1
|
Zhang Y, Luan M. Unraveling the role of PBK in glioblastoma: from molecular mechanisms to therapeutic targets. Ann Med Surg (Lond) 2024; 86:7147-7154. [PMID: 39649886 PMCID: PMC11623866 DOI: 10.1097/ms9.0000000000002708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 12/11/2024] Open
Abstract
Background This study investigates the gene expression characteristics of glioma-initiating cells (GIC), an important subgroup of glioblastoma (GBM), after knockdown of PBK (PDZ-binding kinase). Differentially expressed genes (DEGs) between PBK knockdown GIC and control groups were screened through bioinformatics methods. The authors analyzed the mechanisms and roles of these DEGs in GBM tumorigenesis and patient prognosis. Methods Microarray data (GSE53800) were obtained from the Gene Expression Omnibus (GEO) database, selecting 18 GIC cell line samples with or without PBK knockdown. Each control and knockdown group contained three samples. DEGs were screened using R software. GO enrichment analysis, KEGG pathway analysis, PPI network analysis, and hub gene identification were conducted to explore DEG mechanisms. Western blot analysis was also performed to detect EIF4E protein expression, one of the key hub genes, after PBK knockdown in the HS683 glioma cell line. Results A total of 175 upregulated and 145 downregulated genes were identified. GO analysis showed that DEGs were mainly enriched in the positive regulation of cell proliferation, cell adhesion, and angiogenesis. KEGG pathway analysis revealed that DEGs were mainly involved in neuroactive ligand-receptor interactions, calcium signaling, and HIF-1 signaling pathways. Western blot results indicated that EIF4E was downregulated after PBK knockdown. Conclusion A group of genes, such as EIF4E, were closely associated with PBK expression and functions. These findings may provide insight into the molecular mechanism of PBK in GBM.
Collapse
Affiliation(s)
| | - Mingyuan Luan
- Medicine Faculty, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Zhang Q, Hu C, Qu B, Zhang C, He L. Comparative Efficacy of Tumor Microenvironment-responsive Nanotherapeutics Targeting PSD95/Discs-large/ZO-1 Binding Kinase in Different Histological Subgroups of Medulloblastoma. Int J Med Sci 2024; 21:3018-3033. [PMID: 39628686 PMCID: PMC11610338 DOI: 10.7150/ijms.97992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
This work aimed to demonstrate the therapeutic effects of tumor microenvironment-responsive nanotherapeutic drugs targeting PSD95/Discs-large/ZO-1 domain (PDZ)-binding-kinase (PBK) in medulloblastoma Daoy and ONS-76 cells. The objective was to provide critical theoretical and practical foundations for the clinical adoption of tumor microenvironment-responsive nanotherapeutic drugs targeting PBK. The rabies virus glycoprotein (RVG) was utilized as a specific targeting molecule to form a tumor microenvironment-responsive nanocomplex, HPAA/RVG/PBK-siRNA, which incorporated glutathione (GSH) as a microenvironment stimulus factor within a hyperbranched polymer polyamide amine (HPAA). This nanocomplex also carried PBK-small interfering RNA (siRNA) for targeted PBK therapy. Characterization of HPAA, maleimide-polyethylene glycol-N-succinyl ester (MAL-PEG-NHS), HPAA-PEG, RVG, HPAA-RVG, and HPAA/RVG/PBK-siRNA was conducted using nuclear magnetic resonance spectroscopy, high-performance liquid chromatography (HPLC), dynamic light scattering, and transmission electron microscopy (TEM). Flow cytometry was employed to assess endocytosis and cell transfection of HPAA-RVG and HPAA/RVG/PBK-siRNA in Daoy and ONS-76 cells. The two cell lines were treated with HPAA/RVG/PBK-siRNA (HPAA/siRNA group), methoxy-PEG polyethylenimine (PEI-25k)/PBK-siRNA (PEI group), HPAA/RVG nanocarriers without PBK-siRNA (HPAA/RVG group), Dharmacon™ non-targeting siRNA (shNTC group), PBK-siRNA (Control group 1), AChR inhibitor (Control group 2), and GSH inhibitor (Control group 3), and compared with the control group (medium without any substances). Western blot analysis validated PBK expression levels (ELs) in various cell groups. Additionally, cell viability and proliferation were evaluated using methyl tetrazolium (MTT) assays and 5-Bromo-2'-deoxyuridine (BrdU) incorporation assays. The results revealed proton absorption peaks for HPAA at 2.78 ppm, 3.21 ppm, and 3.49 ppm, while RVG and HPAA-RVG exhibited characteristic absorption peaks at 23.653 min and 23.584 min, respectively, with peak areas of 4,856.6 and 6,927.3 for RVG. The nanoparticle sizes were 50-100 nm for HPAA-RVG and 100 nm for HPAA/RVG/PBK-siRNA, displaying spherical morphology and uniform size distribution. The average potential of HPAA-PEG was lower than that of HPAA (P<0.05), and HPAA-RVG showed dramatically lower potential than HPAA (P<0.001). At 8 hours, Daoy cells displayed higher endocytosis rates versus ONS-76 cells (P<0.05). The transfection rates of HPAA-RVG in both ONS-76 and Daoy cells were higher than those of HPAA, with Daoy cells showing higher transfection rates than HPAA (P<0.05). Under HPAA-RVG treatment, AChR levels in ONS-76 cells were significantly lower than those in Daoy cells (P < 0.05). Compared to the control group, the PBK protein expression levels, cell survival rates, and the number of cells in the proliferative phase were significantly reduced in Control group 1, the PEI group, and the HPAA/siRNA group in both ONS-76 and Daoy cells, with the ONS-76 cells in the HPAA/siRNA group showing the lowest values among these groups (P < 0.05). In summary, the findings indicated that the tumor microenvironment-responsive nanocomposite HPAA/RVG/PBK-siRNA selectively inhibited PBK expression in Daoy medulloblastoma cells, showcasing potential applicability in medulloblastoma therapy.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Ultrastructural Pathology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chao Hu
- Department of Breast Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101100, China
| | - Baoqing Qu
- Department of Ultrastructural Pathology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Cuiping Zhang
- Department of Ultrastructural Pathology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Longtao He
- Department of Ultrastructural Pathology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
3
|
Kato M, Ota A, Ono T, Karnan S, Hyodo T, Rahman ML, Hasan MN, Onda M, Kondo S, Ito K, Furuhashi A, Hayashi T, Konishi H, Tsuzuki S, Hosokawa Y, Kazaoka Y. PDZ-binding kinase inhibitor OTS514 suppresses the proliferation of oral squamous carcinoma cells. Oral Dis 2024; 30:223-234. [PMID: 36799330 DOI: 10.1111/odi.14533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE PDZ-binding kinase (PBK) has been reported as a poor prognostic factor and is a promising molecular target for anticancer therapeutics. Here, we aimed to investigate the effect of specific PBK inhibitor OTS514 on the survival of OSCC cells. METHODS Four OSCC cell lines (HSC-2, HSC-3, SAS, and OSC-19) were used to examine the effect of OTS514 on cell survival and apoptosis. DNA microarray analysis was conducted to investigate the effect of OTS514 on gene expression in OSCC cells. Gene set enrichment analysis was performed to identify molecular signatures related to the antiproliferative effect of OTS514. RESULTS OTS514 decreased the cell survival of OSCC cells dose-dependently, and administration of OTS514 readily suppressed the HSC-2-derived tumor growth in immunodeficient mice. Treatment with OTS514 significantly increased the number of apoptotic cells and caspase-3/7 activity. Importantly, OTS514 suppressed the expression of E2F target genes with a marked decrease in protein levels of E2F1, a transcriptional factor. Moreover, TP53 knockdown attenuated OTS514-induced apoptosis. CONCLUSION OTS514 suppressed the proliferation of OSCC cells by downregulating the expression of E2F target genes and induced apoptosis by mediating the p53 signaling pathway. These results highlight the clinical application of PBK inhibitors in the development of molecular-targeted therapeutics against OSCC.
Collapse
Affiliation(s)
- Mikako Kato
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Takayuki Ono
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Maho Onda
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Sayuri Kondo
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Kunihiro Ito
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akifumi Furuhashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Tomio Hayashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshiaki Kazaoka
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
4
|
Parvaresh H, Roozitalab G, Golandam F, Behzadi P, Jabbarzadeh Kaboli P. Unraveling the Potential of ALK-Targeted Therapies in Non-Small Cell Lung Cancer: Comprehensive Insights and Future Directions. Biomedicines 2024; 12:297. [PMID: 38397899 PMCID: PMC10887432 DOI: 10.3390/biomedicines12020297] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Background and Objective: This review comprehensively explores the intricate landscape of anaplastic lymphoma kinase (ALK), focusing specifically on its pivotal role in non-small cell lung cancer (NSCLC). Tracing ALK's discovery, from its fusion with nucleolar phosphoprotein (NPM)-1 in anaplastic large cell non-Hodgkin's lymphoma (ALCL) in 1994, the review elucidates the subsequent impact of ALK gene alterations in various malignancies, including inflammatory myofibroblastoma and NSCLC. Approximately 3-5% of NSCLC patients exhibit complex ALK rearrangements, leading to the approval of six ALK-tyrosine kinase inhibitors (TKIs) by 2022, revolutionizing the treatment landscape for advanced metastatic ALK + NSCLC. Notably, second-generation TKIs such as alectinib, ceritinib, and brigatinib have emerged to address resistance issues initially associated with the pioneer ALK-TKI, crizotinib. Methods: To ensure comprehensiveness, we extensively reviewed clinical trials on ALK inhibitors for NSCLC by 2023. Additionally, we systematically searched PubMed, prioritizing studies where the terms "ALK" AND "non-small cell lung cancer" AND/OR "NSCLC" featured prominently in the titles. This approach aimed to encompass a spectrum of relevant research studies, ensuring our review incorporates the latest and most pertinent information on innovative and alternative therapeutics for ALK + NSCLC. Key Content and Findings: Beyond exploring the intricate details of ALK structure and signaling, the review explores the convergence of ALK-targeted therapy and immunotherapy, investigating the potential of immune checkpoint inhibitors in ALK-altered NSCLC tumors. Despite encouraging preclinical data, challenges observed in trials assessing combinations such as nivolumab-crizotinib, mainly due to severe hepatic toxicity, emphasize the necessity for cautious exploration of these novel approaches. Additionally, the review explores innovative directions such as ALK molecular diagnostics, ALK vaccines, and biosensors, shedding light on their promising potential within ALK-driven cancers. Conclusions: This comprehensive analysis covers molecular mechanisms, therapeutic strategies, and immune interactions associated with ALK-rearranged NSCLC. As a pivotal resource, the review guides future research and therapeutic interventions in ALK-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Hannaneh Parvaresh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
| | - Ghazaal Roozitalab
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Fatemeh Golandam
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Department of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948974, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Parham Jabbarzadeh Kaboli
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 407, Taiwan
| |
Collapse
|
5
|
Qiao L, Ba J, Xie J, Zhu R, Wan Y, Zhang M, Jin Z, Guo Z, Yu J, Chen S, Yao Y. Overexpression of PBK/TOPK relates to poor prognosis of patients with breast cancer: a retrospective analysis. World J Surg Oncol 2022; 20:316. [PMID: 36171591 PMCID: PMC9520922 DOI: 10.1186/s12957-022-02769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Background PDZ-binding kinase/T-lymphokine-activated killer cell-derived protein kinase (PBK/TOPK) is a potential prognostic indicator for patients with breast cancer. The objective of the present study was to explore the relationship between PBK/TOPK expression and clinicopathological indicators as well as the survival of patients with breast cancer. Methods Immunohistochemical staining was used to detect the expression of PBK/TOPK in 202 cases of breast cancer tissues. The relationship between PBK/TOPK and clinicopathological parameters was evaluated using Spearman’s rank-order correlation. The difference in PBK/TOPK expression among different molecular types was analyzed with the chi-square test. Kaplan-Meier analysis was used to create a survival curve and the log rank test was used to analyze the overall survival (OS) and disease-free survival (DFS). Prognostic correlation was assessed using univariate and multivariate Cox regression analyses. Results Among 202 breast cancer samples, PBK/TOPK was expressed (“+” and “++”) in 182 samples (90.1%). In addition, the histological grade, TNM stages, lymph node metastasis, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and Ki-67 were positively associated with PBK/TOPK expression. With regard to the molecular type, the expression of PBK/TOPK is different. The expression level of PBK/TOPK was negatively correlated with both the OS and DFS of breast cancer patients. The difference in the above results is meaningful (P < 0.05). Conclusions PBK/TOPK is overexpressed in breast cancer, and the expression is closely related to the clinicopathological characteristics of the disease. Breast cancer patients with high expression of PBK/TOPK have a poor prognosis. Therefore, healthcare providers can optimize breast cancer management using this indicator.
Collapse
Affiliation(s)
- Liang Qiao
- The Department of Breast and Thyroid Surgery, Zhongshan Hospital Affiliated to Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, China
| | - Jinling Ba
- The Department of Breast and Thyroid Surgery, Zhongshan Hospital Affiliated to Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, China
| | - Jiping Xie
- The Department of Breast and Thyroid Surgery, Zhongshan Hospital Affiliated to Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, China
| | - Ruiping Zhu
- The Pathology Department, Zhongshan Hospital Affiliated to Dalian University, Dalian, 116001, China
| | - Yi Wan
- The Department of Breast and Thyroid Surgery, Zhongshan Hospital Affiliated to Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, China
| | - Min Zhang
- The Department of Breast and Thyroid Surgery, Zhongshan Hospital Affiliated to Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, China
| | - Zeyu Jin
- The Department of Breast and Thyroid Surgery, Zhongshan Hospital Affiliated to Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, China
| | - Zicheng Guo
- The Department of Breast and Thyroid Surgery, Zhongshan Hospital Affiliated to Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, China
| | - Jiaxuan Yu
- The Department of Breast and Thyroid Surgery, Zhongshan Hospital Affiliated to Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, China
| | - Sijing Chen
- The Department of Breast and Thyroid Surgery, Zhongshan Hospital Affiliated to Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, China
| | - Yongqiang Yao
- The Department of Breast and Thyroid Surgery, Zhongshan Hospital Affiliated to Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, China.
| |
Collapse
|
6
|
Inhibiting ALK-TOPK signaling pathway promotes cell apoptosis of ALK-positive NSCLC. Cell Death Dis 2022; 13:828. [PMID: 36167821 PMCID: PMC9515217 DOI: 10.1038/s41419-022-05260-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
T-LAK cell-oriented protein kinase (TOPK) is a potential therapeutic target in tumors. However, its role in anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) has not been reported. Here, we found that TOPK was highly expressed in ALK-positive NSCLC. Additionally, ALK was identified as another upstream kinase of TOPK by in vitro kinase assay screening. Then, it was proven that ALK phosphorylated TOPK at Y74 in vitro and ex vivo, and the pathways downstream of ALK-TOPK were explored by phosphoproteomic analysis. Subsequently, we demonstrated that inhibiting TOPK enhanced tumor sensitivity to alectinib (an ALK inhibitor). The combination of alectinib and HI-032 (a TOPK inhibitor) suppressed the growth and promoted the apoptosis of ALK-positive NSCLC cells ex vivo and in vivo. Our findings reveal a novel ALK-TOPK signaling pathway in ALK-positive NSCLC. The combination of alectinib and HI-032 might be a promising therapeutic strategy for improving the sensitivity of ALK-positive NSCLC to targeted therapy.
Collapse
|
7
|
Meng Q, Xu Y, Ling X, Liu H, Ding S, Wu H, Yan D, Fang X, Li T, Liu Q. Role of ferroptosis-related genes in coronary atherosclerosis and identification of key genes: integration of bioinformatics analysis and experimental validation. BMC Cardiovasc Disord 2022; 22:339. [PMID: 35906548 PMCID: PMC9338511 DOI: 10.1186/s12872-022-02747-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Coronary atherosclerosis (CA) is the most common type of atherosclerosis. However, the inherent pathogenesis and mechanisms of CA are unclear, and the relationship with ferroptosis-related genes (FRGs) has not been reported. The purpose of this study was to use bioinformatics techniques to evaluate potential therapeutic targets for CA.Please provide the given name for author “Dingshun”.Please provide the given name for author “Dingshun”.
Methods First, the GSE132651 dataset was acquired from the Gene Expression Omnibus database. Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and Protein–Protein interaction network were successively conducted. Next, overlapping genes between hub genes and CA genes were found. FRGs were found when comparing the CA group with the normal group. The correlation between overlapping genes and FRGs was further analyzed. At last, we performed Elisa to validate the expression of these genes in human blood specimens. Mice aortic tissues were used for western blot to detect the expression of proteins. Results Based on the GSE132651 dataset, 102 differentially expressed genes were identified. Five overlapping genes between hub genes and CA genes were found (CCNA2, RRM2, PBK, PCNA, CDK1). TFRC and GPX4 were found to be FRGs. TFRC was positively correlated with CCNA2, PBK, PCNA, CDK1, RRM2, with CDK1 being the strongest correlation. GPX4 was negatively correlated with these genes, among which CCNA2 was the strongest correlation. The ELISA results showed that CCNA2, CDK1, and TFRC expression were markedly increased in serum of the CA samples compared with controls, while GPX4 expression was markedly decreased in the CA samples. The western blot results show that GPX4 expression was lower in the model group, TFRC, CDK1, and CCNA2 protein expression were high in the model group. Conclusions Ferroptosis-related genes GPX4 and TFRC were closely correlated with the identified overlapping genes CCNA2 and CDK1, which may serve as targeted therapies for the treatment of CA. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02747-x.
Collapse
Affiliation(s)
- Qingwen Meng
- Deparment of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.,Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, Hainan Medical University, Haikou, 570100, China
| | - Yiqian Xu
- Department of Pharmacology, Hainan Medical University, Haikou, 570100, China
| | - Xuebin Ling
- Deparment of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Huajiang Liu
- Deparment of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Shun Ding
- Department of Pharmacology, Hainan Medical University, Haikou, 570100, China
| | - Haolin Wu
- Department of Pharmacology, Hainan Medical University, Haikou, 570100, China
| | - Dongming Yan
- Department of Pharmacology, Hainan Medical University, Haikou, 570100, China
| | - Xingyue Fang
- Deparment of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Tianfa Li
- Deparment of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
| | - Qibing Liu
- Department of Pharmacology, Hainan Medical University, Haikou, 570100, China. .,Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
| |
Collapse
|
8
|
Lee DH, Jeong YJ, Won JY, Sim HI, Park Y, Jin HS. PBK/TOPK Is a Favorable Prognostic Biomarker Correlated with Antitumor Immunity in Colon Cancers. Biomedicines 2022; 10:biomedicines10020299. [PMID: 35203508 PMCID: PMC8869639 DOI: 10.3390/biomedicines10020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitor therapy has proven efficacy in a subset of colon cancer patients featuring a deficient DNA mismatch repair system or a high microsatellite instability profile. However, there is high demand for more effective biomarkers to expand the colon cancer population responding to ICI therapy. PBK/TOPK, a serine/threonine kinase, plays a role in cell cycle regulation and mitotic progression. Here, we investigated the correlation between PBK/TOPK expression and tumor immunity and its prognostic value in colon cancer. Based on large-scale bioinformatics analysis, we discovered that elevated PBK/TOPK expression predicted a favorable outcome in patients with colon cancer and was positively associated with immune infiltration levels of CD8+ T cells, CD4+ T cells, natural killer cells, and M1 macrophages. In contrast, a negative correlation was found between PBK/TOPK expression and immune suppressor cells, including regulatory T cells and M2 macrophages. Furthermore, the expression of PBK/TOPK was correlated with the expression of T-cell cytotoxicity genes in colon cancer. Additionally, high PBK/TOPK expression was associated with mutations in DNA damage repair genes, and thus with increased tumor mutation and neoantigen burden. These findings suggest that PBK/TOPK may serve as a prognostic and predictive biomarker for immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
| | - Yu-Jeong Jeong
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
| | - Ju-Young Won
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
| | - Hye-In Sim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Yoon Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Correspondence: (Y.P.); (H.-S.J.)
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
- Correspondence: (Y.P.); (H.-S.J.)
| |
Collapse
|
9
|
The role of T-LAK cell-originated protein kinase in targeted cancer therapy. Mol Cell Biochem 2022; 477:759-769. [PMID: 35037144 DOI: 10.1007/s11010-021-04329-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Targeted therapy has gradually become the first-line clinical tumor therapy due to its high specificity and low rate of side effects. TOPK (T-LAK cell-originated protein kinase), a MAP kinase, is highly expressed in various tumor tissues, while it is rarely expressed in normal tissues, with the exceptions of testicular germ cells and some fetal tissues. It can promote cancer cell proliferation and migration and is also related to drug resistance. Therefore, TOPK is considered a good therapeutic target. Moreover, a number of studies have shown that targeting TOPK can inhibit the proliferation of cancer cells and promote their apoptosis. Here, we discussed the biological functions of TOPK in cancer and summarized its tumor-related signaling network and known TOPK inhibitors. Finally, the role of TOPK in targeted cancer therapy was concluded, and future research directions for TOPK were assessed.
Collapse
|
10
|
PDZ Binding Kinase/T-LAK Cell-Derived Protein Kinase Plays an Oncogenic Role and Promotes Immune Escape in Human Tumors. JOURNAL OF ONCOLOGY 2021; 2021:8892479. [PMID: 34603451 PMCID: PMC8486520 DOI: 10.1155/2021/8892479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
Background PDZ binding kinase (PBK)/T-LAK cell-derived protein kinase (TOPK) is an important mitotic kinase that promotes tumor progression in some cancers. However, the pan-cancer analysis of PBK/TOPK and its role in tumor immunity are limited. Methods The oncogenic and immune roles of PBK in various cancers were explored using multiple databases, including Oncomine, Human Protein Atlas, ULCAN, Tumor Immune Estimation Resource 2.0, STRING, and Gene Expression Profiling Interactive Analysis 2, and data collected from The Cancer Genome Atlas and Genotype-Tissue Expression Project. Several bioinformatics tools and methods were used for quantitative analyses and panoramic descriptions, such as the DESeq2 and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Results PBK was expressed at higher levels in most solid tumors than in normal tissues in multiple databases. PBK was associated with an advanced tumor stage and grade and a poor prognosis in most cases. PBK was associated with tumor immune cell infiltration in most cases and was especially positively correlated with TAMs, Tregs, MDSCs, and T cell exhaustion in KIRC, LGG, and LIHC. PBK was closely related to TMB, MSI, and immune checkpoint genes in various cancers, and patients with higher expression of PBK in KIRC, LGG, and LIHC had higher TIDE scores and lower immune responses in the predicted results. PBK was closely related to cell cycle regulation and immune-related processes in LIHC and LGG according to GO and KEGG enrichment analyses. Conclusions PBK may play an oncogenic role in most solid tumors and promotes immune escape, especially in KIRC, LGG, and LIHC. This study suggests the potential value of PBK inhibitors combined with immunotherapy.
Collapse
|
11
|
Meng Z, Wu J, Liu X, Zhou W, Ni M, Liu S, Guo S, Jia S, Zhang J. Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis. J Int Med Res 2021; 48:300060520910019. [PMID: 32722976 PMCID: PMC7391448 DOI: 10.1177/0300060520910019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The objective was to identify potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma (HCC). Methods Gene expression profile datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HCC and normal samples were identified via an integrated analysis. A protein–protein interaction network was constructed and analyzed using the STRING database and Cytoscape software, and enrichment analyses were carried out through DAVID. Gene Expression Profiling Interactive Analysis and Kaplan–Meier plotter were used to determine expression and prognostic values of hub genes. Results We identified 11 hub genes (CDK1, CCNB2, CDC20, CCNB1, TOP2A, CCNA2, MELK, PBK, TPX2, KIF20A, and AURKA) that might be closely related to the pathogenesis and prognosis of HCC. Enrichment analyses indicated that the DEGs were significantly enriched in metabolism-associated pathways, and hub genes and module 1 were highly associated with cell cycle pathway. Conclusions In this study, we identified key genes of HCC, which indicated directions for further research into diagnostic and prognostic biomarkers that could facilitate targeted molecular therapy for HCC.
Collapse
Affiliation(s)
- Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Fu X, Zhao R, Yoon G, Shim JH, Choi BY, Yin F, Xu B, Laster KV, Liu K, Dong Z, Lee MH. 3-Deoxysappanchalcone Inhibits Skin Cancer Proliferation by Regulating T-Lymphokine-Activated Killer Cell-Originated Protein Kinase in vitro and in vivo. Front Cell Dev Biol 2021; 9:638174. [PMID: 33842463 PMCID: PMC8027363 DOI: 10.3389/fcell.2021.638174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Skin cancer is one of the most commonly diagnosed cancers worldwide. The 5-year survival rate of the most aggressive late-stage skin cancer ranges between 20 and 30%. Thus, the discovery and investigation of novel target therapeutic agents that can effectively treat skin cancer is of the utmost importance. The T-lymphokine-activated killer cell-originated protein kinase (TOPK), which belongs to the serine-threonine kinase class of the mitogen-activated protein kinase kinase (MAPKK) family, is highly expressed and activated in skin cancer. The present study investigates the role of 3-deoxysappanchalcone (3-DSC), a plant-derived functional TOPK inhibitor, in suppressing skin cancer cell growth. Purpose In the context of skin cancer prevention and therapy, we clarify the effect and mechanism of 3-DSC on different types of skin cancer and solar-simulated light (SSL)-induced skin hyperplasia. Methods In an in vitro study, western blotting and in vitro kinase assays were utilized to determine the protein expression of TOPK and its activity, respectively. Pull-down assay with 3-DSC and TOPK (wild-type and T42A/N172 mutation) was performed to confirm the direct interaction between T42A/N172 amino acid sites of TOPK and 3-DSC. Cell proliferation and anchorage-independent cell growth assays were utilized to determine the effect of 3-DSC on cell growth. In an in vivo study, the thickness of skin and tumor size were measured in the acute SSL-induced inflammation mouse model or SK-MEL-2 cell-derived xenografts mouse model treated with 3-DSC. Immunohistochemistry analysis of tumors isolated from SK-MEL-2 cell-derived xenografts was performed to determine whether cell-based results observed upon 3-DSC treatment could be recapitulated in vivo. Results 3-DSC is able to inhibit cell proliferation in skin cancer cells in an anchorage-dependent and anchorage-independent manner by regulation of TOPK and its related signaling pathway in vitro. We also found that application of 3-DSC reduced acute SSL-induced murine skin hyperplasia. Additionally, we observed that 3-DSC decreased SK-MEL-2 cell-derived xenograft tumor growth through attenuating phosphorylation of TOPK and its downstream effectors including ERK, RSK, and c-Jun. Conclusions Our results suggest that 3-DSC may function in a chemopreventive and chemotherapeutic capacity by protecting against UV-induced skin hyperplasia and inhibiting tumor cell growth by attenuating TOPK signaling, respectively.
Collapse
Affiliation(s)
- Xiaorong Fu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Jung-Hyun Shim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Cheongju, South Korea
| | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beibei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| |
Collapse
|
13
|
Pirovano G, Roberts S, Reiner T. TOPKi-NBD: a fluorescent small molecule for tumor imaging. Eur J Nucl Med Mol Imaging 2019; 47:1003-1010. [PMID: 31734783 DOI: 10.1007/s00259-019-04608-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE OTS514 is a highly specific inhibitor targeting lymphokine-activated killer T cell-originated protein kinase (TOPK). A fluorescently labeled TOPK inhibitor could be used for tumor delineation or intraoperative imaging, potentially improving patient care. METHODS Fluorescently labeled OTS514 was obtained by conjugating the fluorescent small molecule NBD to the TOPK inhibitor. HCT116 colorectal cancer cells were used to generate tumors in NSG mice for in vivo studies. Images were generated in vitro using confocal microscopy and ex vivo using an IVIS Spectrum. RESULTS OTS514 was successfully conjugated to a fluorescent sensor and validated in vitro, in vivo, and ex vivo. The labeling reaction led to TOPKi-NBD with 67% yield and 97% purity after purification. We were able to test binding properties of TOPKi-NBD to its target, TOPK, and compared them to the precursor inhibitor. EC50s showed similar target affinities for TOPKi-NBD and the unlabeled OTS514. TOPKi-NBD showed specific tumor uptake after systemic administration and was microscopically detectable inside cancer cells ex vivo. Blocking controls performed with an excess of the unlabeled OTS514 confirmed specificity of the compound. Overall, the results represent a first step toward the development of a class of TOPK-specific fluorescent inhibitors for in vivo imaging and tumor delineation. CONCLUSIONS TOPK has the potential to be a new molecular target for cancer-specific imaging in a large variety of tumors. This could lead to broad applications in vitro and in vivo.
Collapse
Affiliation(s)
- Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|