 34352040 PMCID: PMC8341627 DOI: 10.1371/journal.pone.0255804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022] Open
Abstract
Advanced ovarian cancer is one of the most lethal gynecological tumor, mainly due to late diagnoses and acquired drug resistance. MicroRNAs (miRNAs) are small-non coding RNA acting as tumor suppressor/oncogenes differentially expressed in normal and epithelial ovarian cancer and has been recognized as a new class of tumor early detection biomarkers as they are released in blood fluids since tumor initiation process. Here, we evaluated by droplet digital PCR (ddPCR) circulating miRNAs in serum samples from healthy (N = 105) and untreated ovarian cancer patients (stages I to IV) (N = 72), grouped into a discovery/training and clinical validation set with the goal to identify the best classifier allowing the discrimination between earlier ovarian tumors from health controls women. The selection of 45 candidate miRNAs to be evaluated in the discovery set was based on miRNAs represented in ovarian cancer explorative commercial panels. We found six miRNAs showing increased levels in the blood of early or late-stage ovarian cancer groups compared to healthy controls. The serum levels of miR-320b and miR-141-3p were considered independent markers of malignancy in a multivariate logistic regression analysis. These markers were used to train diagnostic classifiers comprising miRNAs (miR-320b and miR-141-3p) and miRNAs combined with well-established ovarian cancer protein markers (miR-320b, miR-141-3p, CA-125 and HE4). The miRNA-based classifier was able to accurately discriminate early-stage ovarian cancer patients from health-controls in an independent sample set (Sensitivity = 80.0%, Specificity = 70.3%, AUC = 0.789). In addition, the integration of the serum proteins in the model markedly improved the performance (Sensitivity = 88.9%, Specificity = 100%, AUC = 1.000). A cross-study validation was carried out using four data series obtained from Gene Expression Omnibus (GEO), corroborating the performance of the miRNA-based classifier (AUCs ranging from 0.637 to 0.979). The clinical utility of the miRNA model should be validated in a prospective cohort in order to investigate their feasibility as an ovarian cancer early detection tool.
Collapse
Affiliation(s)
| | - Katia Margiotti
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Marco Fabiani
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Mateus C. Barros-Filho
- Department of Head and Neck Surgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - David Sparacino
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Antonella Cima
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Salvatore A. Longo
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Marina Cupellaro
- Altamedica, Department of Biochemistry, Altamedica Main Centre, Rome, Italy
| | - Alvaro Mesoraca
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Claudio Giorlandino
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
- Altamedica, Department of Biochemistry, Altamedica Main Centre, Rome, Italy
- Altamedica, Department of Prenatal Diagnosis, Fetal-Maternal Medical Center, Rome, Italy
| |
Collapse
|
13
|
Gajek A, Gralewska P, Marczak A, Rogalska A. Current Implications of microRNAs in Genome Stability and Stress Responses of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13112690. [PMID: 34072593 PMCID: PMC8199164 DOI: 10.3390/cancers13112690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Genomic alterations and aberrant DNA damage signaling are hallmarks of ovarian cancer (OC), the leading cause of mortality among gynecological cancers worldwide. Owing to the lack of specific symptoms and late-stage diagnosis, survival chances of patients are significantly reduced. Poly (ADP-ribose) polymerase (PARP) inhibitors and replication stress response inhibitors present attractive therapeutic strategies for OC. Recent research has focused on ovarian cancer-associated microRNAs (miRNAs) that play significant regulatory roles in various cellular processes. While miRNAs have been shown to participate in regulation of tumorigenesis and drug responses through modulating the DNA damage response (DDR), little is known about their potential influence on sensitivity to chemotherapy. The main objective of this review is to summarize recent findings on the utility of miRNAs as cancer biomarkers, in particular, ovarian cancer, and their regulation of DDR or modified replication stress response proteins. We further discuss the suppressive and promotional effects of various miRNAs on ovarian cancer and their participation in cell cycle disturbance, response to DNA damage, and therapeutic functions in multiple cancer types, with particular focus on ovarian cancer. Improved understanding of the mechanisms by which miRNAs regulate drug resistance should facilitate the development of effective combination therapies for ovarian cancer.
Collapse
|
14
|
Jiang ZB, Ma BQ, Feng Z, Liu SG, Gao P, Yan HT. miR-365 inhibits the progression of gallbladder carcinoma and predicts the prognosis of Gallbladder carcinoma patients. Cell Cycle 2021; 20:308-319. [PMID: 33459111 DOI: 10.1080/15384101.2021.1874694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gallbladder carcinoma (GBC) is one of the most common fatal biliary tract tumors in the world. Its 3-year survival rate is 30% and the recurrence rate remains very high. miR-365 was downregulated in numerous tumors and worked as tumor suppressor gene. However, the role of miR-365 in GBC was unclear. In this study, our results found that the expression of miR-365 in GBC tissues was reduced rather than that in non-cancerous tissues. miR-365 overexpression inhibited the proliferation, metastasis and expansion of GBC CSCs. Mechanically, bioinformatic and luciferase reporter analysis identified Ras-related C3 botulinum toxin substrate 1 (RAC1) as a direct target of miR-365. Overexpression of miR-365 in GBC cells reduced the RAC1 mRNA and protein expression. The special RAC1 inhibitor EHop-106 abolished the discrepancy of growth, metastasis and self-renewal ability between miR-365-overexpression GBC cells and their control cells, which further demonstrated that RAC1 was involved in miR-365-disrupted GBC cells growth, metastasis and self-renewal. More importantly, reduced expression of miR-365 was a predictor of poor prognosis of GBC patients. In conclusion, miR-365 inhibited GBC cell growth, metastasis and self-renewal capacity by directly targeting RAC1, and may therefore prove to be a novel prognosis biomarker for GBC patients.
Collapse
Affiliation(s)
- Ze-Bin Jiang
- Department of General Surgery, Gansu Provincial Hospital , Gansu, China
| | - Bing-Qiang Ma
- Department of General Surgery, Gansu Provincial Hospital , Gansu, China
| | - Zongfeng Feng
- Department of General Surgery, Cao County People's Hospital , Heze, Shandong Province, China
| | - Shao-Guang Liu
- Department of Emergency Surgery, Gansu Provincial Hospital , Gansu, China
| | - Peng Gao
- Department of General Surgery, Gansu Provincial Hospital , Gansu, China
| | - Hui-Ting Yan
- Department of Nursing Department, Gansu Provincial Hospital , Gansu, China
| |
Collapse
|
15
|
The microRNA-424/503 cluster: A master regulator of tumorigenesis and tumor progression with paradoxical roles in cancer. Cancer Lett 2020; 494:58-72. [PMID: 32846190 DOI: 10.1016/j.canlet.2020.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that play a crucial role in post-transcriptional gene regulation and act as indispensable mediators in several critical biological processes, including tumorigenesis, tissue homeostasis, and regeneration. MiR-424 and miR-503 are intragenic miRNAs that are clustered on human chromosome Xq26.3. Previous studies have reported that both miRNAs are dysregulated and play crucial but paradoxical roles in tumor initiation and progression, involving different target genes and molecular pathways. Moreover, these two miRNAs are concomitantly expressed in several cancer cells, indicating a coordinating function as a cluster. In this review, the roles and regulatory mechanisms of miR-424, miR-503, and miR-424/503 cluster are summarized in different types of cancers.
Collapse
|
16
|
Marques D, Ferreira-Costa LR, Ferreira-Costa LL, Bezerra-Oliveira AB, Correa RDS, Ramos CCDO, Vinasco-Sandoval T, Lopes KDP, Vialle RA, Vidal AF, Silbiger VN, Ribeiro-dos-Santos Â. Role of miRNAs in Sigmoid Colon Cancer: A Search for Potential Biomarkers. Cancers (Basel) 2020; 12:cancers12113311. [PMID: 33182525 PMCID: PMC7697997 DOI: 10.3390/cancers12113311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The aberrant expression of microRNAs in known to play a crucial role in carcinogenesis. Here, we evaluated the miRNA expression profile of sigmoid colon cancer (SCC) compared to adjacent-to-tumor (ADJ) and sigmoid colon healthy (SCH) tissues obtained from colon biopsy extracted from Brazilian patients. Comparisons were performed between each group separately, considering as significant p-values < 0.05 and |Log2(Fold-Change)| > 2. We found 20 differentially expressed miRNAs (DEmiRNAs) in all comparisons, two of which were shared between SCC vs. ADJ and SCC vs. SCH. We used miRTarBase, and miRTargetLink to identify target-genes of the differentially expressed miRNAs, and DAVID and REACTOME databases for gene enrichment analysis. We also used TCGA and GTEx databases to build miRNA-gene regulatory networks and check for the reproducibility in our results. As findings, in addition to previously known miRNAs associated with colorectal cancer, we identified three potential novel biomarkers. We showed that the three types of colon tissue could be clearly distinguished using a panel composed by the 20 DEmiRNAs. Additionally, we found enriched pathways related to the carcinogenic process in which miRNA could be involved, indicating that adjacent-to-tumor tissues may be already altered and cannot be considered as healthy tissues. Overall, we expect that these findings may help in the search for biomarkers to prevent cancer progression or, at least, allow its early detection, however, more studies are needed to confirm our results.
Collapse
Affiliation(s)
- Diego Marques
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Av. Nilo Peçanha, 620, Petrópolis, Natal 59012-300, Brazil; (L.R.F.-C.); (L.L.F.-C.); (A.B.B.-O.)
| | - Layse Raynara Ferreira-Costa
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Av. Nilo Peçanha, 620, Petrópolis, Natal 59012-300, Brazil; (L.R.F.-C.); (L.L.F.-C.); (A.B.B.-O.)
| | - Lorenna Larissa Ferreira-Costa
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Av. Nilo Peçanha, 620, Petrópolis, Natal 59012-300, Brazil; (L.R.F.-C.); (L.L.F.-C.); (A.B.B.-O.)
| | - Ana Beatriz Bezerra-Oliveira
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Av. Nilo Peçanha, 620, Petrópolis, Natal 59012-300, Brazil; (L.R.F.-C.); (L.L.F.-C.); (A.B.B.-O.)
| | - Romualdo da Silva Correa
- Departamento de Cirurgia Oncológica, Liga Norte Riograndense Contra o Câncer, R. Mário Negócio, 2267, Quintas, Natal 59040-000, Brazil;
| | - Carlos Cesar de Oliveira Ramos
- Laboratório de Patologia e Citopatologia, Liga Norte Riograndense Contra o Câncer, R. Mário Negócio, 2267, Quintas, Natal 59040-000, Brazil;
| | - Tatiana Vinasco-Sandoval
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
| | - Katia de Paiva Lopes
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
| | - Ricardo Assunção Vialle
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
| | - Amanda Ferreira Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil
| | - Vivian Nogueira Silbiger
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Av. Nilo Peçanha, 620, Petrópolis, Natal 59012-300, Brazil; (L.R.F.-C.); (L.L.F.-C.); (A.B.B.-O.)
- Correspondence: (V.N.S.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, R. dos Mundurucus, 4487, Guamá, Belém 66073-000, Brazil
- Correspondence: (V.N.S.); (Â.R.-d.-S.)
| |
Collapse
|
17
|
López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol 2020; 13:136. [PMID: 33059744 PMCID: PMC7559894 DOI: 10.1186/s13045-020-00966-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) represent a tumor subpopulation responsible for tumor metastasis and resistance to chemo- and radiotherapy, ultimately leading to tumor relapse. As a consequence, the detection and eradication of this cell subpopulation represent a current challenge in oncology medicine. CSC phenotype is dependent on the tumor microenvironment (TME), which involves stem and differentiated tumor cells, as well as different cell types, such as mesenchymal stem cells, endothelial cells, fibroblasts and cells of the immune system, in addition to the extracellular matrix (ECM), different in composition to the ECM in healthy tissues. CSCs regulate multiple cancer hallmarks through the interaction with cells and ECM in their environment by secreting extracellular vesicles including exosomes, and soluble factors such as interleukins, cytokines, growth factors and other metabolites to the TME. Through these factors, CSCs generate and activate their own tumor niche by recruiting stromal cells and modulate angiogenesis, metastasis, resistance to antitumor treatments and their own maintenance by the secretion of different factors such as IL-6, VEGF and TGF-ß. Due to the strong influence of the CSC secretome on disease development, the new antitumor therapies focus on targeting these communication networks to eradicate the tumor and prevent metastasis, tumor relapse and drug resistance. This review summarizes for the first time the main components of the CSC secretome and how they mediate different tumor processes. Lastly, the relevance of the CSC secretome in the development of more precise and personalized antitumor therapies is discussed.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Health Sciences, University of Jaén, 23071, Jaén, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
18
|
Li M, Guo H, Wang Q, Chen K, Marko K, Tian X, Yang Y. Pancreatic stellate cells derived exosomal miR-5703 promotes pancreatic cancer by downregulating CMTM4 and activating PI3K/Akt pathway. Cancer Lett 2020; 490:20-30. [PMID: 32585413 DOI: 10.1016/j.canlet.2020.06.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/03/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
Exosomes play important role in tumor microenvironment, and mediate the crosstalk between pancreatic cancer (PC) cells and matrix components including pancreatic stellate cells (PSCs) to regulate pancreatic cancer progression. Here we isolated primary PSCs from PC patients, and demonstrated that PSC-derived exosomes could be internalized by PC cells to promote cell proliferation. Furthermore, we identified that miR-5703 in the exosomes acted as a driver of cell proliferation and its inhibitor suppressed the function of exosomes to promote PC cell proliferation. miR-5703 directly bound to the 3'UTR of CMTM4 and downregulated its expression. CMTM4 knockdown promoted PC cell proliferation, while overexpression of CMTM4 suppressed PC cell proliferation both in vivo and in vitro. Mechanistically, we revealed that CMTM4 suppressed PI3K/Akt pathway via downregulating PAK4. In conclusion, our results suggest that PSC-derived exosomal miR-5703 could target CMTM4 in PC cells and promote cell proliferation due to PAK4 activated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Mingzhe Li
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Huahu Guo
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Qi Wang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Kai Chen
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Kornmann Marko
- Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Ulm, 89081, Germany.
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
19
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Hasanzadeh M, Parizadeh SMR, Hassanian SM, Rezaei-Kalat A, Aghabozorgi AS, Rahimi-Kakhki R, Zargaran B, Ferns GA, Avan A. Circulating and Tissue microRNAs as Biomarkers for Ovarian Cancer Prognosis. Curr Drug Targets 2020; 20:1447-1460. [PMID: 31284859 DOI: 10.2174/1389450120666190708100308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/09/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Ovarian cancer (OC) is one of the most common cancers globally with a high rate of cancer- associated mortality. OC may be classified into epithelial cell neoplasms, germ cell neoplasms and stromal cell neoplasms. The five-year survival in the early and advanced stages of disease is approximately 90% and 15%, respectively. microRNAs are short, single-stranded, non-coding ribonucleic acid (RNA). miRNAs play critical roles in post transcriptionally regulations of gene expression. miRNAs are found in different tissues and body fluids. In carcinogenesis the expression of miRNAs are altered. Recent studies have revealed that there is a relationship between alteration of miRNAs expression and the prognosis of patients with OC. The aim of this review was to summarize the findings of recent studies that have investigated the expression of circulating and tissue miRNAs as novel biomarkers in the prognosis of OC.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of medical sciences, Mashhad, Mashhad, Iran
| | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirsaeed Sabeti Aghabozorgi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Rana Rahimi-Kakhki
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Zargaran
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of medical sciences, Mashhad, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
MiR-424-5p Inhibits Proliferation, Invasion and Promotes Apoptosis and Predicts Good Prognosis in Glioma by Directly Targeting BFAR. Pathol Oncol Res 2020; 26:2327-2335. [PMID: 32483702 DOI: 10.1007/s12253-020-00831-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
The biological function of miRNA (miR)-424-5p in glioma has not been clarified. This study was to explore the roles of miR-424-5p/Bifunctional apoptosis regulator (BFAR) axis in glioma. Ninety-six pairs of human glioma tissues and their adjacent non-cancer tissues were collected. The levels of BFAR and miR-424-5p were detected by quantitative polymerase chain reaction (qPCR) in glioma tissues and cell lines. Moreover, the biological roles of miR-424-5p and BFAR in glioma cells were assessed. We found a miR-424-5p binding site in the 3'UTR of BFAR by using TargetScan 7.2 online database. The miR-424-5p level was dramatically decreased in glioma tissues and cell lines, and the BFAR expression was significantly increased. The BFAR expression was negatively related to the miR-424-5p level in glioma tissues. Compared to patients with high miR-424-5p levels in glioma tissues, patients with low miR-424-5p levels had significantly lower survival rate (χ2 = 13.728 and P < 0.001). Compared to patients with high BFAR levels in glioma tissues, patients with low BFAR levels had significantly higher survival rate (χ2 = 5.516 and P = 0.027). Furthermore, up-regulation of miR-424-5p obviously restrained glioma cells proliferation and invasion, and promoted apoptosis. Besides, knockdown of BFAR also could markedly inhibit the proliferation and invasion, and promote apoptosis. Finally, overexpression of BFAR in glioma cells partially reversed the inhibited effects of miR-424-5p mimic. Knockdown of miR-424-5p restrained glioma cell apoptosis and promoted invasion and proliferation via regulation of BFAR.
Collapse
|
21
|
Li C, Zhang M, Dai Y, Xu Z. MicroRNA‐424‐5p regulates aortic smooth muscle cell function in atherosclerosis by blocking APOC3‐mediated nuclear factor‐κB signalling pathway. Exp Physiol 2020; 105:1035-1049. [PMID: 31912930 DOI: 10.1113/ep088088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Chuanfang Li
- Graduate SchoolTianjin Medical University Tianjin 272000 PR China
- Department of CardiologyAffiliated Hospital of Jining Medical University Jining 272029 PR China
| | - Meng Zhang
- Department of CardiologyAffiliated Hospital of Jining Medical University Jining 272029 PR China
| | - Yuchuan Dai
- Department of CardiologyAffiliated Hospital of Jining Medical University Jining 272029 PR China
| | - Zesheng Xu
- Department of CardiologyCangzhou Central Hospital Cangzhou 061001 PR China
| |
Collapse
|
22
|
Bastami M, Choupani J, Saadatian Z, Zununi Vahed S, Ouladsahebmadarek E, Mansoori Y, Daraei A, Samadi Kafil H, Yousefi B, Mahdipour M, Masotti A, Nariman-Saleh-Fam Z. Evidences from a Systematic Review and Meta-Analysis Unveil the Role of MiRNA Polymorphisms in the Predisposition to Female Neoplasms. Int J Mol Sci 2019; 20:ijms20205088. [PMID: 31615040 PMCID: PMC6834313 DOI: 10.3390/ijms20205088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
Breast (BCa) and gynecological (GCa) cancers constitute a group of female neoplasms that has a worldwide significant contribution to cancer morbidity and mortality. Evidence suggests that polymorphisms influencing miRNA function can provide useful information towards predicting the risk of female neoplasms. Inconsistent findings in the literature should be detected and resolved to facilitate the genetic screening of miRNA polymorphisms, even during childhood or adolescence, and their use as predictors of future malignancies. This study represents a comprehensive systematic review and meta-analysis of the association between miRNA polymorphisms and the risk of female neoplasms. Meta-analysis was performed by pooling odds-ratios (ORs) and generalized ORs while using a random-effects model for 15 miRNA polymorphisms. The results suggest that miR-146a rs2910164 is implicated in the susceptibility to GCa. Moreover, miR-196a2 rs11614913-T had a moderate protective effect against female neoplasms, especially GCa, in Asians but not in Caucasians. MiR-27a rs895819-G might pose a protective effect against BCa among Caucasians. MiR-499 rs3746444-C may slightly increase the risk of female neoplasms, especially BCa. MiR-124 rs531564-G may be associated with a lower risk of female neoplasms. The current evidences do not support the association of the remaining polymorphisms and the risk of female neoplasms.
Collapse
Affiliation(s)
- Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran.
| | - Jalal Choupani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran.
| | - Zahra Saadatian
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad 9691793718, Iran.
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran.
| | - Elaheh Ouladsahebmadarek
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz 5138663134, Iran.
| | - Yasser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran.
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4617647745, Iran.
| | - Hossein Samadi Kafil
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran.
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran.
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome 00146, Italy.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz 5138663134, Iran.
| |
Collapse
|
23
|
Jiang ZB, Ma BQ, Liu SG, Li J, Yang GM, Hou YB, Si RH, Gao P, Yan HT. miR-365 regulates liver cancer stem cells via RAC1 pathway. Mol Carcinog 2018; 58:55-65. [PMID: 30182377 PMCID: PMC6585981 DOI: 10.1002/mc.22906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Liver cancer stem cells (CSCs) were involved in tumorigenesis, progression, recurrence, and drug resistance of hepatocellular carcinoma (HCC). miR-365 was downregulated in hepatocellular carcinoma and inhibited HCC cell proliferation and invasion. However, the role of miR-365 in liver cancer stem cells was unknown. Herein, we observed a remarkable decrease of miR-365 expression in CD133 or EpCAM-positive liver CSCs as well as in CSC-enriched hepatoma spheres. Up-regulated miR-365 suppressed liver CSC expansion by inhibiting the dedifferentiation of hepatoma cells and decreasing the self-renewal ability of liver CSCs. Mechanistically, bioinformatic and luciferase reporter analysis identified Ras-related C3 botulinum toxin substrate 1 (RAC1) as a direct target of miR-365. Overexpression of miR-365 in hepatoma cells downregulated the RAC1 mRNA and protein expression. RAC1 also could promote the expansion of liver CSCs. The special RAC1 inhibitor EHop-106 or RAC1 overexpression abolished the discrepancy in liver CSC proportion and the self-renewal capacity between miR-365 overexpression hepatoma cells and control cells, which further confirmed that RAC1 was required in miR-365-suppressed liver CSCs expansion. miR-365 was downregulated in liver CSCs and could inhibit HCC cells dedifferentiation and liver CSCs expansion by targeting RAC1 signaling.
Collapse
Affiliation(s)
- Ze-Bin Jiang
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Bing-Qiang Ma
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Shao-Guang Liu
- Department of Emergency Surgery, Gansu Provincial Hospital, Gansu, China
| | - Jing Li
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Guang-Ming Yang
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Ya-Bo Hou
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Ruo-Huang Si
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Peng Gao
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Hui-Ting Yan
- Department of Nursing Department, Gansu Provincial Hospital, Gansu, China
| |
Collapse
|
24
|
Günel T, Gumusoglu E, Dogan B, Ertem FB, Hosseini MK, Cevik N, Senol T, Topuz S, Aydinli K. Potential biomarker of circulating hsa-miR-1273g-3p level for detection of recurrent epithelial ovarian cancer. Arch Gynecol Obstet 2018; 298:1173-1180. [DOI: 10.1007/s00404-018-4913-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022]
|
25
|
|