1
|
Yang HA, Han TH, Haam K, Lee KS, Kim J, Han TS, Lee MS, Ban HS. Prodigiosin regulates cancer metabolism through interaction with GLUT1. Nat Prod Res 2024:1-8. [PMID: 38913075 DOI: 10.1080/14786419.2024.2367241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
In contrast to normal cells, cancer cells predominantly utilise glycolysis for ATP generation under aerobic conditions, facilitating proliferation and metastasis. Targeting glycolysis is effective for cancer treatment. Prodigiosin (PDG) is a natural compound with various bioactivities, including anticancer effects. However, the precise action mechanisms and molecular targets of PDG, which has demonstrated efficacy in regulating glucose metabolism in cancer cells, remain elusive. Here, we aimed to investigate the anti-cancer activity of PDG and mechanism in cancer metabolism. PDG regulated cancer metabolism by suppressing intracellular ATP production rate and levels. It inhibited glycolysis and mitochondrial oxidative phosphorylation, impeding ATP production dependent on both glycolysis and mitochondrial respiration. Moreover, it inhibited cellular glucose uptake by directly interacting with glucose transporter 1 without affecting its mRNA or protein levels in HCT116 cells. We provide insights into the anti-cancer effects of PDG mediated via cancer metabolism regulation, suggesting its therapeutic potential for cancer.
Collapse
Affiliation(s)
- Hyun-A Yang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae-Hee Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keeok Haam
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyung-Soo Lee
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jinsu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyun Seung Ban
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
2
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
3
|
Zhou Y, Huang S, Guo Y, Ran M, Shan W, Chen WH, Tam KY. Epigallocatechin gallate circumvents drug-induced resistance in non-small-cell lung cancer by modulating glucose metabolism and AMPK/AKT/MAPK axis. Phytother Res 2023; 37:5837-5853. [PMID: 37621136 DOI: 10.1002/ptr.7990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Upon prolonged use of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small-cell lung cancer (NSCLC), acquired drug resistance inevitably occurs. This study investigates the combined use of EGFR-TKIs (gefitinib or osimertinib) with epigallocatechin gallate (EGCG) to overcome acquired drug resistance in NSCLC models. The in vitro antiproliferative effects of EGFR-TKIs and EGCG combination in EGFR-mutant parental and resistant cell lines were evaluated. The in vivo efficacy of the combination was assessed in xenograft mouse models derived from EGFR-TKI-resistant NSCLC cells. We found that the combined use of EGFR-TKIs and EGCG significantly reversed the Warburg effect by suppressing glycolysis while boosting mitochondrial respiration, which was accompanied by increased cellular ROS and decreased lactate secretion. The combination effectively activated the AMPK pathway while inhibited both ERK/MAPK and AKT/mTOR pathways, leading to cell cycle arrest and apoptosis, particularly in drug-resistant NSCLC cells. The in vivo results obtained from mouse tumor xenograft model confirmed that EGCG effectively overcame osimertinib resistance. This study revealed that EGCG suppressed cancer bypass survival signaling and altered cancer metabolic profiles, which is a promising anticancer adjuvant of EGFR-TKIs to overcome acquired drug resistance in NSCLC.
Collapse
Affiliation(s)
- Yan Zhou
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Shiqi Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Maoxin Ran
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wenying Shan
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
4
|
Howell MC, Green R, Cianne J, Dayhoff GW, Uversky VN, Mohapatra S, Mohapatra S. EGFR TKI resistance in lung cancer cells using RNA sequencing and analytical bioinformatics tools. J Biomol Struct Dyn 2023; 41:9808-9827. [PMID: 36524419 PMCID: PMC10272293 DOI: 10.1080/07391102.2022.2153269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Epidermal Growth Factor Receptor (EGFR) signaling and EGFR mutations play key roles in cancer pathogenesis, particularly in the development of drug resistance. For the ∼20% of all non-small cell lung cancer (NSCLC) patients that harbor an activating mutation, EGFR tyrosine kinase inhibitors (TKIs) provide initial clinical responses. However, long-term efficacy is not possible due to acquired drug resistance. Despite a gradually increasing knowledge of the mechanisms underpinning the development of resistance in tumors, there has been very little success in overcoming it and it is probable that many additional mechanisms are still unknown. Herein, publicly available RNASeq (RNA sequencing) datasets comparing lung cancer cell lines treated with EGFR TKIs until resistance developed with their corresponding parental cells and protein array data from our own EGFR TKI treated xenograft tumors, were analyzed for differential gene expression, with the intent to investigate the potential mechanisms of drug resistance to EGFR TKIs. Pathway analysis, as well as structural disorder analysis of proteins in these pathways, revealed several key proteins, including DUSP1, DUSP6, GAB2, and FOS, that could be targeted using novel combination therapies to overcome EGFR TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Mark C Howell
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ryan Green
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Junior Cianne
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Shyam Mohapatra
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
5
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
6
|
Seydi H, Nouri K, Rezaei N, Tamimi A, Hassan M, Mirzaei H, Vosough M. Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother 2023; 161:114487. [PMID: 36963361 DOI: 10.1016/j.biopha.2023.114487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
Treatment resistance is one of the major barriers for therapeutic strategies in hepatocellular carcinoma (HCC). Many studies have indicated that chemotherapy and radiotherapy induce autophagy machinery (cell protective autophagy) in HCC cells. In addition, many experiments report a remarkable crosstalk between treatment resistance and autophagy pathways. Thus, autophagy could be one of the key factors enabling tumor cells to hinder induced cell death after medical interventions. Therefore, extensive research on the molecular pathways involved in resistance induction and autophagy have been conducted to achieve the desired therapeutic response. The key molecular pathways related to the therapy resistance are TGF-β, MAPK, NRF2, NF-κB, and non-coding RNAs. In addition, EMT, drug transports, apoptosis evasion, DNA repair, cancer stem cells, and hypoxia could have considerable impact on the hepatoma cell's response to therapies. These mechanisms protect tumor cells against various treatments and many studies have shown that each of them is connected to the molecular pathways of autophagy induction in HCC. Hence, autophagy inhibition may be an effective strategy to improve therapeutic outcome in HCC patients. In this review, we further highlight how autophagy leads to poor response during treatment through a complex molecular network and how it enhances resistance in primary liver cancer. We propose that combinational regimens of approved HCC therapeutic protocols plus autophagy inhibitors may overcome drug resistance in HCC therapy.
Collapse
Affiliation(s)
- Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Kosar Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Islamic Republic of Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
7
|
Nicotinamide Adenine Dinucleotide Precursor Suppresses Hepatocellular Cancer Progression in Mice. Nutrients 2023; 15:nu15061447. [PMID: 36986177 PMCID: PMC10055624 DOI: 10.3390/nu15061447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Targeting Nicotinamide adenine dinucleotide (NAD) metabolism has emerged as a promising anti-cancer strategy; we aimed to explore the health benefits of boosting NAD levels with nicotinamide riboside (NR) on hepatocellular carcinoma (HCC). We established three in vivo tumor models, including subcutaneous transplantation tumor model in both Balb/c nude mice (xenograft), C57BL/6J mice (allograft), and hematogenous metastatic neoplasm in nude mice. NR (400 mg/kg bw) was supplied daily in gavage. In-situ tumor growth or noninvasive bioluminescence were measured to evaluate the effect of NR on the HCC process. HepG2 cells were treated with transforming growth factor-β (TGF-β) in the absence/presence of NR in vitro. We found that NR supplementation alleviated malignancy-induced weight loss and metastasis to lung in nude mice in both subcutaneous xenograft and hematogenous metastasis models. NR supplementation decreased metastasis to the bone and liver in the hematogenous metastasis model. NR supplementation also significantly decreased the size of allografted tumors and extended the survival time in C57BL/6J mice. In vitro experiments showed that NR intervention inhibited the migration and invasion of HepG2 cells triggered by TGF-β. In summary, our results supply evidence that boosting NAD levels by supplementing NR alleviates HCC progression and metastasis, which may serve as an effective treatment for the suppression of HCC progression.
Collapse
|
8
|
Li Y, Liu T, Wang X, Jia Y, Cui H. Autophagy and Glycometabolic Reprograming in the Malignant Progression of Lung Cancer: A Review. Technol Cancer Res Treat 2023; 22:15330338231190545. [PMID: 37605558 PMCID: PMC10467373 DOI: 10.1177/15330338231190545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide. However, there are currently limited treatment options that are widely available to patients with advanced lung cancer, and further research is required to inhibit or reverse disease progression more effectively. In lung and other solid tumor cancers, autophagy and glycometabolic reprograming are critical regulators of malignant development, including proliferation, drug resistance, invasion, and metastasis. To provide a theoretical basis for therapeutic strategies targeting autophagy and glycometabolic reprograming to prevent lung cancer, we review how autophagy and glycometabolism are regulated in the malignant development of lung cancer based on research progress in other solid tumors.
Collapse
Affiliation(s)
- Yuting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tongzuo Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoqun Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
9
|
Babuta J, Hall Z, Athersuch T. Dysregulated Metabolism in EGFR-TKI Drug Resistant Non-Small-Cell Lung Cancer: A Systematic Review. Metabolites 2022; 12:metabo12070644. [PMID: 35888768 PMCID: PMC9316206 DOI: 10.3390/metabo12070644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is a common barrier to continued effective treatment in cancer. In non-small-cell lung cancer (NSCLC), tyrosine kinase inhibitors that target the epidermal growth factor receptor (EGFR-TKIs) exhibit good efficacy in cancer treatment until acquired resistance occurs. It has been observed that drug resistance is accompanied by numerous molecular-level changes, including significant shifts in cellular metabolism. The purpose of this study was to critically and systematically review the published literature with respect to how metabolism differs in drug-resistant compared to drug-sensitive NSCLC. Understanding the differences between resistant and sensitive cells is vital and has the potential to allow interventions that enable the re-sensitisation of resistant cells to treatment, and consequently reinitiate the therapeutic effect of EGFR-TKIs. The main literature search was performed using relevant keywords in PubMed and Ovid (Medline) and reviewed using the Covidence platform. Of the 1331 potentially relevant literature records retrieved, 27 studies were subsequently selected for comprehensive analysis. Collectively, the literature revealed that NSCLC cell lines resistant to EGFR-TKI treatment possess characteristic metabolic and lipidomic phenotypic signatures that differentiate them from sensitive lines. Further exploration of these reported differences suggests that drug-resistant cell lines are differentially reliant on cellular energy sources and that modulation of relative energy production pathways may lead to the reversal of drug resistance.
Collapse
|
10
|
Liu Y, Qi H, Wang C, Deng J, Tan Y, Lin L, Cui Z, Li J, Qi L. Predicting Chemo-Radiotherapy Sensitivity With Concordant Survival Benefit in Non-Small Cell Lung Cancer via Computed Tomography Derived Radiomic Features. Front Oncol 2022; 12:832343. [PMID: 35814422 PMCID: PMC9256940 DOI: 10.3389/fonc.2022.832343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background To identify a computed tomography (CT) derived radiomic signature for the options of concurrent chemo-radiotherapy (CCR) in patients with non-small cell lung cancer (NSCLC). Methods A total of 226 patients with NSCLC receiving CCR were enrolled from public dataset, and allocated to discovery and validation sets based on patient identification number. Using CT images of 153 patients in the discovery dataset, we pre-selected a list of radiomic features significantly associated with 5-year survival rate and adopted the least absolute shrinkage and selection operator regression to establish a predictive radiomic signature for CCR treatment. We performed transcriptomic analyzes of the signature, and evaluated its association with molecular lesions and immune landscapes in a dataset with matched CT images and transcriptome data. Furthermore, we identified CCR resistant genes positively correlated with resistant scores of radiomic signature and screened essential resistant genes for NSCLC using genome-scale CRIPSR data. Finally, we combined DrugBank and Genomics of Drug Sensitivity in Cancer databases to excavate candidate therapeutic agents for patients with CCR resistance, and validated them using the Connectivity Map dataset. Results The radiomic signature consisting of nine features was established, and then validated in the dataset of 73 patients receiving CCR log-rank P = 0.0005, which could distinguish patients into resistance and sensitivity groups, respectively, with significantly different 5-year survival rate. Furthermore, the novel proposed radiomic nomogram significantly improved the predictive performance (concordance indexes) of clinicopathological factors. Transcriptomic analyzes linked our signature with important tumor biological processes (e.g. glycolysis/glucoseogenesis, ribosome). Then, we identified 36 essential resistant genes, and constructed a gene-agent network including 10 essential resistant genes and 35 candidate therapeutic agents, and excavated AT-7519 as the therapeutic agent for patients with CCR resistance. The therapeutic efficacy of AT-7519 was validated that significantly more resistant genes were down-regulated induced by AT-7519, and the degree gradually increased with the enhanced doses. Conclusions This study illustrated that radiomic signature could non-invasively predict therapeutic efficacy of patients with NSCLC receiving CCR, and indicated that patients with CCR resistance might benefit from AT-7519 or CCR treatment combined with AT-7519.
Collapse
Affiliation(s)
- Yixin Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Haitao Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chunni Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaxing Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yilong Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lin Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhirou Cui
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jin Li
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
- *Correspondence: Jin Li, ; Lishuang Qi,
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- *Correspondence: Jin Li, ; Lishuang Qi,
| |
Collapse
|
11
|
Pandey A, Yadav P, Shukla S. Unfolding the role of autophagy in the cancer metabolism. Biochem Biophys Rep 2021; 28:101158. [PMID: 34754952 PMCID: PMC8564564 DOI: 10.1016/j.bbrep.2021.101158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is considered an indispensable process that scavenges toxins, recycles complex macromolecules, and sustains the essential cellular functions. In addition to its housekeeping role, autophagy plays a substantial role in many pathophysiological processes such as cancer. Certainly, it adapts cancer cells to thrive in the stress conditions such as hypoxia and starvation. Cancer cells indeed have also evolved by exploiting the autophagy process to fulfill energy requirements through the production of metabolic fuel sources and fundamentally altered metabolic pathways. Occasionally autophagy as a foe impedes tumorigenesis and promotes cell death. The complex role of autophagy in cancer makes it a potent therapeutic target and has been actively tested in clinical trials. Moreover, the versatility of autophagy has opened new avenues of effective combinatorial therapeutic strategies. Thereby, it is imperative to comprehend the specificity of autophagy in cancer-metabolism. This review summarizes the recent research and conceptual framework on the regulation of autophagy by various metabolic pathways, enzymes, and their cross-talk in the cancer milieu, including the implementation of altered metabolism and autophagy in clinically approved and experimental therapeutics.
Collapse
Affiliation(s)
- Anchala Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Pooja Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
12
|
Nguyen KTL, Chiou JY, Liu YC, Cheng FJ, Shen YC, Chen CJ, Tang CH, Huang WC, Chen CH, Tu CY. l-lactic acidosis confers insensitivity to PKC inhibitors by competing for uptake via monocarboxylate transporters. J Cell Physiol 2021; 237:934-948. [PMID: 34472101 DOI: 10.1002/jcp.30570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 11/06/2022]
Abstract
Targeting protein kinase C (PKC) family was found to repress the migration and resistance of non-small cell lung cancer cells to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, none of the PKC inhibitors has been approved for anticancer therapy yet due to the limited efficacy in clinical trials, and the underlying mechanisms remain unclear. l-lactic acidosis, a common condition comprising high l-lactate concentration and acidic pH in the tumor microenvironment, has been known to induce tumor metastasis and drug resistance. In this study, l-lactic acid was found to reverse the inhibitory effects of pan-PKC inhibitors GO6983 on PKC activity, cell migration, and EGFR-TKI resistance, but these effects were not affected by the modulators of lactate receptor GPR81. Interestingly, blockade of lactate transporters, monocarboxylate transporter-1 and -4 (MCT1 and MCT4), attenuated the intracellular level of GO6983, and its inhibitory effect on PKC activity, suggesting that lactic acid promotes the resistance to PKC inhibitors by competing for the uptake through these transporters rather than by activating its receptor, GPR81. Our findings explain the underlying mechanisms of the limited response of PKC inhibitors in clinical trials.
Collapse
Affiliation(s)
- Khuong T L Nguyen
- Center for Molecular Medicine, Research Center for Cancer Biology, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jhih-Yi Chiou
- Stella Matutina Girls' High School, Taichung, Taiwan
| | - You-Chi Liu
- Program in Quantitative Social Science, Dartmouth College, Hanover, New Hampshire, USA
| | - Fang-Ju Cheng
- Center for Molecular Medicine, Research Center for Cancer Biology, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Basic Medical Sciences, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan
| | - Yi-Cheng Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Department of Medical Research, Proteomics Core Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Sciences, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- Center for Molecular Medicine, Research Center for Cancer Biology, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan.,The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Hung Chen
- Drug Development Center, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yen Tu
- Drug Development Center, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Chen H, Lu C, Lin C, Li L, Wang Y, Han R, Hu C, He Y. VPS34 suppression reverses osimertinib resistance via simultaneously inhibiting glycolysis and autophagy. Carcinogenesis 2021; 42:880-890. [PMID: 33848354 DOI: 10.1093/carcin/bgab030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Autophagy and glycolysis are associated with osimertinib resistance. The energy complement and dynamic balance between these two processes make it difficult to block the process of drug resistance; breaking the complementary relationship between them may effectively overcome drug resistance. However, the exact mechanisms and the key players for regulating autophagy and glycolysis remain unclear. In this study, we demonstrate that autophagy and glycolysis levels in osimertinib-resistant cells were markedly higher than parental cells, and a dynamic balance existed between them. Inhibition of the class III phosphoinositide 3-kinase vacuolar protein sorting 34 (VPS34) with 3-methyladenine or small interfering RNA can not only inhibit abnormally enhanced autophagy but also inhibit glycolysis by inhibiting the location of epidermal growth factor receptor (EGFR) and the expression of hexokinase II. By demonstrating that VPS34 is the key player controlling autophagy and glycolysis simultaneously, our study may provide a new strategy for overcoming osimertinib resistance for treatment of EGFR-mutant non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Hengyi Chen
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Wei T, Song J, Liang K, Li L, Mo X, Huang Z, Chen G, Mao N, Yang J. Identification of a novel therapeutic candidate, NRK, in primary cancer-associated fibroblasts of lung adenocarcinoma microenvironment. J Cancer Res Clin Oncol 2021; 147:1049-1064. [PMID: 33387038 DOI: 10.1007/s00432-020-03489-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Lung adenocarcinoma (LUAD) accounts for approximately half of patients in lung cancer. Cancer-associated fibroblasts (CAFs) are the major component in the tumor microenvironment (TME). Targeting CAFs is a promising therapeutic strategy for cancer treatment. However, therapeutic targets of CAFs in LUAD remains largely unclear. METHODS Seven CAFs and nine normal fibroblasts (NFs) were isolated from tumor and paratumor tissues of LUAD patients undergoing surgery, respectively. RNA-seq and bioinformatics analysis were performed to identify the differentially expressed genes (DEGs) and their functions in CAFs compared with NFs. DEGs of ten overlaying were obtained from RNA-seq, our previously reported lncRNA microarray and public datasets (E-MTAB-6149, E-MTAB-6653) and validated by RT-qPCR. Nik-related kinase (NRK) was further validated by RT-qPCR, immunofluorescence (IF), Western Blot (WB) in vitro, and in Cancer Cell Line Encyclopedia (CCLE) database. Survival analysis was performed on Kaplan-Meier plotter. RESULTS A total of 1799 DEGs were identified, including 650 upregulated DEGs and 1149 downregulated DEGs. The upregulated and downregulated DEGs were mostly enriched in extracellular matrix (ECM) functions and in glycolysis/gluconeogenesis pathways. Interestingly, NRK was the most significantly upregulated overlaying DEGs which was rarely associated with CAFs before. NRK was predominantly expressed in CAFs, but weakly expressed in NFs, normal lung bronchial epithelial cell line BEAS-2B, LUAD cell lines A549 and H1299, as well as in the majority of 191 lung cancer cell lines including LUAD. Moreover, elevated NRK predicted poor survival in LUAD patients. CONCLUSION Here, we first report that NRK is significantly elevated in LUAD-associated CAFs and may function as a promising therapeutic target for cancer combination treatment. Besides, modulation of ECM and glycolysis/gluconeogenesis pathways may be an efficient approach to alter CAFs functionality in LUAD.
Collapse
Affiliation(s)
- Tongtong Wei
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Jinjing Song
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Kai Liang
- Department of Thoracic Tumor Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Li Li
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaoxiang Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Zhiguang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Naiquan Mao
- Department of Thoracic Tumor Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
15
|
Chu Y, Chang Y, Lu W, Sheng X, Wang S, Xu H, Ma J. Regulation of Autophagy by Glycolysis in Cancer. Cancer Manag Res 2020; 12:13259-13271. [PMID: 33380833 PMCID: PMC7767644 DOI: 10.2147/cmar.s279672] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a critical cellular process that generally protects cells and organisms from harsh environment, including limitations in adenosine triphosphate (ATP) availability or a lack of essential nutrients. Metabolic reprogramming, a hallmark of cancer, has recently gained interest in the area of cancer therapy. It is well known that cancer cells prefer to utilize glycolysis rather than oxidative phosphorylation (OXPHOS) as their major energy source to rapidly generate ATP even in aerobic environment called the Warburg effect. Both autophagy and glycolysis play essential roles in pathological processes of cancer. A mechanism of metabolic changes to drive tumor progression is its ability to regulate autophagy. This review will elucidate the role and the mechanism of glycolysis in regulating autophagy during tumor growth. Indeed, understanding how glycolysis can modulate cellular autophagy will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Xiumei Sheng
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| |
Collapse
|
16
|
Sharma N, Bhushan A, He J, Kaushal G, Bhardwaj V. Metabolic plasticity imparts erlotinib-resistance in pancreatic cancer by upregulating glucose-6-phosphate dehydrogenase. Cancer Metab 2020; 8:19. [PMID: 32974013 PMCID: PMC7507640 DOI: 10.1186/s40170-020-00226-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant forms of cancer. Lack of effective treatment options and drug resistance contributes to the low survival among PDAC patients. In this study, we investigated the metabolic alterations in pancreatic cancer cells that do not respond to the EGFR inhibitor erlotinib. We selected erlotinib-resistant pancreatic cancer cells from MiaPaCa2 and AsPC1 cell lines. Metabolic profiling of erlotinib-resistant cells revealed a significant downregulation of glycolytic activity and reduced level of glycolytic metabolites compared to the sensitive cells. The resistant cells displayed elevated expression of the pentose phosphate pathway (PPP) enzymes involved in ROS regulation and nucleotide biosynthesis. The enhanced PPP elevated cellular NADPH/NADP+ ratio and protected the cells from reactive oxygen species (ROS)-induced damage. Inhibition of PPP using 6-aminonicotinamide (6AN) elevated ROS levels, induced G1 cell cycle arrest, and sensitized resistant cells to erlotinib. Genetic studies identified elevated PPP enzyme glucose-6-phosphate dehydrogenase (G6PD) as an important contributor to erlotinib resistance. Mechanistically, our data showed that upregulation of inhibitor of differentiation (ID1) regulates G6PD expression in resistant cells thus contributing to altered metabolic phenotype and reduced response to erlotinib. Together, our results highlight an underlying role of tumor metabolism in PDAC drug response and identify G6PD as a target to overcome drug resistance.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| | - Alok Bhushan
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| | - Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Gagan Kaushal
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| |
Collapse
|
17
|
Hu Y, Zhang J, Liu Q, Ke M, Li J, Suo W, Guo W, Ma A. Torin2 inhibits the EGFR-TKI resistant Non-Small Lung Cancer cell proliferation through negative feedback regulation of Akt/mTOR signaling. J Cancer 2020; 11:5746-5757. [PMID: 32913468 PMCID: PMC7477446 DOI: 10.7150/jca.37417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/17/2020] [Indexed: 01/06/2023] Open
Abstract
It is known that mammalian target of rapamycin (mTOR) signaling plays an important role in NSCLC cells proliferation. Torin2 is a second-generation ATP-competitive inhibitor which is selective for mTOR activity. In this study, we investigated whether torin2 was effective against lung cancer cells, especially EGFR-TKIs resistant NSCLC cells. We found that torin2 dramatically inhibited EGFR-TKI resistant cells viability in vitro. In xenograft model, torin2 treatment significantly reduced the volume and weight of xenograft tumor in the erlotinib resistant PC9/E cells. Additionally, autophagy protein of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3II/I (LC3II/I) increased in PC9/E after torin2 treatment. Torin2 blocked the level of phosphorylated S6 and the phosphorylation of Akt at both T308 and S473 sites compared with erlotinib treatment. Furthermore, TUNEL assay showed that apoptosis of tumor tissue increased significantly in the torin2 treatment group. Immunohistochemical analysis demonstrated that tumor angiogenesis was obviously inhibited by torin2 treatment in EGFR-TKI resistant group. Collectively, our results suggested that torin2 could inhibit the NSCLC cells proliferation by negative feedback regulation of Akt/mTOR signaling and inducing autophagy. This suggests that torin2 could be a novel therapeutic approach for EGFR-TKI resistant NSCLC.
Collapse
Affiliation(s)
- Yi Hu
- Department of Clinical Laboratory, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ji Zhang
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Qun Liu
- Department of Respiratory and Critical Medicine, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Mingyao Ke
- Department of Respiratory and Critical Medicine, The secondary hospital of Xiamen Medicine school, Xiamen, China
| | - Jiurong Li
- Department of Respiratory and Critical Medicine, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wenhao Suo
- Department of Pathology, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Weixi Guo
- Department of Thoracic Surgery, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Aiping Ma
- Department of Respiratory and Critical Medicine, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Mossenta M, Busato D, Dal Bo M, Toffoli G. Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies. Cancers (Basel) 2020; 12:E1668. [PMID: 32585931 PMCID: PMC7352479 DOI: 10.3390/cancers12061668] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) metabolism is redirected to glycolysis to enhance the production of metabolic compounds employed by cancer cells to produce proteins, lipids, and nucleotides in order to maintain a high proliferative rate. This mechanism drives towards uncontrolled growth and causes a further increase in reactive oxygen species (ROS), which could lead to cell death. HCC overcomes the problem generated by ROS increase by increasing the antioxidant machinery, in which key mechanisms involve glutathione, nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible transcription factor (HIF-1α). These mechanisms could represent optimal targets for innovative therapies. The tumor microenvironment (TME) exerts a key role in HCC pathogenesis and progression. Various metabolic machineries modulate the activity of immune cells in the TME. The deregulated metabolic activity of tumor cells could impair antitumor response. Lactic acid-lactate, derived from the anaerobic glycolytic rate of tumor cells, as well as adenosine, derived from the catabolism of ATP, have an immunosuppressive activity. Metabolic reprogramming of the TME via targeted therapies could enhance the treatment efficacy of anti-cancer immunotherapy. This review describes the metabolic pathways mainly involved in the HCC pathogenesis and progression. The potential targets for HCC treatment involved in these pathways are also discussed.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
| |
Collapse
|
19
|
Heterogeneity of Metabolic Vulnerability in Imatinib -Resistant Gastrointestinal Stromal Tumor. Cells 2020; 9:cells9061333. [PMID: 32466502 PMCID: PMC7348861 DOI: 10.3390/cells9061333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer cells in response to targeted therapy. Decreased glycolytic activity with enhanced mitochondrial respiration secondary to imatinib has been shown in imatinib-sensitive gastrointestional stromal tumors (GIST). However, the role of energy metabolism in imatinib-resistant GIST remains poorly characterized. Here, we investigated the effect of imatinib treatment on glycolysis and oxidative phosphorylation (OXPHOS), as well as the effect of inhibition of these energy metabolisms on cell viability in imatinib-resistant and -sensitive GIST cell lines. We observed that imatinib treatment increased OXPHOS in imatinib-sensitive, but not imatinib-resistant, GIST cells. Imatinib also reduced the expression of mitochondrial biogenesis activators (peroxisome proliferator-activated receptor coactivator-1 alpha (PGC1α), nuclear respiratory factor 2 (NRF2), and mitochondrial transcription factor A (TFAM)) and mitochondrial mass in imatinib-sensitive GIST cells. Lower TFAM levels were also observed in imatinib-sensitive GISTs than in tumors from untreated patients. Using the Seahorse system, we observed bioenergetics diversity among the GIST cell lines. One of the acquired resistant cell lines (GIST 882R) displayed a highly metabolically active phenotype with higher glycolysis and OXPHOS levels compared with the parental GIST 882, while the other resistant cell line (GIST T1R) had a similar basal glycolytic activity but lower mitochondrial respiration than the parental GIST T1. Further functional assays demonstrated that GIST 882R was more vulnerable to glycolysis inhibition than GIST 882, while GIST T1R was more resistant to OXPHOS inhibition than GIST T1. These findings highlight the diverse energy metabolic adaptations in GIST cells that allow them to survive upon imatinib treatment and reveal the potential of targeting the metabolism for GIST therapy.
Collapse
|
20
|
Dong Y, Gong W, Hua Z, Chen B, Zhao G, Liu Z, Thiele CJ, Li Z. Combination of Rapamycin and MK-2206 Induced Cell Death via Autophagy and Necroptosis in MYCN-Amplified Neuroblastoma Cell Lines. Front Pharmacol 2020; 11:31. [PMID: 32116708 PMCID: PMC7033642 DOI: 10.3389/fphar.2020.00031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma (NB) is the most common pediatric malignant extracranial solid tumor. Despite multi-modality therapies, the emergence of drug resistance is an obstacle in the treatment of high-risk NB patients (with MYCN amplification). In our previous study, we found that rapamycin and MK-2206 synergistically induced cell death in MYCN-amplified cell lines but the mechanisms remained unclear. In our present study, either 3-MA or necroatatin-1 blocked the cell death induced by rapamycin and MK-2206, but z-VAD-fmk did not block this cell death. The expressions of autophagy markers (ATG5, ATG7, Beclin-1, LC3 B) and the necroptosis marker RIPK3 increased and another necroptosis marker RIPK1 decreased after the combination treatment of rapamycin and MK-2206, and were accompanied by the morphological characteristics of autophagy and necroptosis. In NB xenograft tumor tissues, the expressions of autophagy and necroptosis markers were consistent with observations in vitro. These data suggested that autophagy and necroptosis contributed to the cell death induced by rapamycin and MK-2206 in NB cells. To understand the role of MYCN in this process, MYCN expression was downregulated in MYCN-amplified cell lines (NGP, BE2) using siRNAs and was upregulated in MYCN non-amplified cell lines (AS, SY5Y) using plasmid. We found the cell death induced by rapamycin and MK-2206 was MYCN-dependent. We also found that the metabolic activity in NB cells was correlated with the expression level of MYCN. This study delineates the role of MYCN in the cell death induced by combination treatment of rapamycin and MK-2206 in MYCN-amplified NB cells.
Collapse
Affiliation(s)
- Yudi Dong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guifeng Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihui Liu
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Carol J. Thiele
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
TRIM32 Promotes the Growth of Gastric Cancer Cells through Enhancing AKT Activity and Glucose Transportation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4027627. [PMID: 32051827 PMCID: PMC6995489 DOI: 10.1155/2020/4027627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Tripartite motif protein 32 (TRIM32), an E3 ubiquitin ligase, is a member of the TRIM protein family. However, the underlying function of TRIM32 in gastric cancer (GC) remains unclear. Here, we aimed to explore the function of TRIM32 in GC cells. TRIM32 was induced silencing and overexpression using RNA interference (RNAi) and lentiviral-mediate vector in GC cells, respectively. Moreover, the PI3K/AKT inhibitor LY294002 was used to examine the relationship between TRIM32 and AKT. Quantitative reverse-transcription PCR (qRT-PCR) and western blot were used to determine the mRNA and protein contents. The glucose analog 2-NBDG was used as a fluorescent probe for determining the activity of glucose transport. An annexin V-fluorescein isothiocyanate apoptosis detection kit was used to stain NCI-N87, MKN74, and MKN45 cells. Cell counting kit-8 (CCK-8) assay was used to examine cell proliferation. Our results indicated that TRIM32 was associated with poor overall survival of patients with GC. Moreover, TRIM32 was a proproliferation and antiapoptosis factor and involved in the AKT pathway in GC cells. Furthermore, TRIM32 possibly mediated the metabolism of glycolysis through targeting GLUT1 and HKII in GC cells. Importantly, TRIM32 silencing deeply suppressed the tumorigenicity of GC cells in vivo. Our findings not only enhanced the understanding of the function of TRIM32 but also indicated its potential value as a target in GC treatment.
Collapse
|
22
|
Chang L, Fang S, Gu W. The Molecular Mechanism of Metabolic Remodeling in Lung Cancer. J Cancer 2020; 11:1403-1411. [PMID: 32047547 PMCID: PMC6995370 DOI: 10.7150/jca.31406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic remodeling is a key phenomenon in the occurrence and development of tumors. It not only offers materials and energy for the survival and proliferation of tumor cells, but also protects tumor cells so that they may survive, proliferate and transfer in the harsh microenvironment. This paper attempts to reveal the role of abnormal metabolism in the development of lung cancer by considering the processes of glycolysis and lipid metabolism, Identification of the molecules that are specifically used in the processes of glycolysis and lipid metabolism, and their underlying molecular mechanisms, is of great clinical and theoretical significance. We will focus on the recent progress in elucidating the molecular mechanism of metabolic remodeling in lung cancer.
Collapse
Affiliation(s)
| | | | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University. No. 68 Changle Road, Qinhuai District, Nanjing 210001,People's Republic of China
| |
Collapse
|
23
|
Korshunov DA, Kondakova IV, Shashova EE. Modern Perspective on Metabolic Reprogramming in Malignant Neoplasms. BIOCHEMISTRY (MOSCOW) 2019; 84:1129-1142. [PMID: 31694509 DOI: 10.1134/s000629791910002x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic reprogramming is one of the central features of transformed cells. Elucidation of interactions between oncogenic signaling and cell metabolic processes has become the basis for extensive studies of metabolism reprogramming in tumor tissue. The review summarizes the key results of studies on the catabolic and anabolic rearrangements in tumor cells with special emphasis on carbohydrate, lipid, amino acid, and acetate metabolism determining the cancer phenotype of cells.
Collapse
Affiliation(s)
- D A Korshunov
- Tomsk National Research Medical Center, Tomsk, 634009, Russia.
| | - I V Kondakova
- Tomsk National Research Medical Center, Tomsk, 634009, Russia
| | - E E Shashova
- Tomsk National Research Medical Center, Tomsk, 634009, Russia
| |
Collapse
|
24
|
Chen H, Lin C, Lu C, Wang Y, Han R, Li L, Hao S, He Y. Metformin‐sensitized NSCLC cells to osimertinib via AMPK‐dependent autophagy inhibition. CLINICAL RESPIRATORY JOURNAL 2019; 13:781-790. [PMID: 31562701 DOI: 10.1111/crj.13091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/22/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hengyi Chen
- Department of Respiratory Disease Daping Hospital Army Medical University Chongqing China
| | - Caiyu Lin
- Department of Respiratory Disease Daping Hospital Army Medical University Chongqing China
| | - Conghua Lu
- Department of Respiratory Disease Daping Hospital Army Medical University Chongqing China
| | - Yubo Wang
- Department of Respiratory Disease Daping Hospital Army Medical University Chongqing China
| | - Rui Han
- Department of Respiratory Disease Daping Hospital Army Medical University Chongqing China
| | - Li Li
- Department of Respiratory Disease Daping Hospital Army Medical University Chongqing China
| | - Shuai Hao
- Department of Respiratory Disease Daping Hospital Army Medical University Chongqing China
| | - Yong He
- Department of Respiratory Disease Daping Hospital Army Medical University Chongqing China
| |
Collapse
|
25
|
Kwon Y, Kim M, Jung HS, Kim Y, Jeoung D. Targeting Autophagy for Overcoming Resistance to Anti-EGFR Treatments. Cancers (Basel) 2019; 11:cancers11091374. [PMID: 31527477 PMCID: PMC6769649 DOI: 10.3390/cancers11091374] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) plays critical roles in cell proliferation, tumorigenesis, and anti-cancer drug resistance. Overexpression and somatic mutations of EGFR result in enhanced cancer cell survival. Therefore, EGFR can be a target for the development of anti-cancer therapy. Patients with cancers, including non-small cell lung cancers (NSCLC), have been shown to response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) and anti-EGFR antibodies. However, resistance to these anti-EGFR treatments has developed. Autophagy has emerged as a potential mechanism involved in the acquired resistance to anti-EGFR treatments. Anti-EGFR treatments can induce autophagy and result in resistance to anti-EGFR treatments. Autophagy is a programmed catabolic process stimulated by various stimuli. It promotes cellular survival under these stress conditions. Under normal conditions, EGFR-activated phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling inhibits autophagy while EGFR/rat sarcoma viral oncogene homolog (RAS)/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) signaling promotes autophagy. Thus, targeting autophagy may overcome resistance to anti-EGFR treatments. Inhibitors targeting autophagy and EGFR signaling have been under development. In this review, we discuss crosstalk between EGFR signaling and autophagy. We also assess whether autophagy inhibition, along with anti-EGFR treatments, might represent a promising approach to overcome resistance to anti-EGFR treatments in various cancers. In addition, we discuss new developments concerning anti-autophagy therapeutics for overcoming resistance to anti-EGFR treatments in various cancers.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Misun Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon 24251, Korea.
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| |
Collapse
|
26
|
Sun Z, Yan B. Multiple roles and regulatory mechanisms of the transcription factor GATA6 in human cancers. Clin Genet 2019; 97:64-72. [PMID: 31437305 DOI: 10.1111/cge.13630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Cancer is a common type of non-communicable disease, and its morbidity and mortality are rapidly increasing. It is expected to become the largest obstacle to the promotion of global human health in the future. Some transcription factors that play important regulatory roles in embryogenesis and subsequent tissue maintenance can be selectively amplified during tumorigenesis. Due to its high expression in the embryonic endoderm and mesoderm, GATA6 plays a crucial role in the normal development of early human heart, lung, digestive system, adrenal glands, breasts, ovaries, retina, skin, and nervous system. Up to now, overexpression of the GATA6 gene has been shown to play an important role in several cancers, including lung cancer, digestive system tumors, breast cancer, and ovarian cancer. However, the human body is a complex organism, which causes the transcription factor GATA6 to have multiple roles in cancer. In this review, we summarize the multiple roles of transcription factor GATA6 in various cancers and its regulatory mechanisms. The aim is to better understand the relationship between GATA6 gene expression and cancer development and to provide new insights for exploring potential therapeutic targets.
Collapse
Affiliation(s)
- Zhaoqing Sun
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
27
|
Wang HL, Liu YC, Long MP, Zheng C, Yang JH. Blocking ROR1 enhances the roles of erlotinib in lung adenocarcinoma cell lines. Oncol Lett 2019; 18:2977-2984. [PMID: 31452776 PMCID: PMC6704288 DOI: 10.3892/ol.2019.10643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Treatment strategies involving tyrosine kinase inhibitors (TKIs) for patients with non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations have advanced significantly; however, challenges still remain regarding the development of resistance. It has been reported that receptor tyrosine kinase-like orphan receptor 1 (ROR1) acts as a hepatocyte growth factor receptor (MET) and c-Src substrate, and that the extracellular domain of ROR1 is associated with EGFR to sustain EGFR-ERBB3-PI3K signaling. Our previous study reported that blocking ROR1 significantly decreased the activity of key signal molecules in the AKT/mammalian target of rapamycin (mTOR) signaling pathway, which was associated with a significant increase of apoptosis and significant decrease of proliferation of lung adenocarcinoma cells. The present study hypothesized that inhibiting ROR1 could potentially prevent erlotinib resistance in NSCLC cell lines. Investigations were performed with two erlotinib-resistant cell lines XLA-07 and NCI-H1975, and an erlotinib-acquired-resistant cell line PC-9erlo, which was developed from its parental cell line PC-9. It was identified that the inhibition of ROR1 via small interfering RNA treatment significantly improved the anti-proliferation and apoptosis-inducing roles of erlotinib in TKI-resistant tumor cells. This was in accordance with the activity of key molecules of the AKT/mTOR signaling pathway, including glycogen synthase kinase-3α/β (GSK-3α/β), phosphatase and tensin homolog (PTEN), AKT, mTOR and ribosomal protein S6 kinase β-1 (p70S6K). The current data suggest that targeting ROR1 is a potential novel treatment strategy for patients with ROR1-positive NSCLC, particularly those with acquired resistance to EGFR-TKI.
Collapse
Affiliation(s)
- Hui-Li Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - Ming-Peng Long
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Chuan Zheng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Jia-Hui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
28
|
Wang M, Li S, Zhang P, Wang Y, Wang C, Bai D, Jiang X. EMP2 acts as a suppressor of melanoma and is negatively regulated by mTOR-mediated autophagy. J Cancer 2019; 10:3582-3592. [PMID: 31333775 PMCID: PMC6636303 DOI: 10.7150/jca.30342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is one of the most common malignant skin tumors and advanced melanoma is usually associated with a poor prognosis. In the current study, we demonstrated the tumor suppressing role of epithelial membrane protein-2 (EMP2) by inducing apoptosis in a A375 human melanoma cell line. Mechanistically, the low expression of EMP2 in melanoma is partially due to autophagic protein degradation mediated by the mTOR pathway. These results suggest there is regulation of autophagy as well as EMP2 levels might be an interesting novel targeted therapeutic strategy for melanoma. Although the further investigation is needed to deeply understand the regulatory mechanisms of EMP2 in melanoma progression and metastasis, our results clarify the functions and mechanisms of autophagy in melanoma, and shed new light on novel targeted therapeutics for melanoma.
Collapse
Affiliation(s)
- Manyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Sijia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Peng Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, PR China
| | - Yujia Wang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Chunting Wang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xian Jiang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
29
|
Ma R, Li X, Liu H, Jiang R, Yang M, Zhang M, Wang Y, Zhao Y, Li H. GATA6-upregulating autophagy promotes TKI resistance in nonsmall cell lung cancer. Cancer Biol Ther 2019; 20:1206-1212. [PMID: 31092103 DOI: 10.1080/15384047.2019.1599665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy plays a complicated role in tumorigenesis, and the effects of autophagy in drug resistance have not been fully known. The aim of this study was to evaluate autophagy activity in lung cancer cells derived from different origins and explore the mechanism regulating autophagy in tyrosine kinase inhibitor (TKI) resistance. We found basal level of autophagy had no significant increase in resistant H1650 and H1975 cells compared with sensitive HCC827 and PC9 cells. After erlotinib treatment, the autophagy activity enhanced threefold in H1650 cells but a little in H1975 cells. Inhibiting autophagy with 3-MA increased apoptosis in H1650 rather than H1975 cells. Combined with transmission microscope, results showed PC9 cells tended to be apoptotic and more autophagosomes formed in H1650 cells, which may be correlated with cell viability. GATA6 expression was found markedly elevated in H1650 cells after erlotinib and knocking down GATA6 led to significantly reduced autophagy activity and cell viability. Furthermore, a significant increase of GATA6 and LC3-II expression was observed in insensitive tissues compared with sensitive ones by immunostaining in nonsmall cell lung cancer (NSCLC) patients. With chi-square test, we found GATA6 was positively correlated with LC3-II. The Kaplan-Meier curve analyses further showed patients with high GATA6 had lower overall survival and progression-free survival rates than those with low GATA6 after EGFR-TKI treatment. Our results suggest that GATA6 could enhance autophagy activity contributing to TKI resistance. Targeting GATA6 and autophagy together with TKI may be promising to overcome drug resistance in NSCLC.
Collapse
Affiliation(s)
- Ruishuang Ma
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Xin Li
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Huan Liu
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University , Jining , Shandong , China
| | - Rui Jiang
- Department of General Medical, The Second Affiliated Hospital of Harbin medical University , Harbin , Heilongjiang Province , China
| | - Maopeng Yang
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Minghui Zhang
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Yan Wang
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Yanbin Zhao
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Hulun Li
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University , Heilongjiang Province , Harbin , China
| |
Collapse
|
30
|
Korga A, Ostrowska M, Jozefczyk A, Iwan M, Wojcik R, Zgorka G, Herbet M, Vilarrubla GG, Dudka J. Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells. BMC Pharmacol Toxicol 2019; 20:22. [PMID: 31053173 PMCID: PMC6499973 DOI: 10.1186/s40360-019-0301-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/11/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies, with an increasing incidence. Despite the fact that systematic chemotherapy with a doxorubicin provides only marginal improvements in survival of the HCC patients, the doxorubicin is being used in transarterial therapies or combined with the target drug - sorafenib. The aim of the study was to evaluate the effect of natural flavonoids on the cytotoxicity of the doxorubicin against human hepatocellular carcinoma cell line HepG2. METHODS The effect of apigenin and its glycosides - cosmosiin, rhoifolin; baicalein and its glycosides - baicalin as well as hesperetin and its glycosides - hesperidin on glycolytic genes expression of HepG2 cell line, morphology and cells' viability at the presence of doxorubicin have been tested. In an attempt to elucidate the mechanism of observed results, the fluorogenic probe for reactive oxygen species (ROS), the DNA oxidative damage, the lipid peroxidation and the double strand breaks were evaluated. To assess impact on the glycolysis pathway, the mRNA expression for a hexokinase 2 (HK2) and a lactate dehydrogenase A (LDHA) enzymes were measured. The results were analysed statistically with the one-way analysis of variance (ANOVA) and post hoc multiple comparisons. RESULTS The apigenin and the hesperidin revealed the strongest effect on the toxicity of doxorubicin. Both flavonoids simultaneously changed the expression of the glycolytic pathway genes - HK2 and LDHA, which play a key role in the Warburg effect. Although separate treatment with doxorubicin, apigenin and hesperidin led to a significant oxidative DNA damage and double strand breaks, simultaneous administration of doxorubicin and apigenin or hesperidin abolished these damage with the simultaneous increase in the doxorubicin toxicity. CONCLUSION The obtained results indicate the existence of a very effective cytotoxic mechanism in the HepG2 cells of the combined effect of doxorubicin and apigenin (or hesperidin), not related to the oxidative stress. To explain this synergy mechanism, further research is needed, The observed intensification of the cytotoxic effect of doxorubicin by this flavonoids may be a promising direction of the research on the therapy of hepatocellular carcinoma, especially in a chemoembolization.
Collapse
Affiliation(s)
- Agnieszka Korga
- Independent Medical Biology Unit, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Marta Ostrowska
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Aleksandra Jozefczyk
- Department of Pharmacognosy with Medicinal Plant Laboratory, Medical University of Lublin, 1 Chodzko Street, 20-093 Lublin, Poland
| | - Magdalena Iwan
- Independent Medical Biology Unit, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Rafal Wojcik
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewski Street, 20-090 Lublin, Poland
| | - Grazyna Zgorka
- Department of Pharmacognosy with Medicinal Plant Laboratory, Medical University of Lublin, 1 Chodzko Street, 20-093 Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Gemma Gomez Vilarrubla
- Independent Medical Biology Unit, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Jaroslaw Dudka
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| |
Collapse
|
31
|
Jing C, Ma R, Cao H, Wang Z, Liu S, Chen D, Wu Y, Zhang J, Wu J. Long noncoding RNA and mRNA profiling in cetuximab-resistant colorectal cancer cells by RNA sequencing analysis. Cancer Med 2019; 8:1641-1651. [PMID: 30848094 PMCID: PMC6488152 DOI: 10.1002/cam4.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/01/2023] Open
Abstract
To gain an insight into the molecular mechanisms of cetuximab resistance in colorectal cancer, we generated a cetuximab-resistant cell line (H508/CR) and performed RNA sequencing to identify the differential expression patterns of noncoding RNAs (ncRNAs) and mRNAs between cetuximab-sensitive and resistant cells. A total of 278 ncRNA transcripts and 1,059 mRNA transcripts were dysregulated in the cetuximab-resistant cells. The expression levels of nine selected long noncoding RNAs (lncRNAs) were validated using quantitative real-time PCR. Functional analysis revealed that several groups of lncRNAs might be involved in pathways associated with cetuximab resistance. Increased glucose consumption and lactate secretion in cetuximab-resistant cells suggested that glucose metabolism might be involved in cetuximab resistance. In addition, lncRNA LINC00973 was upregulated in the H508/CR cell line and cells transfected with a LINC00973 short interfering RNA exhibited reduced cell viability, increased apoptosis, and decreased glucose consumption and lactate secretion. Our results provide essential data regarding differentially expressed lncRNAs and mRNAs in cetuximab-resistant cells, which may provide new potential candidates for cetuximab therapy.
Collapse
Affiliation(s)
- Changwen Jing
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rong Ma
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haixia Cao
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhuo Wang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Siwen Liu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dan Chen
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yang Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junying Zhang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jianzhong Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
32
|
Wang XJ, Zhou RJ, Zhang N, Jing Z. 20(S)-ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to icotinib through inhibition of autophagy. Eur J Pharmacol 2019; 850:141-149. [PMID: 30772396 DOI: 10.1016/j.ejphar.2019.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/04/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have become a standard therapy for non-small cell lung cancer (NSCLC) patients with sensitive mutations. However, acquired resistance inevitably emerges after a median of 6-12 months. It has been demonstrated that autophagy plays an important role in EGFR-TKI resistance. 20(S)-ginsenoside Rg3 (Rg3) is proposed to sensitize the cancer cells to chemotherapy by inhibiting autophagy. We examined the ability of Rg3 to inhibit autophagy and increase the sensitivity of NSCLC cells to icotinib. We show that the induction of autophagy in response to icotinib contributes to the development of icotinib resistance. Rg3 is capable of inhibiting autophagic flux and enhancing the sensitivity of NSCLC cells to icotinib. The resistance to icotinib could also be reversed through Rg3-induced autophagy inhibition. Autophagy inhibition by Rg3 increases the therapeutic response in both icotinib-sensitive and icotinib-resistant NSCLC cells with an EGFR-activating mutation and may be an effective new treatment strategy for this disease.
Collapse
Affiliation(s)
- Xiao-Ju Wang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 34 Yanguan Lane, Hangzhou 310002, Zhejiang, PR China
| | - Rong-Jin Zhou
- Department of Pathology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, PR China
| | - Ni Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 34 Yanguan Lane, Hangzhou 310002, Zhejiang, PR China
| | - Zhao Jing
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 34 Yanguan Lane, Hangzhou 310002, Zhejiang, PR China.
| |
Collapse
|
33
|
Ye M, Pang N, Wan T, Huang Y, Wei T, Jiang X, Zhou Y, Huang Y, Yang H, Zhang Z, Yang L. Oxidized Vitamin C (DHA) Overcomes Resistance to EGFR-targeted Therapy of Lung Cancer through Disturbing Energy Homeostasis. J Cancer 2019; 10:757-764. [PMID: 30719175 PMCID: PMC6360421 DOI: 10.7150/jca.28087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023] Open
Abstract
Switching aerobic respiration to anaerobic glycolysis of cancer cells plays an important role in development and progression of acquired resistance. Since vitamin C enabled the inhibition of glycolysis of cancer cells, and erlotinib-resistant sub-line of HCC827 (ER6 cells) switched its metabolic features to higher glycolysis for survival, we hypothesize that vitamin C is able to inhibit glycolysis of ER6 cells. In this study, we found that both reduced vitamin C and oxidized vitamin C (DHA) could selectively suppress the viability of ER6 cells. DHA was efficient in inhibiting glycolysis and leading to energy crisis, which could be one mechanism for overcoming drug resistance to erlotinib of ER6 cells. Our data suggest that applying DHA could be a novel treatment strategy for NSCLC with acquired resistance to targeted therapy.
Collapse
Affiliation(s)
- Mingtong Ye
- The First Women and Children's Hospital of Huizhou, Huizhou, Guangdong, PR China
| | - Nengzhi Pang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Ting Wan
- Huizhou First People's Hospital, Huizhou, Guangdong, PR China
| | - Yuanling Huang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Tianyi Wei
- The First Women and Children's Hospital of Huizhou, Huizhou, Guangdong, PR China
| | - Xuye Jiang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Yujia Zhou
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Yufeng Huang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Hainan Yang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Lili Yang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| |
Collapse
|
34
|
Xu W, Shi Q, Qian X, Zhou B, Xu J, Zhu L, Feng L, Jin H, Wang X. Rab5a suppresses autophagy to promote drug resistance in cancer cells. Am J Transl Res 2018; 10:1229-1236. [PMID: 29736216 PMCID: PMC5934582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Cancers are huge problems that need to be investigated thoroughly. Rab5a plays an important part in the regulation of intracellular membrane trafficking. However, its role in cancer and autophagy has not been fully determined. In this study, we analyzed the correlation between Rab5a expression and patients' prognosis and then explored the effect of Rab5a knockdown on different cell lines using western blotting and fluorescence. Our results showed that up-regulated Rab5a positively correlated with the prognosis of gastric cancer patients. After knocking down Rab5a, mTOR activity was inhibited and autophagy flux increased. We also found that in our cisplatin-resistant cells, knockdown of Rab5a activated autophagy via mTOR pathway and could reverse drug resistance while overexpression of Rab5a in drug sensitive cells increased drug tolerance. In conclusion, our study demonstrates that Rab5a can suppress autophagy through mTOR and promote drug resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Wenxia Xu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Qiqi Shi
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Xiaoling Qian
- Department of Chinese Medicine, Zhejiang HospitalZhejiang, China
| | - Bingluo Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Jinye Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| |
Collapse
|
35
|
Fumarola C, Petronini PG, Alfieri R. Impairing energy metabolism in solid tumors through agents targeting oncogenic signaling pathways. Biochem Pharmacol 2018. [PMID: 29530507 DOI: 10.1016/j.bcp.2018.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell metabolic reprogramming is one of the main hallmarks of cancer and many oncogenic pathways that drive the cancer-promoting signals also drive the altered metabolism. This review focuses on recent data on the use of oncogene-targeting agents as potential modulators of deregulated metabolism in different solid cancers. Many drugs, originally designed to inhibit a specific target, then have turned out to have different effects involving also cell metabolism, which may contribute to the mechanisms underlying the growth inhibitory activity of these drugs. Metabolic reprogramming may also represent a way by which cancer cells escape from the selective pressure of targeted drugs and become resistant. Here we discuss how targeting metabolism could emerge as a new effective strategy to overcome such resistance. Finally, accumulating evidence indicates that cancer metabolic rewiring may have profound effects on tumor-infiltrating immune cells. Modulating cancer metabolic pathways through oncogene-targeting agents may not only restore more favorable conditions for proper lymphocytes activation, but also increase the persistence of memory T cells, thereby improving the efficacy of immune-surveillance.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|