1
|
Alekseeva AI, Kudelkina VV, Khalansky AS, Sentyabreva AV, Miroshnichenko EA, Gulyaev MV, Rakitina KA, Kosyreva AM. Comparative Morphological and Molecular Genetic Characteristics of Cell and Tissue Strains of Experimental Rat Glioma 10-17-2 (Astrid-17). Bull Exp Biol Med 2024; 177:169-175. [PMID: 38960964 DOI: 10.1007/s10517-024-06150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 07/05/2024]
Abstract
In order to obtain models of gliomas of varying degrees of malignancy, we performed morphological and molecular genetic study of a tissue strain of glioma 10-17-2 (Astrid-17) obtained by intracranial passaging of tumor fragments of chemically induced rat brain tumor, and a cell strain isolated from it. More or less pronounced changes in the expression levels of Mki67, Trp53, Vegfa, and Gfap genes in the tissue and cell strain of glioma 10-17-2 (Astrid-17) compared with intact brain tissue were shown. The tissue model of glioma 10-17-2 (Astrid-17) according to the studied characteristics shows features of grade 3-4 astrocytoma and the cellular model - grade 2-3 astrocytoma.
Collapse
Affiliation(s)
- A I Alekseeva
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia.
| | - V V Kudelkina
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - A S Khalansky
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - A V Sentyabreva
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
- Medical Institute, RUDN University, Moscow, Russia
| | - E A Miroshnichenko
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
- Medical Institute, RUDN University, Moscow, Russia
| | - M V Gulyaev
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - K A Rakitina
- Medical Institute, RUDN University, Moscow, Russia
| | - A M Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
- Medical Institute, RUDN University, Moscow, Russia
| |
Collapse
|
2
|
Arutyunyan IV, Soboleva AG, Kovtunov EA, Kosyreva AM, Kudelkina VV, Alekseeva AI, Elchaninov AV, Jumaniyazova ED, Goldshtein DV, Bolshakova GB, Fatkhudinov TK. Gene Expression Profile of 3D Spheroids in Comparison with 2D Cell Cultures and Tissue Strains of Diffuse High-Grade Gliomas. Bull Exp Biol Med 2023; 175:576-584. [PMID: 37770789 DOI: 10.1007/s10517-023-05906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 09/30/2023]
Abstract
The use of relevant, accessible, and easily reproducible preclinical models of diffuse gliomas is a prerequisite for the development of successful therapeutic approaches to their treatment. Here we studied the gene expression profile of 3D spheroids in a comparison with 2D cell cultures and tissue strains of diffuse high-grade gliomas. Using real time PCR, we evaluated the expression of Gfap, Cd44, Pten, S100b, Vegfa, Hif1a, Sox2, Melk, Gdnf, and Mgmt genes playing an important role in the progression of gliomas and regulating tumor cell proliferation, adhesion, invasion, plasticity, apoptosis, DNA repair, and recruitment of tumor-associated cells. Gene expression analysis showed that 3D spheroids are more similar to tumor tissue strains by the expression levels of Gfap, Cd44, and Pten, while the expression levels of Hif1a and Sox2 in 3D spheroids did not differ from those of 2D cell cultures, the expression levels S100b and Vegfa in 3D spheroids was higher than in other models, and the expression levels of Melk, Gdnf, and Mgmt genes changed diversely. Thus, 3D spheroid model more closely mimics the tumor tissue than 2D cell culture, but still is not the most relevant, probably due to too small size of spheroids, which does not allow reproducing hypoxia and apoptotic and necrotic processes in the tumor tissue.
Collapse
Affiliation(s)
- I V Arutyunyan
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia.
| | - A G Soboleva
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - E A Kovtunov
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
| | - A M Kosyreva
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - V V Kudelkina
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - A I Alekseeva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - A V Elchaninov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - E D Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
| | - D V Goldshtein
- N. P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - G B Bolshakova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - T Kh Fatkhudinov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| |
Collapse
|
3
|
Khan ZM, Munson JM, Long TE, Vlaisavljevich E, Verbridge SS. Development of a Synthetic, Injectable Hydrogel to Capture Residual Glioblastoma and Glioblastoma Stem-Like Cells with CXCL12-Mediated Chemotaxis. Adv Healthc Mater 2023; 12:e2300671. [PMID: 37014179 PMCID: PMC11469263 DOI: 10.1002/adhm.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy-resistant glioblastoma stem-like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol-Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12-mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM-hydrogel interactions in vitro are studied. With a novel dual-layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.
Collapse
Affiliation(s)
- Zerin Mahzabin Khan
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Jennifer M. Munson
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
- Fralin Biomedical Research Institute at Virginia Tech – CarillionRoanokeVA24016USA
| | - Timothy E. Long
- Biodesign Center for Sustainable Macromolecular Materials and ManufacturingArizona State UniversityTempeAZ85287USA
| | - Eli Vlaisavljevich
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Scott S. Verbridge
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
| |
Collapse
|
4
|
Babu V, Kapkoti DS, Binwal M, Bhakuni RS, Shanker K, Singh M, Tandon S, Mugale MN, Kumar N, Bawankule DU. Liquiritigenin, isoliquiritigenin rich extract of glycyrrhiza glabra roots attenuates inflammation in macrophages and collagen-induced arthritis in rats. Inflammopharmacology 2023; 31:983-996. [PMID: 36947299 DOI: 10.1007/s10787-023-01152-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Liquiritigenin (LTG) and its bioprecursor isoliquiritigenin(ISL), the main bioactives from roots of Glycyrrhiza genus are progressively documented as a potential pharmacological agent for the management of chronic diseases. The aim of this study was to evaluate the pharmacological potential of liquiritigenin, isoliquiritigenin rich extract of Glycyrrhiza glabra roots (IVT-21) against the production of pro-inflammatory cytokines from activated macrophages as well as further validated the efficacy in collagen-induced arthritis model in rats. We also performed the safety profile of IVT-21 using standard in-vitro and in-vivo assays. Results of this study revealed that the treatment of IVT-21 and its major bioactives (LTG, ISL) was able to reduce the production of pro-inflammatory cytokines (TNF-α, IL-6) in LPS-activated primary peritoneal macrophages in a dose-dependent manner compared with vehicle-alone treated cells without any cytotoxic effect on macrophages. In-vivo efficacy profile against collagen-induced arthritis in Rats revealed that oral administration of IVT-21 significantly reduced the arthritis index, arthritis score, inflammatory mediators level in serum. IVT-21 oral treatment is also able to reduce the NFкB-p65 expression as evidence of immunohistochemistry in knee joint tissue and mRNA level of pro-inflammatory cytokines in paw tissue in a dose-dependent manner when compared with vehicle treated rats. Acute oral toxicity profile of IVT-21 demonstrated that it is safe up to 2000 mg/kg body weight in experimental mice. This result suggests the suitability of IVT-21 for further study in the management of arthritis and related complications.
Collapse
Affiliation(s)
- Vineet Babu
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Post Office-CIMAP, Near Kukrail Picnic Spot, Lucknow, Uttar Pradesh, 226015, India
| | - Deepak Singh Kapkoti
- Phytochemistry Division, Central Institute of Medicinal and Aromatic Plants (CSIR), Lucknow, 226015, India
| | - Monika Binwal
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Post Office-CIMAP, Near Kukrail Picnic Spot, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rajendra S Bhakuni
- Phytochemistry Division, Central Institute of Medicinal and Aromatic Plants (CSIR), Lucknow, 226015, India.
| | - Karuna Shanker
- Phytochemistry Division, Analytical Chemistry Lab, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| | - Manju Singh
- Phytochemistry Division, Analytical Chemistry Lab, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| | - Sudeep Tandon
- Process Chemistry and Chemical Engineering Department, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research (CSIR), PO CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Madhav N Mugale
- Department of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, 226031, India
| | - Narendra Kumar
- Botany and Pharmacognosy, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Dnyaneshwar U Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Post Office-CIMAP, Near Kukrail Picnic Spot, Lucknow, Uttar Pradesh, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
5
|
Stoyanov GS, Petkova L, Iliev B, Ali M, Toncheva B, Georgiev R, Tonchev T, Enchev Y. Extracranial Glioblastoma Metastasis: A Neuropathological Case Report. Cureus 2023; 15:e35803. [PMID: 37025749 PMCID: PMC10073898 DOI: 10.7759/cureus.35803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Glioblastoma (GBM) is a central nervous system (CNS) high-grade glioma with a dismal patient prognosis. Classical concepts surrounding GBM development and progression indicate its ability to produce metastasis within the CNS, one of the few primary tumors with such capabilities. While classical concepts state that no primary CNS tumor produces extracranial metastasis, there have been multiple reports of such occurrences over the previous two decades. Here, we report a case of a male in his forties who presented to our institution with complaints of progressive headache and a history of right temporal craniotomy one month prior with a histologically verified GBM performed at another institution. Neuroradiology confirmed a residual tumor in the areas of the previous craniotomy, and gross total excision confirmed the diagnosis of GBM, although based on the presence of connective tissue amidst the tumor stroma, gliosarcoma could not be ruled out. The patient initiated treatment, and his condition remained stable for four calendar years until he again presented to our institution with a rapidly growing tumor mass in the right lateral neck region. Excision of the neck mass showed histopathological features of a tumor comprised of atypical cells with pronounced polymorphism, some with spindle cell morphology and a tendency for fascicular growth and focal palisade necrosis. Immunohistochemistry with a broad set of markers disproved epithelial, mesenchymal, melanocytic, and lymphoid genesis, with some markers of glial genesis present; hence, metastatic GBM was established. The patient reinitiated treatment and is currently stable. The steadily increasing amount of similar reported cases, together with the steady, albeit small, increase in GBM patient survival and improvement of neurooncological healthcare distribution and follow-up, challenge the classical concepts of GBM and other primary CNS tumors being unable to produce metastasis and swaying this perception towards the biological capabilities of these tumors to produce metastasis, while such rarely develop due to the short patient survival.
Collapse
|
6
|
Trovato F, Stefani FR, Li J, Zetterdahl OG, Canals I, Ahlenius H, Bengzon J. Transcription Factor-Forced Astrocytic Differentiation Impairs Human Glioblastoma Growth In Vitro and In Vivo. Mol Cancer Ther 2023; 22:274-286. [PMID: 36508391 PMCID: PMC9890139 DOI: 10.1158/1535-7163.mct-21-0903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Direct cellular reprogramming has recently gained attention of cancer researchers for the possibility to convert undifferentiated cancer cells into more differentiated, postmitotic cell types. While a few studies have attempted reprogramming of glioblastoma (GBM) cells toward a neuronal fate, this approach has not yet been used to induce differentiation into other lineages and in vivo data on reduction in tumorigenicity are limited. Here, we employ cellular reprogramming to induce astrocytic differentiation as a therapeutic approach in GBM. To this end, we overexpressed key transcriptional regulators of astroglial development in human GBM and GBM stem cell lines. Treated cells undergo a remarkable shift in structure, acquiring an astrocyte-like morphology with star-shaped bodies and radial branched processes. Differentiated cells express typical glial markers and show a marked decrease in their proliferative state. In addition, forced differentiation induces astrocytic functions such as induced calcium transients and ability to respond to inflammatory stimuli. Most importantly, forced differentiation substantially reduces tumorigenicity of GBM cells in an in vivo xenotransplantation model. The current study capitalizes on cellular plasticity with a novel application in cancer. We take advantage of the similarity between neural developmental processes and cancer hierarchy to mitigate, if not completely abolish, the malignant nature of tumor cells and pave the way for new intervention strategies.
Collapse
Affiliation(s)
- Francesco Trovato
- Stem Cell Center, Lund University, Lund, Scania, Sweden
- Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Scania, Sweden
- Department of Clinical Sciences, Division of Neurology, Lund University, Lund, Scania, Sweden
- Corresponding Author: Francesco Trovato, Stem Cell Center/Department of Clinical Sciences, Lund University, Klinikgatan 26, Lund, Scania 221 84, Sweden. Phone: 46-222-3159; E-mail:
| | - Francesca Romana Stefani
- Stem Cell Center, Lund University, Lund, Scania, Sweden
- Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Scania, Sweden
| | - Jiaxin Li
- Stem Cell Center, Lund University, Lund, Scania, Sweden
- Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Scania, Sweden
| | - Oskar G. Zetterdahl
- Stem Cell Center, Lund University, Lund, Scania, Sweden
- Department of Clinical Sciences, Division of Neurology, Lund University, Lund, Scania, Sweden
| | - Isaac Canals
- Stem Cell Center, Lund University, Lund, Scania, Sweden
- Department of Clinical Sciences, Division of Neurology, Lund University, Lund, Scania, Sweden
| | - Henrik Ahlenius
- Stem Cell Center, Lund University, Lund, Scania, Sweden
- Department of Clinical Sciences, Division of Neurology, Lund University, Lund, Scania, Sweden
| | - Johan Bengzon
- Stem Cell Center, Lund University, Lund, Scania, Sweden
- Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Scania, Sweden
- Department of Neurosurgery, Skåne University Hospital, Lund, Scania, Sweden
| |
Collapse
|
7
|
Babu V, Singh R, Kashyap PK, Washimkar KR, Mugale MN, Tandon S, Bawankule DU. Pharmacological and Toxicological Study of Coumarinolignoids from Cleome viscosa in Small Animals for the Management of Rheumatoid Arthritis. PLANTA MEDICA 2023; 89:62-71. [PMID: 36167313 DOI: 10.1055/a-1906-1837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study aims to explore the possible pharmacological potential of Cleome viscosa Linn (Cleomaceae), an annual weed, into therapeutic value-added products. In the present study, we have explored the pharmacological and toxicological profile of coumarinolignoids isolated from Cleome viscose for the management of rheumatoid arthritis and related complications in a small animal model. To avoid the biasness during experiments on animals, we have coded the isolated coumarinolignoids as CLIV-92 to perform the experimental pharmacological study. CLIV-92 was orally administrated (30,100, 300 mg/kg) to animal models of collagen-induced arthritis (CIA), carrageenan-induced acute inflammation, thermal and chemical-induced pain, and Brewer's yeast-induced pyrexia. Oral administration of CLIV-92 significantly decreases the arthritis index, arthritis score, and increases the limb withdrawal threshold in the CIA model in experimental rats. The anti-arthritis studies revealed that the anti-inflammatory effect of CLIV-92 was associated with inhibition of the production of inflammatory mediators like TNF-α, IL-6, IL-17A, MMP-1, MMP-9, Nitric oxide, and C-RP in CIA rat's serum, and also reduced the NFкB-p65 expression as evidence of immunohistochemistry in knee joint tissue of CIA rats, in a dose-dependent manner. Further individual experiments related to arthritis-related complications in experimental animals demonstrated the analgesic, anti-inflammatory, and antipyretic potential of CLIV-92 in a dose-dependent manner. Further, an in-vivo acute oral toxicity study concluded that CLIV-92 is safe in experimental animals up to 2,000 mg/kg dose. The results of this study suggested that the oral administration of CLIV-92 may be a therapeutic candidate for further investigation in the management of rheumatoid arthritis and related complications.
Collapse
Affiliation(s)
- Vineet Babu
- Bioprospection and Product Development Division, Council of Scientific and Industrial Research (CSIR) - Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Rupali Singh
- Bioprospection and Product Development Division, Council of Scientific and Industrial Research (CSIR) - Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | | | - Kaveri R Washimkar
- Department of Toxicology & Experimental Medicine, CSIR - Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India
| | - Madhav N Mugale
- Department of Toxicology & Experimental Medicine, CSIR - Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India
| | - Sudeep Tandon
- Phytochemistry Division, CSIR-CIMAP, Lucknow, Uttar Pradesh, India
| | - Dnyaneshwar Umrao Bawankule
- Bioprospection and Product Development Division, Council of Scientific and Industrial Research (CSIR) - Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Blee JA, Liu X, Harland AJ, Fatania K, Currie S, Kurian KM, Hauert S. Liquid biopsies for early diagnosis of brain tumours: in silico mathematical biomarker modelling. J R Soc Interface 2022; 19:20220180. [PMID: 35919979 PMCID: PMC9346349 DOI: 10.1098/rsif.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Brain tumours are the biggest cancer killer in those under 40 and reduce life expectancy more than any other cancer. Blood-based liquid biopsies may aid early diagnosis, prediction and prognosis for brain tumours. It remains unclear whether known blood-based biomarkers, such as glial fibrillary acidic protein (GFAP), have the required sensitivity and selectivity. We have developed a novel in silico model which can be used to assess and compare blood-based liquid biopsies. We focused on GFAP, a putative biomarker for astrocytic tumours and glioblastoma multi-formes (GBMs). In silico modelling was paired with experimental measurement of cell GFAP concentrations and used to predict the tumour volumes and identify key parameters which limit detection. The average GBM volumes of 449 patients at Leeds Teaching Hospitals NHS Trust were also measured and used as a benchmark. Our model predicts that the currently proposed GFAP threshold of 0.12 ng ml-1 may not be suitable for early detection of GBMs, but that lower thresholds may be used. We found that the levels of GFAP in the blood are related to tumour characteristics, such as vasculature damage and rate of necrosis, which are biological markers of tumour aggressiveness. We also demonstrate how these models could be used to provide clinical insight.
Collapse
Affiliation(s)
- Johanna A. Blee
- Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building, Bristol BS8 1TW, UK
| | - Xia Liu
- Brain Tumour Research Centre, Bristol Medical School, Bristol BS2 8DZ, UK
| | - Abigail J. Harland
- Brain Tumour Research Centre, Bristol Medical School, Bristol BS2 8DZ, UK
| | - Kavi Fatania
- Department of Radiology, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - Stuart Currie
- Department of Radiology, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | | | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building, Bristol BS8 1TW, UK
| |
Collapse
|
9
|
Pienkowski T, Kowalczyk T, Garcia-Romero N, Ayuso-Sacido A, Ciborowski M. Proteomics and metabolomics approach in adult and pediatric glioma diagnostics. Biochim Biophys Acta Rev Cancer 2022; 1877:188721. [PMID: 35304294 DOI: 10.1016/j.bbcan.2022.188721] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
The diagnosis of glioma is mainly based on imaging methods that do not distinguish between stage and subtype prior to histopathological analysis. Patients with gliomas are generally diagnosed in the symptomatic stage of the disease. Additionally, healing scar tissue may be mistakenly identified based on magnetic resonance imaging (MRI) as a false positive tumor recurrence in postoperative patients. Current knowledge of molecular alterations underlying gliomagenesis and identification of tumoral biomarkers allow for their use as discriminators of the state of the organism. Moreover, a multiomics approach provides the greatest spectrum and the ability to track physiological changes and can serve as a minimally invasive method for diagnosing asymptomatic gliomas, preceding surgery and allowing for the initiation of prophylactic treatment. It is important to create a vast biomarker library for adults and pediatric patients due to their metabolic differences. This review focuses on the most promising proteomic, metabolomic and lipidomic glioma biomarkers, their pathways, the interactions, and correlations that can be considered characteristic of tumor grade or specific subtype.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Noemi Garcia-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
10
|
Shmelev ME, Titov SI, Belousov AS, Farniev VM, Zhmenia VM, Lanskikh DV, Penkova AO, Kumeiko VV. Cell and Tissue Nanomechanics: From Early Development to Carcinogenesis. Biomedicines 2022; 10:345. [PMID: 35203554 PMCID: PMC8961777 DOI: 10.3390/biomedicines10020345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cell and tissue nanomechanics, being inspired by progress in high-resolution physical mapping, has recently burst into biomedical research, discovering not only new characteristics of normal and diseased tissues, but also unveiling previously unknown mechanisms of pathological processes. Some parallels can be drawn between early development and carcinogenesis. Early embryogenesis, up to the blastocyst stage, requires a soft microenvironment and internal mechanical signals induced by the contractility of the cortical actomyosin cytoskeleton, stimulating quick cell divisions. During further development from the blastocyst implantation to placenta formation, decidua stiffness is increased ten-fold when compared to non-pregnant endometrium. Organogenesis is mediated by mechanosignaling inspired by intercellular junction formation with the involvement of mechanotransduction from the extracellular matrix (ECM). Carcinogenesis dramatically changes the mechanical properties of cells and their microenvironment, generally reproducing the structural properties and molecular organization of embryonic tissues, but with a higher stiffness of the ECM and higher cellular softness and fluidity. These changes are associated with the complete rearrangement of the entire tissue skeleton involving the ECM, cytoskeleton, and the nuclear scaffold, all integrated with each other in a joint network. The important changes occur in the cancer stem-cell niche responsible for tumor promotion and metastatic growth. We expect that the promising concept based on the natural selection of cancer cells fixing the most invasive phenotypes and genotypes by reciprocal regulation through ECM-mediated nanomechanical feedback loop can be exploited to create new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Mikhail E. Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Sergei I. Titov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Vladislav M. Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Valeriia M. Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Daria V. Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Alina O. Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Vadim V. Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
11
|
Pienkowski T, Kowalczyk T, Kretowski A, Ciborowski M. A review of gliomas-related proteins. Characteristics of potential biomarkers. Am J Cancer Res 2021; 11:3425-3444. [PMID: 34354853 PMCID: PMC8332856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Brain tumors are one of the most commonly diagnosed cancers of the central nervous system. Of all diagnosed malignant tumors, 80% are gliomas. An unequivocal diagnosis of gliomas is not always simple, and there is a great need for research to find new treatment options and diagnostic approaches. This paper is focused on the glioma-related protein profiles as compared to healthy brain tissue, which is reflected in multiple correlations between biological aspects that influence proliferation, apoptosis evasion and the invasiveness of neoplastic cells. The work presents the possibilities of facilitating clinical practice with proteomic biomarkers, which offer a wider diagnostic spectrum and reduce the margin of mistake in histopathological or imaging diagnostic methods. In fact, many changes in the body's homeostasis can be overlooked due to the lack of symptoms or their non-specificity. Nevertheless, a single marker has limited reliability in distinguishing a particular tumor subtype, since the increased or decreased level of the protein of interest may differ between the stages or locations of the tumor. Moreover, the correlations between proposed proteins - presented in this paper - may help clinicians to choose the most optimal therapy, and estimate its effectiveness, or indicate new therapeutic targets affecting disrupted biochemical pathways.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
12
|
Liu H, Wang S, Lin JM, Lin Z, Li HF. Investigation of the lipidomic changes in differentiated glioblastoma cells after drug treatment using MALDI-MS. Talanta 2021; 233:122570. [PMID: 34215066 DOI: 10.1016/j.talanta.2021.122570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023]
Abstract
Lipids differences between tumor and normal tissue have been proved to be of diagnostic and therapeutic significance. The research of lipidomics in tumor is more and more important. Mass spectrometry like matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) can be more convenient and informative for lipids researching in biological and clinical researches. Most of malignant tumors like glioblastoma are characterized by incomplete differentiation, so differentiation therapy has made important progress in tumor treatment. Lipid profiles changes after therapy are worthy investigating. In our study, glioblastoma cell line U87-MG cells were treated by inducers of sodium phenylbutyrate (SPB) and all-trans retinoic acid (ATRA). The changes in lipids on cell membrane were profiled by MALDI-MS. The differentiation degree was assessed by cell proliferation, cell cycle, morphology and protein expression before MALDI-MS analysis. Comparing the inducer treated and untreated U87-MG cells, reduced proliferation rate, blocked cell cycle, benign nucleus morphology and changed expression of protein CD133 and glial fibrillary acidic protein (GFAP), were found after drug treatment. Moreover, the lipids of cell membrane presented distinguished differences in the drug treated cells. Most of the glycerophosphocholines (PC) with an increasing abundance are unsaturated PCs (PC (38:1), 816 m/z; PC (36:1), 788 m/z; PC (31:1), 725 m/z), and those decreasing are saturated PCs (PC (32:0), 734 m/z). These results provide the lipidomic differentiation which may be a significant guidance for evaluating the therapeutic effect of tumor therapy.
Collapse
Affiliation(s)
- Hongxing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Shiqi Wang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Zhixiong Lin
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| | - Hai-Fang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Huang Z, Wan C, Wang Y, Qiao P, Zou Q, Ma J, Liu Z, Cai Z. Anti-Cognitive Decline by Yinxing-Mihuan-Oral-Liquid via Activating CREB/BDNF Signaling and Inhibiting Neuroinflammatory Process. Exp Aging Res 2021; 47:273-287. [PMID: 33499761 DOI: 10.1080/0361073x.2021.1878756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND: Cognitive decline in the normal aging process is one of the most common and prominent problems. Delaying and alleviating cognitive impairment is an important strategy of anti-aging. This study is to aim at investigating the effects of Yinxing-Mihuan-Oral-Liquid(GMOL) on the CREB/BDNF signaling in the normal aging process.METHODS: SD rats were randomly divided into GMOL group and control group. The Morris water maze (MWM) was introduced for behavioral test. Immunohistochemistry and immunofluorescence were used for cAMP response element binding protein 1(CREB1), p-CREB(Ser133), brain-derived neurotrophic factor(BDNF), synaptophysin(SYP) and glial fibrillary acidic protein(GFAP). Western blot was conducted for investigating the levels of CREB1 and p-CREB(Ser133), BDNF, SYP, GFAP and interleukin 6(IL-6). RESULTS: Our data showed that compared with the control group, GMOL group had higher expression of memory-related proteins, decreased inflammatory factors, and enhanced spatial learning and memory ability.CONCLUSION: The study results show that GMOL ameliorates cognitive impairment of the normal aged SD rats via enhancing the expression of memory biomarkers and inhibiting inflammatory process. The potential neuroprotective role of GMOL in the process of aging may be related to mitigating cognitive decline via activating CREB/BDNF signaling and inhibiting inflammatory process.
Collapse
Affiliation(s)
- Zhenting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Chengqun Wan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Peifeng Qiao
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jingxi Ma
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhou Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
14
|
Fernandez-Cerado C, Legarda GP, Velasco-Andrada MS, Aguil A, Ganza-Bautista NG, Lagarde JBB, Soria J, Jamora RDG, Acuña PJ, Vanderburg C, Sapp E, DiFiglia M, Murcar MG, Campion L, Ozelius LJ, Alessi AK, Singh-Bains MK, Waldvogel HJ, Faull RLM, Macalintal-Canlas R, Muñoz EL, Penney EB, Ang MA, Diesta CCE, Bragg DC, Acuña-Sunshine G. Promise and challenges of dystonia brain banking: establishing a human tissue repository for studies of X-Linked Dystonia-Parkinsonism. J Neural Transm (Vienna) 2021; 128:575-587. [PMID: 33439365 PMCID: PMC8099813 DOI: 10.1007/s00702-020-02286-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023]
Abstract
X-Linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease affecting individuals with ancestry to the island of Panay in the Philippines. In recent years there has been considerable progress at elucidating the genetic basis of XDP and candidate disease mechanisms in patient-derived cellular models, but the neural substrates that give rise to XDP in vivo are still poorly understood. Previous studies of limited XDP postmortem brain samples have reported a selective dropout of medium spiny neurons within the striatum, although neuroimaging of XDP patients has detected additional abnormalities in multiple brain regions beyond the basal ganglia. Given the need to fully define the CNS structures that are affected in this disease, we created a brain bank in Panay to serve as a tissue resource for detailed studies of XDP-related neuropathology. Here we describe this platform, from donor recruitment and consent to tissue collection, processing, and storage, that was assembled within a predominantly rural region of the Philippines with limited access to medical and laboratory facilities. Thirty-six brains from XDP individuals have been collected over an initial 4 years period. Tissue quality was assessed based on histologic staining of cortex, RNA integrity scores, detection of neuronal transcripts in situ by fluorescent hybridization chain reaction, and western blotting of neuronal and glial proteins. The results indicate that this pipeline preserves tissue integrity to an extent compatible with a range of morphologic, molecular, and biochemical analyses. Thus the algorithms that we developed for working in rural communities may serve as a guide for establishing similar brain banks for other rare diseases in indigenous populations.
Collapse
Affiliation(s)
| | - G Paul Legarda
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | | | - Abegail Aguil
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | | | | | - Jasmin Soria
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | - Roland Dominic G Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Patrick J Acuña
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, USA
| | - Ellen Sapp
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Marian DiFiglia
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Micaela G Murcar
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Lindsey Campion
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Laurie J Ozelius
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Amy K Alessi
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Malvindar K Singh-Bains
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Edwin L Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Ellen B Penney
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Mark A Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | - D Cristopher Bragg
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA.
| | - Geraldine Acuña-Sunshine
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines. .,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA.
| |
Collapse
|
15
|
Brenner M, Messing A. Regulation of GFAP Expression. ASN Neuro 2021; 13:1759091420981206. [PMID: 33601918 PMCID: PMC7897836 DOI: 10.1177/1759091420981206] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Expression of the GFAP gene has attracted considerable attention because its onset is a marker for astrocyte development, its upregulation is a marker for reactive gliosis, and its predominance in astrocytes provides a tool for their genetic manipulation. The literature on GFAP regulation is voluminous, as almost any perturbation of development or homeostasis in the CNS will lead to changes in its expression. In this review, we limit our discussion to mechanisms proposed to regulate GFAP synthesis through a direct interaction with its gene or mRNA. Strengths and weaknesses of the supportive experimental findings are described, and suggestions made for additional studies. This review covers 15 transcription factors, DNA and histone methylation, and microRNAs. The complexity involved in regulating the expression of this intermediate filament protein suggests that GFAP function may vary among both astrocyte subtypes and other GFAP-expressing cells, as well as during development and in response to perturbations.
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
16
|
de Souza RF, Augusto RL, de Moraes SRA, de Souza FB, Gonçalves LVDP, Pereira DD, Moreno GMM, de Souza FMA, Andrade-da-Costa BLDS. Ultra-Endurance Associated With Moderate Exercise in Rats Induces Cerebellar Oxidative Stress and Impairs Reactive GFAP Isoform Profile. Front Mol Neurosci 2020; 13:157. [PMID: 32982688 PMCID: PMC7492828 DOI: 10.3389/fnmol.2020.00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Ultra-endurance (UE) race has been associated with brain metabolic changes, but it is still unknown which regions are vulnerable. This study investigated whether high-volume training in rodents, even under moderate intensity, can induce cerebellar oxidative and inflammatory status. Forty-five adult rats were divided into six groups according to a training period, followed or not by an exhaustion test (ET) that simulated UE: control (C), control + ET (C-ET), moderate-volume (MV) training and MV-ET, high-volume training (HV) and HV-ET. The training period was 30 (MV) and 90 (HV) min/day, 5 times/week for 3 months as a continuous running on a treadmill at a maximum velocity of 12 m/min. After 24 h, the ET was performed at 50% maximum velocities up to the animals refused to run, and then serum lactate levels were evaluated. Serum and cerebellar homogenates were obtained 24 h after ET. Serum creatine kinase (CK), lactate dehydrogenase (LDH), and corticosterone levels were assessed. Lipid peroxidation (LP), nitric oxide (NO), Interleukin 1β (IL-1β), and GFAP proteins, reduced and oxidized glutathione (GSH and GSSG) levels, superoxide dismutase (SOD) and catalase (CAT) activities were quantified in the cerebellum. Serum lactate concentrations were lower in MV-ET (∼20%) and HV-ET (∼40%) compared to the C-ET group. CK and corticosterone levels were increased more than ∼ twofold by HV training compared to control. ET increased CK levels in MV-ET vs. MV group (P = 0.026). HV induced higher LP levels (∼40%), but an additive effect of ET was only seen in the MV-ET group (P = 0.02). SOD activity was higher in all trained groups vs. C and C-ET (P < 0.05). CAT activity, however, was intensified only in the MV group (P < 0.02). The 50 kDa GFAP levels were enhanced in C-ET and MV-ET vs. respective controls, while 42 kDa (∼40%) and 39 kDa (∼26%) isoform levels were reduced. In the HV-ET group, the 50 KDa isoform amount was reduced ∼40-60% compared to the other groups and the 39 KDa isoform, increased sevenfold. LDH levels, GSH/GSSG ratio, and NO production were not modified. ET elevated IL-1β levels in the CT and MV groups. Data shows that cerebellar resilience to oxidative damage may be maintained under moderate-volume training, but it is reduced by UE running. High-volume training per se provoked systemic metabolic changes, cerebellar lipid peroxidation, and unbalanced enzymatic antioxidant resource. UE after high-volume training modified the GFAP isoform profile suggesting impaired astrocyte reactivity in the cerebellum.
Collapse
Affiliation(s)
- Raphael Fabricio de Souza
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
- Department of Physical Education, Federal University of Sergipe, São Cristovão, Brazil
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports – GEPEPS, Federal University of Sergipe, São Cristovão, Brazil
| | - Ricielle Lopes Augusto
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Silvia Regina Arruda de Moraes
- Laboratory of Neuromuscular Plasticity, Department of Anatomy, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Fabio Borges de Souza
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Lílian Vanessa da Penha Gonçalves
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Danielle Dutra Pereira
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Gisele Machado Magalhães Moreno
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Fernanda Maria Araujo de Souza
- Laboratory of Neuropharmacology and Integrative Physiology, Center of Biosciences, Federal University of Alagoas, Maceió, Brazil
| | - Belmira Lara da Silveira Andrade-da-Costa
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|