1
|
Meng Q, Wei K, Shan Y. E3 ubiquitin ligase gene BIRC3 modulates TNF-induced cell death pathways and promotes aberrant proliferation in rheumatoid arthritis fibroblast-like synoviocytes. Front Immunol 2024; 15:1433898. [PMID: 39301019 PMCID: PMC11410595 DOI: 10.3389/fimmu.2024.1433898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovitis, degradation of articular cartilage, and bone destruction. Fibroblast-like synoviocytes (FLS) play a central role in RA, producing a significant amount of inflammatory mediators such as tumor necrosis factor(TNF)-α and IL-6, which promote inflammatory responses within the joints. Moreover, FLS exhibit tumor-like behavior, including aggressive proliferation and enhanced anti-apoptotic capabilities, which collectively drive chronic inflammation and joint damage in RA. TNF is a major pro-inflammatory cytokine that mediates a series of signaling pathways through its receptor TNFR1, including NF-κB and MAPK pathways, which are crucial for inflammation and cell survival in RA. The abnormal proliferation and anti-apoptotic characteristics of FLS in RA may result from dysregulation in TNF-mediated cell death pathways such as apoptosis and necroptosis. Ubiquitination is a critical post-translational modification regulating these signaling pathways. E3 ubiquitin ligases, such as cIAP1/2, promote the ubiquitination and degradation of target proteins within the TNF receptor complex, modulating the signaling proteins. The high expression of the BIRC3 gene and its encoded protein, cIAP2, in RA regulates various cellular processes, including apoptosis, inflammatory signaling, immune response, MAPK signaling, and cell proliferation, thereby promoting FLS survival and inflammatory responses. Inhibiting BIRC3 expression can reduce the secretion of inflammatory cytokines by RA-FLS under both basal and inflammatory conditions and inhibit their proliferation. Although BIRC3 inhibitors show potential in RA treatment, their possible side effects must be carefully considered. Further research into the specific mechanisms of BIRC3, including its roles in cell signaling, apoptosis regulation, and immune evasion, is crucial for identifying new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine (TCM), Zhengzhou, Henan, China
| | - Kai Wei
- Department of Rheumatology and Immunology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Yu J, Liu T, Liu M, Jin H, Wei Z. RBCK1 overexpression is associated with immune cell infiltration and poor prognosis in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:538-549. [PMID: 38214606 PMCID: PMC10817371 DOI: 10.18632/aging.205393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/24/2023] [Indexed: 01/13/2024]
Abstract
RBCK1 is an important E3 ubiquitin ligase, which plays an important role in many major diseases. However, the function and mechanism of RBCK1 in pan-cancer and its association with immune cell infiltration have not been reported. The purpose of this study is to find out the expression of RBCK1 in cancer, and to explore the relationship between RBCK1 and the prognosis of patients. Our results show that the expression of RBCK1 is up-regulated in a variety of malignant tumors, and is closely related to the prognosis of patients. Further studies have shown that RBCK1 regulates protein expression in the nucleus and plays an important role in ribosome and valine, leucine, and isoleucine degradation. Genetic variation analysis showed that RBCK1 was mainly involved in missense mutations in multiple tumors, and mutated patients showed poor prognoses. Further studies showed that RBCK1 may be interacted with proteins such as RNRPB, MCRS1, TRIB3, MKKS and ARPC3. Through protein interaction analysis, we found 43 proteins interacting with RBCK1 in liver cancer. We also analyzed immune cell infiltration and found that RBCK1 expression was positively correlated with T cells and macrophages, while it was negatively correlated with neutrophils, NK cells, and DCs in liver cancer. Finally, we confirmed experimentally that RBCK1 can significantly inhibit the apoptosis and invasion of HCC. Therefore, we speculate that RBCK1 plays an important regulatory role in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Jingjing Yu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingjiang Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Hepatopancreatobiliary Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, China
| | - Hu Jin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Critical Care Medicine, Liuzhou People’s Hospital, Liuzhou, China
| | - Zaiwa Wei
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guangxi, China
| |
Collapse
|
3
|
Braga EA, Fridman MV, Burdennyy AM, Filippova EA, Loginov VI, Pronina IV, Dmitriev AA, Kushlinskii NE. Regulation of the Key Epithelial Cancer Suppressor miR-124 Function by Competing Endogenous RNAs. Int J Mol Sci 2022; 23:13620. [PMID: 36362406 PMCID: PMC9655303 DOI: 10.3390/ijms232113620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/01/2023] Open
Abstract
A decrease in the miR-124 expression was observed in various epithelial cancers. Like a classical suppressor, miR-124 can inhibit the translation of multiple oncogenic proteins. Epigenetic mechanisms play a significant role in the regulation of miR-124 expression and involve hypermethylation of the MIR-124-1/-2/-3 genes and the effects of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) according to the model of competing endogenous RNAs (ceRNAs). More than 40 interactomes (lncRNA/miR-124/mRNA) based on competition between lncRNAs and mRNAs for miR-124 binding have been identified in various epithelial cancers. LncRNAs MALAT1, NEAT1, HOXA11-AS, and XIST are the most represented in these axes. Fourteen axes (e.g., SND1-IT1/miR-124/COL4A1) are involved in EMT and/or metastasis. Moreover, eight axes (e.g., OIP5-AS1/miR-124-5p/IDH2) are involved in key pathways, such as Wnt/b-catenin, E2F1, TGF-β, SMAD, ERK/MAPK, HIF-1α, Notch, PI3K/Akt signaling, and cancer cell stemness. Additionally, 15 axes impaired patient survival and three axes reduced chemo- or radiosensitivity. To date, 14 cases of miR-124 regulation by circRNAs have been identified. Half of them involve circHIPK3, which belongs to the exonic ecircRNAs and stimulates cell proliferation, EMT, autophagy, angiogenesis, and multidrug resistance. Thus, miR-124 and its interacting partners may be considered promising targets for cancer therapy.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | |
Collapse
|
4
|
Expression Analysis of BIRC3 as One Target Gene of Transcription Factor NF-κB for Esophageal Cancer. Processes (Basel) 2022. [DOI: 10.3390/pr10091673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Esophageal cancer (ESCA) is one of the highest lethal malignancy tumors worldwide. Baculoviral IAP repeat-containing protein 3 (BIRC3) is the main inhibitor of apoptosis in many malignancies. The aim of this study was to clarify how BIRC3 acts in ESCA cells. Through TNMplot and GEPIA2 analysis, BIRC3 was found abundantly expressed in ESCA cells. The quantitative RT-PCR assay confirmed BIRC3 was pronouncedly induced in all used ESCA cell lines. In addition, proinflammatory cytokines TNFα and IL-1β were shown to have promotion effects on BIRC3 expression in ESCA cells. These promotive effects were blocked when the function of NF-κB was inhibited by bay 11-7082, which indicates the expression of the BIRC3 gene was regulated via the NF-κB transcription pathway in ESCA. Moreover, bioinformatics analysis showed that the BIRC3 gene had many NF-κB binding cis-elements. Chromatin immunoprecipitation was then performed and it was found that NF-κB directly interacts with cis-elements of the BIRC3 gene. In conclusion, our data proved that the high expression level of BIRC3 maintained the survival of ESCA cells. BIRC3 was up-regulated by proinflammatory cytokine TNFα and IL-1β through the NF-κB signaling pathway, and this may be helpful for esophageal cancer prevention and therapy.
Collapse
|
5
|
Zheng Y, Wang K, Li N, Zhang Q, Chen F, Li M. Prognostic and Immune Implications of a Novel Pyroptosis-Related Five-Gene Signature in Breast Cancer. Front Surg 2022; 9:837848. [PMID: 35656090 PMCID: PMC9152226 DOI: 10.3389/fsurg.2022.837848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Breast cancer (BC) is the most common cancer among women worldwide, with enormous heterogeneity. Pyroptosis has a significant impact on the development and progression of tumors. Nonetheless, the possible correlation between pyroptosis-related genes (PRGs) and the BC immune microenvironment has yet to be investigated. Materials and methods In The Cancer Genome Atlas Breast Cancer cohort, 38 PRGs were shown to be significantly different between malignant and non-malignant breast tissues. The 38 PRGs’ consensus clustering grouped 1,089 individuals into two pyroptosis-related (PR) patterns. Using univariate and LASSO-Cox analyses, a PR five-gene predictive signature was constructed based on the differentially expressed genes between two clusters. The tools estimation of stromal and immune cells in malignant tumours using expression data (ESTIMATE), cell type identification by estimating relative subsets Of RNA transcripts (CIBERSORT), and single-sample gene set enrichment analysis (ssGSEA) were used to investigate the BC tumor microenvironment (TME). Results In TME, the two PR clusters displayed distinct clinicopathological characteristics, survival outcomes, and immunocyte infiltration features. The developed five-signature model (SEMA3B, IGKC, KLRB1, BIRC3, and PSME2) classified BC patients into two risk groups based on the estimated median risk score. Patients in the low-scoring category had a higher chance of survival and more extensive immunocyte infiltration. An external validation set can yield similar results. Conclusion Our data suggest that PRGs have a significant impact on the BC immunological microenvironment. The PR clusters and associated predictive signature stimulate additional research into pyroptosis in order to optimize therapeutic strategies for BC patients and their responses to immune therapy.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Kainan Wang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ning Li
- Department of Foreign Language, Dalian Medical University, Dalian, China
| | - Qianran Zhang
- Department of Breast Diseases, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fengxi Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
- Correspondence: Man Li
| |
Collapse
|
6
|
Molnar R, Szabo L, Tomesz A, Deutsch A, Darago R, Raposa BL, Ghodratollah N, Varjas T, Nemeth B, Orsos Z, Pozsgai E, Szentpeteri JL, Budan F, Kiss I. The Chemopreventive Effects of Polyphenols and Coffee, Based upon a DMBA Mouse Model with microRNA and mTOR Gene Expression Biomarkers. Cells 2022; 11:cells11081300. [PMID: 35455979 PMCID: PMC9029301 DOI: 10.3390/cells11081300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are capable of decreasing cancer risk. We examined the chemopreventive effects of a green tea (Camellia sinensis) extract, polyphenol extract (a mixture of blackberry (Rubus fruticosus), blackcurrants (Ribes nigrum), and added resveratrol phytoalexin), Chinese bayberry (Myrica rubra) extract, and a coffee (Coffea arabica) extract on 7,12-dimethylbenz[a]anthracene (DMBA) carcinogen-increased miR-134, miR-132, miR-124-1, miR-9-3, and mTOR gene expressions in the liver, spleen, and kidneys of CBA/Ca mice. The elevation was quenched significantly in the organs, except for miR-132 in the liver of the Chinese bayberry extract-consuming group, and miR-132 in the kidneys of the polyphenol-fed group. In the coffee extract-consuming group, only miR-9-3 and mTOR decreased significantly in the liver; also, miR-134 decreased significantly in the spleen, and, additionally, miR-124-1 decreased significantly in the kidney. Our results are supported by literature data, particularly the DMBA generated ROS-induced inflammatory and proliferative signal transducers, such as TNF, IL1, IL6, and NF-κB; as well as oncogenes, namely RAS and MYC. The examined chemopreventive agents, besides the obvious antioxidant and anti-inflammatory effects, mainly blocked the mentioned DMBA-activated factors and the mitogen-activated protein kinase (MAPK) as well, and, at the same time, induced PTEN as well as SIRT tumor suppressor genes.
Collapse
Affiliation(s)
- Richard Molnar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Laszlo Szabo
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Andras Tomesz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Arpad Deutsch
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Richard Darago
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Bence L. Raposa
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Nowrasteh Ghodratollah
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Zsuzsanna Orsos
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Eva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Jozsef L. Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| |
Collapse
|
7
|
LncSNHG1 Promoted CRC Proliferation through the miR-181b-5p/SMAD2 Axis. JOURNAL OF ONCOLOGY 2022; 2022:4181730. [PMID: 35310912 PMCID: PMC8933095 DOI: 10.1155/2022/4181730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Objective To investigate the effects of LncRNA SNHG1 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) of colorectal cancer cells (CRCs). Methods 4 pairs of CRC tissue samples and their corresponding adjacent samples were analyzed by the human LncRNA microarray chip. The expression of LncSNHG1 in CRC cell lines was verified by qRT-PCR. Colony formation assays and CCK8 assays were applied to study the changes in cell proliferation. The transwell assay and wound healing experiments were used to verify the cell invasion and migration. EMT progression was confirmed finally. Results LncSNHG1 was overexpressed both in CRC tissues and cell lines, while the miR-181b-5p expression was decreased in CRC cell lines. After knock-down of LncSNHG1, the proliferation, invasion, and migration of HT29 and SW620 cells were all decreased. Meanwhile, LncSNHG1 enhanced EMT progress through regulation of the miR-181b-5p/SMAD2 axis. Conclusion LncSNHG1 promotes colorectal cancer cell proliferation and invasion through the miR-181b-5p/SMAD2 axis.
Collapse
|
8
|
Zhang Y, Shao J, Li S, Liu Y, Zheng M. The Crosstalk Between Regulatory Non-Coding RNAs and Nuclear Factor Kappa B in Hepatocellular Carcinoma. Front Oncol 2021; 11:775250. [PMID: 34804980 PMCID: PMC8602059 DOI: 10.3389/fonc.2021.775250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal type of malignancies that possesses great loss of life safety to human beings worldwide. However, few effective means of curing HCC exist and its specific molecular basis is still far from being fully elucidated. Activation of nuclear factor kappa B (NF-κB), which is often observed in HCC, is considered to play a significant part in hepatocarcinogenesis and development. The emergence of regulatory non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is a defining advance in cancer biology, and related research in this branch has yielded many diagnostic and therapeutic opportunities. Recent studies have suggested that regulatory ncRNAs act as inhibitors or activators in the initiation and progression of HCC by targeting components of NF-κB signaling or regulating NF-κB activity. In this review, we attach importance to the role and function of regulatory ncRNAs in NF-κB signaling of HCC and NF-κB-associated chemoresistance in HCC, then propose future research directions and challenges of regulatory ncRNAs mediated-regulation of NF-κB pathway in HCC.
Collapse
Affiliation(s)
- Yina Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
FernÁndez-Rojas MA, Melendez-Zajgla J, Lagunas VM. lincRNA-RP11400K9.4 Regulates Cell Survival and Migration of Breast Cancer Cells. Cancer Genomics Proteomics 2021; 17:769-779. [PMID: 33099478 DOI: 10.21873/cgp.20231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIM Several works in the past decades pointed out the key role of long intergenic non-coding RNA (lincRNA) in breast cancer development. Here in we report for first time the importance of deregulation of lincRNA RP11-400K9.4 in breast cancer cells which played a role in cell survival and migration. MATERIALS AND METHODS After RP11-400K9.4 silencing by short hairpin RNAs or overexpression by GeneBlocks, real-time quantitative polymerase chain reaction (RT-PCR), microarray, migration, proliferation and viability assay were performed. RESULTS RP11-400K9.4 expression was mainly in the cytoplasmic fraction in 2D culture. Overexpression of RP11-400K9.4 led to a reduction of migration by MCF-7 and MDA-MB-368 cells and an increase in cellular survival after UV-C radiation. Bioinformatic analyses highlighted irradiation-induced DNA damage, DNA repair and cell-cycle pathways as the mainly affected by RP11-400K9.4. Furthermore RT-PCR assay demonstrated the overexpression of baculoviral IAP repeat containing 3 (BIRC3) a known oncogene that promotes radiotherapy resistance through the nuclear factor kappa B (NFĸB) pathway. CONCLUSION RP11-400K9.4 participates in the modulation of migration and survival processes probably via the BIRC3/NFĸB pathway.
Collapse
Affiliation(s)
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, México City, México
| | | |
Collapse
|
10
|
Pan Q, Qin F, Yuan H, He B, Yang N, Zhang Y, Ren H, Zeng Y. Normal tissue adjacent to tumor expression profile analysis developed and validated a prognostic model based on Hippo-related genes in hepatocellular carcinoma. Cancer Med 2021; 10:3139-3152. [PMID: 33818013 PMCID: PMC8085948 DOI: 10.1002/cam4.3890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common malignant disease worldwide. Although the diagnosis and treatment of HCC have greatly improved in the recent years, there is still a lack of accurate methods to predict the prognosis of patients. Evidence has shown that Hippo signaling in tissues adjacent to HCC plays a significant role in HCC development. In the present study, we aimed to construct a model based on the expression of Hippo‐related genes (HRGs) in tissues adjacent to HCC to predict the prognosis of HCC patients. Methods Gene expression data of paired normal tissues adjacent to HCC (PNTAH) and clinical information were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The HRG signature was constructed using four canonical Hippo‐related pathways. Univariate Cox regression analysis was used to screen survival‐related HRGs. LASSO and multivariate Cox regression analyses were used to construct the prognostic model. The true and false positive rates of the model were confirmed using receiver operating characteristic (ROC) analysis. Results The prognostic model was constructed based on the expression levels of five HRGs (NF2, MYC, BIRC3, CSNK1E, and MINK1) in PNTAH. The mortality rate of HCC patients increased as the risk score determined by the model increased. Furthermore, the risk score was found to be an independent risk factor for the survival of patients. ROC analysis showed that the prognostic model had a better predictive value than the other conventional clinical parameters. Moreover, the reliability of the prognostic model was confirmed in TCGA‐LIHC cohort. A nomogram was generated to predict patient survival. An exploration of the predictive value of the model in HCC tissues indicated that the model is PNTAH‐specific. Conclusions We developed and validated a prognostic model based on the expression levels of five HRGs in PNTAH, and this model should be helpful in predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Qingbo Pan
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanbo Qin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanyu Yuan
- Caojie Community Medical Service Centre Hechuan, Chongqing, China
| | - Baoning He
- Chongqing YuCai Secondary School, Chongqing, China
| | - Ni Yang
- Chongqing YuCai Secondary School, Chongqing, China
| | - Yitong Zhang
- Chongqing YuCai Secondary School, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zeng
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
In vivo effects of olive oil and trans-fatty acids on miR-134, miR-132, miR-124-1, miR-9-3 and mTORC1 gene expression in a DMBA-treated mouse model. PLoS One 2021; 16:e0246022. [PMID: 33539381 PMCID: PMC7861522 DOI: 10.1371/journal.pone.0246022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Both the intake of beneficial olive oil and of harmful trans-fatty acids (TFAs) in consumed foods are of great significance in tumor biology. In our present study we examined the effects they exert on the expression patterns of miR-134, miR-132, miR-124-1, miR-9-3 and mTOR in the liver, spleen and kidney of mice treated with 7,12-dimethylbenz [a] anthracene (DMBA). Feeding of TFA-containing diet significantly increased the expression of all studied miRs and mTORC1 in all organs examined, except the expression of mTORC1 in the spleen and kidney. Diet containing olive oil significantly reduced the expression of miR-124-1, miR-9-3 and mTORC1 in the liver and spleen. In the kidney, apart from the mTORC1 gene, the expression of all miRs examined significantly decreased compared to the DMBA control. According to our results, the cell membrane protective, antioxidant, and anti-inflammatory effects of olive oil and the cell membrane damaging, inflammatory, and carcinogenic properties of TFA suggest negative feedback regulatory mechanisms. In contrast to our expectations, mTORC1 gene expression in the kidney has not been shown to be an appropriate biomarker-presumably, because the many complex effects that regulate mTOR expression may quench each other.
Collapse
|
12
|
Kumar S, Fairmichael C, Longley DB, Turkington RC. The Multiple Roles of the IAP Super-family in cancer. Pharmacol Ther 2020; 214:107610. [PMID: 32585232 DOI: 10.1016/j.pharmthera.2020.107610] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The Inhibitor of Apoptosis proteins (IAPs) are a family of proteins that are mainly known for their anti-apoptotic activity and ability to directly bind and inhibit caspases. Recent research has however revealed that they have extensive roles in governing numerous other cellular processes. IAPs are known to modulate ubiquitin (Ub)-dependent signaling pathways through their E3 ligase activity and influence activation of nuclear factor κB (NF-κB). In this review, we discuss the involvement of IAPs in individual hallmarks of cancer and the current status of therapies targeting these critical proteins.
Collapse
Affiliation(s)
- Swati Kumar
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Ciaran Fairmichael
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom.
| |
Collapse
|
13
|
Siouda M, Dujardin AD, Barbollat-Boutrand L, Mendoza-Parra MA, Gibert B, Ouzounova M, Bouaoud J, Tonon L, Robert M, Foy JP, Lavergne V, Manie SN, Viari A, Puisieux A, Ichim G, Gronemeyer H, Saintigny P, Mulligan P. CDYL2 Epigenetically Regulates MIR124 to Control NF-κB/STAT3-Dependent Breast Cancer Cell Plasticity. iScience 2020; 23:101141. [PMID: 32450513 PMCID: PMC7251929 DOI: 10.1016/j.isci.2020.101141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic deregulation of gene transcription is central to cancer cell plasticity and malignant progression but remains poorly understood. We found that the uncharacterized epigenetic factor chromodomain on Y-like 2 (CDYL2) is commonly over-expressed in breast cancer, and that high CDYL2 levels correlate with poor prognosis. Supporting a functional role for CDYL2 in malignancy, it positively regulated breast cancer cell migration, invasion, stem-like phenotypes, and epithelial-to-mesenchymal transition. CDYL2 regulation of these plasticity-associated processes depended on signaling via p65/NF-κB and STAT3. This, in turn, was downstream of CDYL2 regulation of MIR124 gene transcription. CDYL2 co-immunoprecipitated with G9a/EHMT2 and GLP/EHMT1 and regulated the chromatin enrichment of G9a and EZH2 at MIR124 genes. We propose that CDYL2 contributes to poor prognosis in breast cancer by recruiting G9a and EZH2 to epigenetically repress MIR124 genes, thereby promoting NF-κB and STAT3 signaling, as well as downstream cancer cell plasticity and malignant progression. Up-regulation of CDYL2 is common in breast cancer and correlates with poor prognosis CDYL2 regulates enrichment of methyltransferases G9a and EZH2 at MIR124 genes microRNA-124 regulation by CDYL2 impacts STAT3 and NF-κB signaling CDYL2 regulation of EMT, migration, invasion, and stemness is STAT3/NF-κB dependent
Collapse
Affiliation(s)
- Maha Siouda
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Audrey D Dujardin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Laetitia Barbollat-Boutrand
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marco A Mendoza-Parra
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, University of Strasbourg, Illkirch, France
| | - Benjamin Gibert
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Maria Ouzounova
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Jebrane Bouaoud
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Maxillo-facial Surgery and Stomatology, Pitié-Salpétrière Hospital, Pierre et Marie Curie University Paris 6, Sorbonne Paris Cite University, AP-HP, Paris 75013, France
| | - Laurie Tonon
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas", Centre Léon Bérard, 28 rue Lannec, Lyon 69008, France; INRIA Grenoble-Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin 38330, France
| | - Marie Robert
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Jean-Philippe Foy
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Vincent Lavergne
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Serge N Manie
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Alain Viari
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas", Centre Léon Bérard, 28 rue Lannec, Lyon 69008, France; INRIA Grenoble-Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin 38330, France
| | - Alain Puisieux
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Gabriel Ichim
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Hinrich Gronemeyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, University of Strasbourg, Illkirch, France
| | - Pierre Saintigny
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Peter Mulligan
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Epigenetics and Cancer Team, Cheney A, 5e étage, 28 rue Laennec, Lyon Cedex 08 69373, France.
| |
Collapse
|
14
|
Vuokila N, Aronica E, Korotkov A, van Vliet EA, Nuzhat S, Puhakka N, Pitkänen A. Chronic Regulation of miR-124-3p in the Perilesional Cortex after Experimental and Human TBI. Int J Mol Sci 2020; 21:ijms21072418. [PMID: 32244461 PMCID: PMC7177327 DOI: 10.3390/ijms21072418] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) dysregulates microRNAs, which are the master regulators of gene expression. Here we investigated the changes in a brain-enriched miR-124-3p, which is known to associate with major post-injury pathologies, such as neuroinflammation. RT-qPCR of the rat tissue sampled at 7 d and 3 months in the perilesional cortex adjacent to the necrotic lesion core (aPeCx) revealed downregulation of miR-124-3p at 7 d (fold-change (FC) 0.13, p < 0.05 compared with control) and 3 months (FC 0.40, p < 0.05) post-TBI. In situ hybridization confirmed the downregulation of miR-124-3p at 7 d and 3 months post-TBI in the aPeCx (both p < 0.01). RT-qPCR confirmed the upregulation of the miR-124-3p target Stat3 in the aPeCx at 7 d post-TBI (7-fold, p < 0.05). mRNA-Seq revealed 312 downregulated and 311 upregulated miR-124 targets (p < 0.05). To investigate whether experimental findings translated to humans, we performed in situ hybridization of miR-124-3p in temporal lobe autopsy samples of TBI patients. Our data revealed downregulation of miR-124-3p in individual neurons of cortical layer III. These findings indicate a persistent downregulation of miR-124-3p in the perilesional cortex that might contribute to post-injury neurodegeneration and inflammation.
Collapse
Affiliation(s)
- Niina Vuokila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
- Stichting Epilepsie Instellingen Nederland (SEIN), 0397 Heemstede, The Netherlands
| | - Anatoly Korotkov
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
| | - Erwin Alexander van Vliet
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, P.O. Box 94246, 1090 GE Amsterdam, The Netherlands
| | - Salma Nuzhat
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
- Correspondence: ; Tel.: +358-40-861-4939
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| |
Collapse
|
15
|
Nasr MA, Salah RA, Abd Elkodous M, Elshenawy SE, El-Badri N. Dysregulated MicroRNA Fingerprints and Methylation Patterns in Hepatocellular Carcinoma, Cancer Stem Cells, and Mesenchymal Stem Cells. Front Cell Dev Biol 2019; 7:229. [PMID: 31681762 PMCID: PMC6811506 DOI: 10.3389/fcell.2019.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the top causes of cancer mortality worldwide. Although HCC has been researched extensively, there is still a need for novel and effective therapeutic interventions. There is substantial evidence that initiation of carcinogenesis in liver cirrhosis, a leading cause of HCC, is mediated by cancer stem cells (CSCs). CSCs were also shown to be responsible for relapse and chemoresistance in several cancers, including HCC. MicroRNAs (miRNAs) constitute important epigenetic markers that regulate carcinogenesis by acting post-transcriptionally on mRNAs, contributing to the progression of HCC. We have previously shown that co-culture of cancer cells with mesenchymal stem cells (MSCs) could induce the reprogramming of MSCs into CSC-like cells. In this review, we evaluate the available data concerning the epigenetic regulation of miRNAs through methylation and the possible role of this regulation in stem cell and somatic reprogramming in HCC.
Collapse
Affiliation(s)
- Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| |
Collapse
|
16
|
Jia X, Wang X, Guo X, Ji J, Lou G, Zhao J, Zhou W, Guo M, Zhang M, Li C, Tai S, Yu S. MicroRNA-124: An emerging therapeutic target in cancer. Cancer Med 2019; 8:5638-5650. [PMID: 31389160 PMCID: PMC6745873 DOI: 10.1002/cam4.2489] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding single‐stranded RNAs, approximately 20‐24 nucleotides in length, known as powerful posttranscriptional regulators. miRNAs play important regulatory roles in cellular processes by changing messenger RNA expression and are widely involved in human diseases, including tumors. It has been reported in the literature that miRNAs have a precise role in cell proliferation, programmed cell death, differentiation, and expression of coding genes. MicroRNA‐124 (miR‐124) has reduced exparession in various human neoplasms and is believed to be related to the occurrence, development, and prognosis of malignant tumors. In our review, we focus on the specific molecular functions of miR‐124 and the downstream gene targets in major cancers, which provide preclinical evidence for the treatment of human cancer. Although some obstacles exist, miR‐124 is still attracting intensive research focus as a promising and effective anticancer weapon.
Collapse
Affiliation(s)
- Xinqi Jia
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjing Ji
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junjie Zhao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjia Zhou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mian Guo
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Maomao Zhang
- Key Laboratory of Myocardial Ischemia, Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Li
- Department of Orthopedics, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Yue X, Cui Y, You Q, Lu Y, Zhang J. MicroRNA‑124 negatively regulates chloride intracellular channel 1 to suppress the migration and invasion of liver cancer cells. Oncol Rep 2019; 42:1380-1390. [PMID: 31364737 PMCID: PMC6718097 DOI: 10.3892/or.2019.7250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) is associated with the development and progression of a variety of cancers, including liver cancer. Aberrant expression of miRNA (miR)-124 has been demonstrated in liver cancer, but its functional mechanism in liver cancer is still largely unknown. Metastasis of liver cancer is one of the most common causes of mortality. The present study showed that miR-124 inhibited the proliferation, migration and invasion of liver cancer cells. Furthermore, chloride intracellular channel 1 (CLIC1) was identified as a novel target of miR-124 in liver cancer cells. Overexpression of miR-124 reduced CLIC1 expression at both the protein and mRNA levels in liver cancer cells. Downregulation of CLIC1 decreased the migration and invasion of liver cancer cells without affecting cell proliferation. Taken together, these results showed that CLIC1 is a critical target for miR-124-mediated inhibitory effects on cell migration and invasion. Thus, miR-124 or suppression of CLIC1 may have diagnostic value and therapeutic potential for the treatment of human liver cancer.
Collapse
Affiliation(s)
- Xupeng Yue
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Yuanyuan Cui
- The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163, USA
| | - Qi You
- Medical and Nurse College, Sanmenxia Polytechnic, Sanmenxia, Henan 472000, P.R. China
| | - Yanxin Lu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Jufeng Zhang
- School of Life Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
18
|
Zhu M, Wei C, Lin J, Dong S, Gao D, Chen J, Zhao Y, Liu B. UHRF1 is regulated by miR-124-3p and promotes cell proliferation in intrahepatic cholangiocarcinoma. J Cell Physiol 2019; 234:19875-19885. [PMID: 30989656 DOI: 10.1002/jcp.28586] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is abnormally overexpressed in multiple cancers and closely correlated with tumor-promoting effects, such as high proliferation. However, how UHRF1 functions in intrahepatic cholangiocarcinoma (ICC) has not yet been determined. Herein, we found that UHRF1 is overexpressed in ICC tissues. Downregulated UHRF1 attenuated the transition of the G1/S cell cycle and then suppressed cell proliferation in vitro and tumor growth in vivo. Moreover, upstream regulators of the UHRF1 expression were predicted, and we found that direct binding of miR-124-3p inhibited the UHRF1 expression. Elevated miR-124-3p suppressed proliferation and led to the arrest of the cell cycle. Furthermore, the expression of UHRF1 was positively correlated with PCNA. Clinically, we showed that elevated UHRF1 was associated with poor prognosis, and served as an independent prognostic factor in ICC patients. Together, these findings demonstrate that UHRF1, regulated by miR-124-3p, acts as a tumor promoter by promoting cell proliferation in ICC.
Collapse
Affiliation(s)
- Mengxuan Zhu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai, China
| | - Chuanyuan Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai, China
| | - Jiajia Lin
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai, China
| | - Shuangshuang Dong
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai, China
| | - Dongmei Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai, China
| | - Yan Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai, China
| | - Binbin Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai, China
| |
Collapse
|
19
|
Chen Y, Guo Y, Li Y, Yang J, Liu J, Wu Q, Wang R. miR‑300 regulates tumor proliferation and metastasis by targeting lymphoid enhancer‑binding factor 1 in hepatocellular carcinoma. Int J Oncol 2019; 54:1282-1294. [PMID: 30968150 PMCID: PMC6411350 DOI: 10.3892/ijo.2019.4715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) have a critical role in cell proliferation and metastasis in hepatocellular carcinoma (HCC). However, the effect of miR-300 on the development and progression of HCC remains unclear. In the present study, it was observed that miRNA (miR)-300 expression was significantly decreased in HCC cell lines compared with normal liver cells. Furthermore, we detected the effects of miR-300 on cell proliferation and apoptosis, cell cycle, migration and invasion by using MTT, colony formation assay, wound healing, Transwell assay and flow cytometry methods, respectively. The results demonstrated that miR-300 overexpression inhibited proliferation, induced apoptosis and G1/S cell cycle arrest, and suppressed migration and invasion in Huh-7 cells, whereas miR-300 silencing promoted the proliferation, migration and invasion of Hep3B cells. Mechanistically, the transcription factor lymphoid enhancer-binding factor 1 (LEF-1), which was verified as a direct target gene of miR-300, promoted cell proliferation, migration and invasion and mediates the effects of miR-300 on HCC cells. In addition, low expression of miR-300 and high expression of LEF-1 in HCC tissues were found to be associated with poor prognosis of patients with HCC. These findings indicate that miR-300 may be a potential prognostic predictor and therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Yufo Chen
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yuanyuan Guo
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yawei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jingwen Yang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jing Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Rui Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|