1
|
Wang Y, He J, Lian S, Zeng Y, He S, Xu J, Luo L, Yang W, Jiang J. Targeting Metabolic-Redox Nexus to Regulate Drug Resistance: From Mechanism to Tumor Therapy. Antioxidants (Basel) 2024; 13:828. [PMID: 39061897 PMCID: PMC11273443 DOI: 10.3390/antiox13070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Drug resistance is currently one of the biggest challenges in cancer treatment. With the deepening understanding of drug resistance, various mechanisms have been revealed, including metabolic reprogramming and alterations of redox balance. Notably, metabolic reprogramming mediates the survival of tumor cells in harsh environments, thereby promoting the development of drug resistance. In addition, the changes during metabolic pattern shift trigger reactive oxygen species (ROS) production, which in turn regulates cellular metabolism, DNA repair, cell death, and drug metabolism in direct or indirect ways to influence the sensitivity of tumors to therapies. Therefore, the intersection of metabolism and ROS profoundly affects tumor drug resistance, and clarifying the entangled mechanisms may be beneficial for developing drugs and treatment methods to thwart drug resistance. In this review, we will summarize the regulatory mechanism of redox and metabolism on tumor drug resistance and highlight recent therapeutic strategies targeting metabolic-redox circuits, including dietary interventions, novel chemosynthetic drugs, drug combination regimens, and novel drug delivery systems.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jingqiu He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Shan Lian
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Sheng He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chong-Qing Medical University, Chengdu 610041, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| |
Collapse
|
2
|
Wang X, Qian S, Wang S, Jia S, Zheng N, Yao Q, Gao J. Combination of Vitamin C and Lenvatinib potentiates antitumor effects in hepatocellular carcinoma cells in vitro. PeerJ 2023; 11:e14610. [PMID: 36718449 PMCID: PMC9884045 DOI: 10.7717/peerj.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 01/26/2023] Open
Abstract
Lenvatinib has become a first-line drug in the treatment of advanced hepatocellular carcinoma (HCC). Investigating its use in combination with other agents is of great significance to improve the sensitivity and durable response of Lenvatinib in advanced HCC patients. Vitamin C (L-ascorbic acid, ascorbate, VC) is an important natural antioxidant, which has been reported to show suppressive effects in cancer treatment. Here, we investigated the effect of the combination of VC and Lenvatinib in HCC cells in vitro. We found that treatment of VC alone significantly inhibited the proliferation, migration and invasion in HCC cells. Additionally, VC was strongly synergistic with Lenvatinib in inhibition of the proliferative, migratory and invasive capacities of HCC cells in vitro. In conclusion, our results demonstrate that the combination of VC and Lenvatinib has synergistic antitumor activities against HCC cells, providing a promising therapeutic strategy to improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Songyi Qian
- Department of Cardiac Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Siyi Wang
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Sheng Jia
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Nishang Zheng
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Qing Yao
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
You Q, Wang J, Yu Y, Li F, Meng L, Chen M, Yang Q, Xu Z, Sun J, Zhuo W, Chen Z. The histone deacetylase SIRT6 promotes glycolysis through the HIF-1α/HK2 signaling axis and induces erlotinib resistance in non-small cell lung cancer. Apoptosis 2022; 27:883-898. [PMID: 35915188 PMCID: PMC9617843 DOI: 10.1007/s10495-022-01751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 12/01/2022]
Abstract
Erlotinib is a first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Overcoming erlotinib resistance is crucial to improve the survival of advanced non-small cell lung cancer (NSCLC) patients with sensitive EGFR mutations. It is also an important clinical problem that urgently needs a solution. In this study, we explored strategies to overcome erlotinib resistance from the perspective of energy metabolism. SIRT6 is a histone deacetylase. Here, we found that high expression of SIRT6 is associated with poor prognosis of lung adenocarcinoma, especially in EGFR-mutated NSCLC patients. The next cell experiment found that SIRT6 expression increased in erlotinib-resistant cells, and SIRT6 expression was negatively correlated with the sensitivity of NSCLC to erlotinib. Inhibition of SIRT6 promoted erlotinib-induced apoptosis in erlotinib-resistant cells, and glycolysis in drug-resistant cells was also inhibited. Functional studies have shown that SIRT6 increases glycolysis through the HIF-1α/HK2 signaling axis in drug-resistant cells and inhibits the sensitivity of NSCLC cells to erlotinib. In addition, the HIF-1α blocker PX478-2HCL attenuated the glycolysis and erlotinib resistance induced by SIRT6. More importantly, we confirmed the antitumor effect of SIRT6 inhibition combined with erlotinib in NSCLC-bearing mice. Our findings indicate that the cancer metabolic pathway regulated by SIRT6 may be a new target for attenuating NSCLC erlotinib resistance and has potential as a biomarker or therapeutic target to improve outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Qiai You
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jianmin Wang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yongxin Yu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Feng Li
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lingxin Meng
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Mingjing Chen
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiao Yang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zihan Xu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jianguo Sun
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Zhengtang Chen
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
4
|
Babuta J, Hall Z, Athersuch T. Dysregulated Metabolism in EGFR-TKI Drug Resistant Non-Small-Cell Lung Cancer: A Systematic Review. Metabolites 2022; 12:metabo12070644. [PMID: 35888768 PMCID: PMC9316206 DOI: 10.3390/metabo12070644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is a common barrier to continued effective treatment in cancer. In non-small-cell lung cancer (NSCLC), tyrosine kinase inhibitors that target the epidermal growth factor receptor (EGFR-TKIs) exhibit good efficacy in cancer treatment until acquired resistance occurs. It has been observed that drug resistance is accompanied by numerous molecular-level changes, including significant shifts in cellular metabolism. The purpose of this study was to critically and systematically review the published literature with respect to how metabolism differs in drug-resistant compared to drug-sensitive NSCLC. Understanding the differences between resistant and sensitive cells is vital and has the potential to allow interventions that enable the re-sensitisation of resistant cells to treatment, and consequently reinitiate the therapeutic effect of EGFR-TKIs. The main literature search was performed using relevant keywords in PubMed and Ovid (Medline) and reviewed using the Covidence platform. Of the 1331 potentially relevant literature records retrieved, 27 studies were subsequently selected for comprehensive analysis. Collectively, the literature revealed that NSCLC cell lines resistant to EGFR-TKI treatment possess characteristic metabolic and lipidomic phenotypic signatures that differentiate them from sensitive lines. Further exploration of these reported differences suggests that drug-resistant cell lines are differentially reliant on cellular energy sources and that modulation of relative energy production pathways may lead to the reversal of drug resistance.
Collapse
|
5
|
Rio-Vilariño A, del Puerto-Nevado L, García-Foncillas J, Cebrián A. Ras Family of Small GTPases in CRC: New Perspectives for Overcoming Drug Resistance. Cancers (Basel) 2021; 13:3757. [PMID: 34359657 PMCID: PMC8345156 DOI: 10.3390/cancers13153757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains among the cancers with the highest incidence, prevalence, and mortality worldwide. Although the development of targeted therapies against the EGFR and VEGFR membrane receptors has considerably improved survival in these patients, the appearance of resistance means that their success is still limited. Overactivation of several members of the Ras-GTPase family is one of the main actors in both tumour progression and the lack of response to cytotoxic and targeted therapies. This fact has led many resources to be devoted over the last decades to the development of targeted therapies against these proteins. However, they have not been as successful as expected in their move to the clinic so far. In this review, we will analyse the role of these Ras-GTPases in the emergence and development of colorectal cancer and their relationship with resistance to targeted therapies, as well as the status and new advances in the design of targeted therapies against these proteins and their possible clinical implications.
Collapse
Affiliation(s)
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| | - Arancha Cebrián
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| |
Collapse
|
6
|
New promising developments for potential therapeutic applications of high-dose ascorbate as an anticancer drug. Hematol Oncol Stem Cell Ther 2020; 14:179-191. [PMID: 33278349 DOI: 10.1016/j.hemonc.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Vitamin C (ascorbate) is an essential dietary requirement, with fundamental redox, anti-oxidant functions at physiologic concentrations. Vitamin C is a cofactor for Fe2+ and 2-oxoglutarate-dependent dioxygenases, englobing large families of enzymes, including also epigenetic regulators of DNA and histone methylation. Importantly, vitamin C is involved in the control of the activity of TET (ten-eleven translocation) enzymes, key epigenetic regulators. For this spectrum of activities, often involving pathways deregulated in cancer cells, vitamin C possesses some pharmacologic activities that can be exploited in anticancer therapy. In particular, the capacity of pharmacological doses of vitamin C to target redox imbalance and to rescue deregulated epigenetic program observed in some cancer cells represents a consistent therapeutic potentiality. Several recent studies have identified some cancer subsets that could benefit from the pharmacological activities of vitamin C. The identification of these potentially responsive patients will help to carefully define controlled clinical trials aiming to evaluate the anticancer activity of Vitamin C.
Collapse
|
7
|
Wu Z, Li W, Li J, Zhang Y, Zhang X, Xu Y, Hu Y, Li Q, Sun Q, Ma Z. Higher expression of miR-150-5p promotes tumorigenesis by suppressing LKB1 in non-small cell lung cancer. Pathol Res Pract 2020; 216:153145. [PMID: 32827803 DOI: 10.1016/j.prp.2020.153145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most malignant tumors that can form in the human. MicroRNAs (MiRNAs) play significant role in tumor progression. Human lung cancer tissues and cell lines were used to determine miR-150-5p respectively, and Liver Kinase B1 (LKB1) expression using quantitative real-time PCR (qRT-PCR). The data analysis website Kaplan-Meier Plotter (database obtained from The Cancer Genome Atlas) was used to perform a survival analysis with LKB1 levels. Using the appropriate assays, the function of miR-150-5p was also detected in cellular proliferation, migration and cell apoptosis as well as cell cycle. Results revealed that miR-150-5p was upregulated in non-small cell lung cancer (NSCLC) tissue and cell lines. In NSCLC, miR-150-5p promoted cellular proliferation and migration, but decreased cellular apoptosis. Conversely, miR-150-5p inhibition suppressed cellular growth. These results further revealed a network of cellular signaling for miR-150-5p to target LKB1. Ectopic expression of LKB1 can mitigate the tumor-promoting function of miR-150-5p. Collectively, these results indicated that miR-150-5p may promote lung cancer by inhibiting the suppressor gene LKB1 in NSCLC.
Collapse
Affiliation(s)
- Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wanqiu Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiadong Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xinju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yikun Xu
- QianWeiChang College, Shanghai University, Shanghai 200444, China
| | - Yanping Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qian Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Qiangling Sun
- Shanghai Chest Hospital, 241 West Huaihai Road, Shanghai, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7286737. [PMID: 31934267 PMCID: PMC6942884 DOI: 10.1155/2019/7286737] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Vitamin C is an antioxidant that may scavenge reactive oxygen species preventing DNA damage and other effects important in cancer transformation. Dietary vitamin C from natural sources is taken with other compounds affecting its bioavailability and biological effects. High pharmacological doses of vitamin C may induce prooxidant effects, detrimental for cancer cells. An oxidized form of vitamin C, dehydroascorbate, is transported through glucose transporters, and cancer cells switch from oxidative phosphorylation to glycolysis in energy production so an excess of vitamin C may limit glucose transport and ATP production resulting in energetic crisis and cell death. Vitamin C may change the metabolomic and epigenetic profiles of cancer cells, and activation of ten-eleven translocation (TET) proteins and downregulation of pluripotency factors by the vitamin may eradicate cancer stem cells. Metastasis, the main reason of cancer-related deaths, requires breakage of anatomical barriers containing collagen, whose synthesis is promoted by vitamin C. Vitamin C induces degradation of hypoxia-inducible factor, HIF-1, essential for the survival of tumor cells in hypoxic conditions. Dietary vitamin C may stimulate the immune system through activation of NK and T cells and monocytes. Pharmacological doses of vitamin C may inhibit cancer transformation in several pathways, but further studies are needed to address both mechanistic and clinical aspects of this effect.
Collapse
|