1
|
Zhu J, Li J, Yang K, Chen Y, Wang J, He Y, Shen K, Wang K, Shi T, Chen W. NR4A1 depletion inhibits colorectal cancer progression by promoting necroptosis via the RIG-I-like receptor pathway. Cancer Lett 2024; 585:216693. [PMID: 38301909 DOI: 10.1016/j.canlet.2024.216693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Yin M, Ding X, Yin S, Wang L, Zhang K, Chen Y, Liu R, Zhu C, Li W. Exosomes from hepatitis B virus-infected hepatocytes activate hepatic stellate cells and aggravate liver fibrosis through the miR-506-3p/Nur77 pathway. J Biochem Mol Toxicol 2023; 37:e23432. [PMID: 37352222 DOI: 10.1002/jbt.23432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/06/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Cumulative evidence indicates the important role of Nur77 in organ fibrogenesis. However, the role of Nur77 in hepatitis B virus (HBV)-related liver fibrosis (LF) remains unclear. Cells were transfected with the microRNA mimic miRNA-506-3p or inhibitor, and pcDNA3.1-Nur77 or Nur77 guide RNA. Exosomes were isolated from HBV-infected HepG2-sodium taurocholate cotransporting polypeptide cells. The levels of miR-506-3p, Nur77, and LF-related genes and proteins were detected by quantitative polymerase chain reaction (qPCR) and western blot analysis, respectively. The pathology of the liver from HBV-infected patients was examined using hematoxylin-eosin and Masson's staining. The expression of Nur77 in liver tissue was determined by immunohistochemistry, and the LF score was assessed using the METAVIR system. The relationship between miR-506-3p/Nur77 and LF score was analyzed by correlation analysis. HBV infection downregulated miR-506-3p expression and upregulated Nur77 levels in hepatocytes. Exosomes from HBV-infected hepatocytes also displayed decreased gene expression of miR-506-3p and increased expressions of Nur77- and LF-related genes in stellate cells compared with exosomes from hepatocytes with mock infection. These changes were reversed by Nur77 guide RNA. Nur77 expression in liver tissue was strongly correlated with LF, whereas serum miR-506-3p was strongly negatively correlated with LF. Exosomes from HBV-infected hepatocytes activate stellate cells and aggravate LF through the miR-506-3p/Nur77 pathway. These exosomes may be the basis of a promising therapeutic strategy.
Collapse
Affiliation(s)
- Ming Yin
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Critical Care Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xiurong Ding
- Graduate School of Bengbu Medical University, Bengbu, China
- Department of Infectious Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Song Yin
- Department of Infectious Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Wannan Medical College, Wuhu, China
| | - Longmei Wang
- Department of Infectious Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Wannan Medical College, Wuhu, China
| | - Kaiguang Zhang
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuankun Chen
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chuanlong Zhu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Infectious Disease, Jiangsu Provincial Hospital, Nanjing, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Huang M, Xue J, Chen Z, Zhou X, Chen M, Sun J, Xu Z, Wang S, Xu H, Du Z, Liu M. MTHFD2 suppresses glioblastoma progression via the inhibition of ERK1/2 phosphorylation. Biochem Cell Biol 2023; 101:112-124. [PMID: 36493392 DOI: 10.1139/bcb-2022-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a WHO grade 4 tumor and is the most malignant form of glioma. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme involved in folate metabolism, has been reported to be highly expressed in several human tumors. However, little is known about the role of MTHFD2 in GBM. In this study, we aimed to explore the biological functions of MTHFD2 in GBM and identify the associated mechanisms. We performed experiments such as immunohistochemistry, Western blot, and transwell assays and found that MTHFD2 expression was lower in high-grade glioma than in low-grade glioma. Furthermore, a high expression of MTHFD2 was associated with a favorable prognosis, and MTHFD2 levels showed good prognostic accuracy for glioma patients. The overexpression of MTHFD2 could inhibit the migration, invasion, and proliferation of GBM cells, whereas its knockdown induced the opposite effect. Mechanistically, our findings revealed that MTHFD2 suppressed GBM progression independent of its enzymatic activity, likely by inducing cytoskeletal remodeling through the regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, thereby influencing GBM malignance. Collectively, these findings uncover a potential tumor-suppressor role of MTHFD2 in GBM cells. MTHFD2 may act as a promising diagnostic and therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Meihui Huang
- Department of Central Laboratory, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Jiajian Xue
- Department of Neurosurgery, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Zhiming Chen
- Department of Pathology, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Xiao Zhou
- Department of Central Laboratory, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Mantong Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jianhong Sun
- Department of Pathology, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Zepeng Du
- Department of Central Laboratory, Shantou Central Hospital, Shantou 515031, Guangdong, China
- Department of Pathology, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Mingfa Liu
- Department of Neurosurgery, Shantou Central Hospital, Shantou 515031, Guangdong, China
| |
Collapse
|
4
|
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, Zhang LC, Li L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 2023. [PMID: 36645225 DOI: 10.1002/cam4.5594] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with high morbidity and fatality. Chemotherapy, as traditional therapy for CRC, has exerted well antitumor effect and greatly improved the survival of CRC patients. Nevertheless, chemoresistance is one of the major problems during chemotherapy for CRC and significantly limits the efficacy of the treatment and influences the prognosis of patients. To overcome chemoresistance in CRC, many strategies are being investigated. Here, we review the common and novel measures to combat the resistance, including drug repurposing (nonsteroidal anti-inflammatory drugs, metformin, dichloroacetate, enalapril, ivermectin, bazedoxifene, melatonin, and S-adenosylmethionine), gene therapy (ribozymes, RNAi, CRISPR/Cas9, epigenetic therapy, antisense oligonucleotides, and noncoding RNAs), protein inhibitor (EFGR inhibitor, S1PR2 inhibitor, and DNA methyltransferase inhibitor), natural herbal compounds (polyphenols, terpenoids, quinones, alkaloids, and sterols), new drug delivery system (nanocarriers, liposomes, exosomes, and hydrogels), and combination therapy. These common or novel strategies for the reversal of chemoresistance promise to improve the treatment of CRC.
Collapse
Affiliation(s)
- Shu-Chang Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ming-Xing Miao
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ye-Min Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
FoxO3 restricts liver regeneration by suppressing the proliferation of hepatocytes. NPJ Regen Med 2022; 7:33. [PMID: 35750775 PMCID: PMC9232540 DOI: 10.1038/s41536-022-00227-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2022] [Indexed: 12/05/2022] Open
Abstract
Upon injury, the liver is capable of substantial regeneration from the original tissue until an appropriate functional size. The underlying mechanisms controlling the liver regeneration processes are not well elucidated. Previous studies have proposed that the transcription factor FoxO3 is involved in various liver diseases, but its exact role in the regulation of liver regeneration remains largely unclear. To directly test the detailed role of FoxO3 in liver regeneration, both a constitutive Albumin-Cre driver line and adeno-associated virus serotype 8 (AAV8)-Tbg-Cre (AAV-Cre)-injected adult FoxO3fl/fl mice were subjected to 70% partial hepatectomy (PH). Our data demonstrate that FoxO3 deletion accelerates liver regeneration primarily by limiting polyploidization and promoting the proliferation of hepatocytes during liver regeneration. RNA-seq analysis indicates that FoxO3 deficiency greatly alters the expression of gene sets associated with cell proliferation and apoptosis during liver regeneration. Chromatin immunoprecipitation-PCR (ChIP-PCR) and luciferase reporter assays reveal that FoxO3 promotes the expression of Nox4 but suppresses the expression of Nr4a1 in hepatocytes. AAV8 virus-mediated overexpression of Nox4 and knockdown of Nr4a1 significantly suppressed hepatocyte proliferation and liver regeneration in FoxO3-deficient mice. We demonstrate that FoxO3 negatively controls hepatocyte proliferation through Nox4 upregulation and Nr4a1 downregulation, thereby ensuring appropriate functional regeneration of the liver. Our findings provide novel mechanistic insight into the therapeutic mechanisms of FoxO3 in liver damage and repair.
Collapse
|
6
|
Yu Q, Chen W, Li Y, He J, Wang Y, Yang S, Zhou J. The novel circular RNA HIPK3 accelerates the proliferation and invasion of hepatocellular carcinoma cells by sponging the micro RNA-124 or micro RNA-506/pyruvate dehydrogenase kinase 2 axis. Bioengineered 2022; 13:4717-4729. [PMID: 35212603 PMCID: PMC8974013 DOI: 10.1080/21655979.2022.2031398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) have been confirmed to be associated with the progression of various cancers, including hepatocellular carcinoma (HCC). However, the role and mechanism of circHIPK3 in HCC are still unclear. To investigate its function, circHIPK3 expression was first determined by RT–qPCR in HCC tissues or cells. Functionally, cell proliferation and invasion were investigated by CCK-8, EdU, or Transwell assays. In terms of understanding the mechanism, the interaction of the circRNA HIPK3/micro RNA 124 (miRNA 124) or micro RNA 506 (miRNA506) /PDK2 regulatory loop was verified by dual-luciferase reporter gene assay. In addition, a xenograft tumor model was established to confirm the impact of circHIPK3 on the growth of HCC cells in vivo. We found that circHIPK3 was upregulated in HCC patients and associated with clinical characteristics, while miR-124 and miR-506 were downregulated in HCC patients. Additionally, we proved that knock down of circHIPK3 remarkably suppressed the proliferation and invasion of HCC cells. Mechanistically, circHIPK3 directly bound to miR-124 or miR-506 and inhibited their expression, and PDK2 was a target gene of miR-124 or miR-506. Moreover, circHIPK3 overexpression reversed the inhibitory effect of miR-124 or miR-506 on HCC progression. miR-124 or miR-506 could also suppress tumorigenesis of HCC cells by PDK2. Furthermore, in vivo evidence confirmed that knock down of circHIPK3 inhibited tumor formation. We suggest that circHIPK3 can accelerate the proliferation and invasion of HCC cells by sponging miR-124 or miR-506 to upregulate PDK2, which is the underlying mechanism of circHIPK3-induced HCC progression.
Collapse
Affiliation(s)
- Qiangfeng Yu
- The Second Department of General Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Wenxiang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yiming Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Jun He
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yu Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Sijia Yang
- The Second Department of General Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Jianyin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Du Y, Miao Z, Qiu L, Lv Y, Wang K, Guo L. Clinical Potential of miR-451 and miR-506 as a Prognostic Biomarker in Patients with Breast Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9578788. [PMID: 35070246 PMCID: PMC8767372 DOI: 10.1155/2022/9578788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND The incidence and mortality of breast cancer in the world remain high. The function and important role of miR-451 and miR-506 in a series of cancers have been proved. The purpose of this research was to explore the clinical diagnosis and prognostic significance of miR-451 and miR-506 expression in breast cancer. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect miR-451 and miR-506 expression in serum and tissues. The relationship of miR-451 and miR-506 with clinical parameters was determined by the chi-square test. Receiver operating characteristics (ROC) analysis was conducted to evaluate the diagnostic accuracy of miR-451 and miR-506 in breast cancer. In addition, we determined the prognostic performance of miR-451 and miR-506 using Kaplan-Meier survival assay. RESULTS The expression of miR-451 and miR-506 in breast cancer patients was significantly lower than that in healthy people. miR-451 and miR-506 expression decreased in breast cancer tissues compared with paracancerous tissue. High expression of miR-451 and miR-506 was associated with positive lymph node metastasis and late tumor node metastasis stage. Breast cancer patients with high miR-451 and miR-506 expression had lower five-year survival rate. The level of miR-451 and miR-506 expression showed high diagnostic accuracy for distinguishing breast cancer patients and healthy people. CONCLUSION miR-451 and miR-506 could be used as biomarker for the diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Yu Du
- Department of Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing City 100050, China
| | - Zhuang Miao
- Department of Laboratory, Affiliated Hospital of Jilin Medical College, Jilin City 132013, Jilin Province, China
| | - Lijuan Qiu
- Department of Blood Transfusion, Beijing Children's Hospital, Capital Medical University, Beijing City 100045, China
| | - Yan Lv
- Department of Laboratory, Beijing Public Security Hospital, Beijing City 100050, China
| | - Kedi Wang
- Department of Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing City 100050, China
| | - Lusheng Guo
- Department of Laboratory, Affiliated Hospital of Jilin Medical College, Jilin City 132013, Jilin Province, China
| |
Collapse
|
8
|
Wen R, Chen C, Zhong X, Hu C. PAX6 upstream antisense RNA (PAUPAR) inhibits colorectal cancer progression through modulation of the microRNA (miR)-17-5p / zinc finger protein 750 (ZNF750) axis. Bioengineered 2021; 12:3886-3899. [PMID: 34288812 PMCID: PMC8806802 DOI: 10.1080/21655979.2021.1940071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Researchers have demonstrated that long non-coding RNAs (lncRNAs) are vital in colorectal cancer (CRC) progression. Here, we aimed to explore the function of lncRNA PAX6 upstream antisense RNA (PAUPAR) in the development of CRC. In the present study, PAUPAR and microRNA (miR)-17-5p expression levels in CRC tissues and cells were examined using quantitative real-time polymerase chain reaction (qRT-PCR). Western blot analysis was adopted to examine ZNF750 expression at the protein level in CRC cells. CRC cell proliferation was examined by colony formation experiment and 5-Bromo-2-deoxyUridine (BrdU) experiment. CRC cell migration and invasion were assessed by Transwell experiments. Apoptosis was measured using the TUNEL experiment. The targeting relationship between PAUPAR and miR-17-5p was confirmed using dual-luciferase reporter gene and RNA immunoprecipitation (RIP) experiments. We demonstrated that PAUPAR was markedly down-modulated in CRC, and its low expression was significantly related to increased T stage and local lymph node metastasis. Knockdown of PAUPAR enhanced CRC cell proliferation, migration and invasion, and restrained apoptosis relative to controls, whereas PAUPAR overexpression caused the opposite effects. Moreover, rescue experiments showed that miR-17-5p inhibitor could reverse the role of PAUPAR knockdown on the malignant phenotypes of CRC cells. Additionally, PAUPAR could positively regulate the expression of ZNF750 via repressing miR-17-5p. Taken together, these findings suggest that PAUPAR/miR-17-5p/ZNF750 axis is a novel mechanism implicated in CRC progression.
Collapse
Affiliation(s)
- Ruhui Wen
- Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
- CONTACT Ruhui Wen Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, NO. 41 Erling North Road, Huicheng District, Huizhou, Guangdong516000, China
| | - Chao Chen
- Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Xiaohua Zhong
- Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Chen Hu
- Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| |
Collapse
|
9
|
Zhao X, Cui D, Yan F, Yang L, Huang B. Circ_0007919 exerts an anti-tumor role in colorectal cancer through targeting miR-942-5p/TET1 axis. Pathol Res Pract 2021; 229:153704. [PMID: 34906917 DOI: 10.1016/j.prp.2021.153704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/19/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are key regulators in the development of many cancers. The present study was aimed to investigate the mechanism by which circ_0007919 affected colorectal cancer (CRC) progression.The differentially expressed circRNA was screened out by analyzing the expression profile of circRNAs of CRC tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting the expressions of circ_0007919, miR-942-5p, and ten-eleven translocation 1 (TET1) mRNA in CRC tissues and cell lines. Cell growth and migration were assessed by cell counting kit-8 (CCK-8) 5-bromo-2'-deoxyuridine (BrdU) and scratch assays. Bioinformatics analysis and dual-luciferase reporter assay were conducted to predict and validate the targeted relationships between circ_0007919 and miR-942-5p, as well as between miR-942-5p and TET1 mRNA. Besides, Western blot was conducted for detecting TET1 protein expression in CRC cells. It was revealed that, in CRC tissues and cell lines, circ_0007919 and TET1 expressions were reduced whereas miR-942-5p expression was enhanced. It was also revealed that circ_0007919 overexpression markedly suppressed CRC cell growth and migration. In addition, circ_0007919 could competitively bind with miR-942-5p to increase the expression of miR-942-5p's target gene TET1. Collectively, circ_0007919 inhibits CRC cell growth and migration via regulating the miR-942-5p/TET1 axis. This study helps to better understand the molecular mechanism of CRC progression.
Collapse
Affiliation(s)
- Xun Zhao
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou, China
| | - Dejun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou, China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou, China
| | - Liuchan Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou, China
| | - Bo Huang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou, China.
| |
Collapse
|
10
|
Mao G, Zhou B, Xu W, Jiao N, Wu Z, Li J, Liu Y. Hsa_circ_0040809 regulates colorectal cancer development by upregulating methyltransferase DNMT1 via targeting miR-515-5p. J Gene Med 2021; 23:e3388. [PMID: 34438465 DOI: 10.1002/jgm.3388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/29/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are key regulators in the progression of various cancers. Abnormal DNA methylation patterns feature prominently in the regulation of the expression of tumor-related genes. This study is aimed at investigating the molecular mechanism of circ_0040809 affecting colorectal cancer (CRC) progression by regulating DNA methyltransferase 1 (DNMT1). METHODS circ_0040809 was selected from the circRNA microarray datasets (GSE142837 and GSE138589). Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to examine the expression of circ_0040809, miR-515-5p, and DNMT1 mRNA in paired cancerous and paracancerous tissues of 40 CRC patients, as well as in cell lines. Western blotting was conducted for detecting DNMT1 protein expression in CRC cells. Cell proliferation, migration, and apoptosis were assessed through CCK-8, Transwell, and flow cytometry assays. Bioinformatics and dual-luciferase gene assay were conducted to predict and verify, respectively, the targeted relationships between circ_0040809 and miR-515-5p, as well as between miR-515-5p and DNMT1 mRNA. RESULTS In CRC tissues and cells, circ_0040809 and DNMT1 expression are markedly increased, whereas miR-515-5p expression is decreased. Also, high circ_0040809 expression is significantly linked to shorter overall survival. Cell function compensation experiments reveal that circ_0040809 silencing inhibits CRC cell proliferation and migration and promotes apoptosis, while circ_0040809 overexpression has the opposite effects. Mechanistically, circ_0040809 competitively binds to miR-515-5p to elevate DNMT1 expression. Rescue assay reveals that overexpressed miR-515-5p partly counteracts the tumor-facilitating impact of circ_0040809. CONCLUSIONS circ_0040809 facilitates CRC cell proliferation and migration, and inhibits apoptosis, through modulating miR-515-5p/DNMT1 axis. Our study implies that targeting circ_0040809 may be a therapy strategy for CRC treatment.
Collapse
Affiliation(s)
- Guoliang Mao
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Bing Zhou
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Wuqin Xu
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Nanlin Jiao
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, Anhui, China
| | - Jiajia Li
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Yinhua Liu
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| |
Collapse
|
11
|
Yoshida K, Yokoi A, Yamamoto Y, Kajiyama H. ChrXq27.3 miRNA cluster functions in cancer development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:112. [PMID: 33766100 PMCID: PMC7992321 DOI: 10.1186/s13046-021-01910-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) regulate the expression of their target genes post-transcriptionally; thus, they are deeply involved in fundamental biological processes. miRNA clusters contain two or more miRNA-encoding genes, and these miRNAs are usually coexpressed due to common expression mechanisms. Therefore, miRNA clusters are effective modulators of biological pathways by the members coordinately regulating their multiple target genes, and an miRNA cluster located on the X chromosome q27.3 region has received much attention in cancer research recently. In this review, we discuss the novel findings of the chrXq27.3 miRNA cluster in various types of cancer. The chrXq27.3 miRNA cluster contains 30 mature miRNAs synthesized from 22 miRNA-encoding genes in an ~ 1.3-Mb region. The expressions of these miRNAs are usually negligible in many normal tissues, with the male reproductive system being an exception. In cancer tissues, each miRNA is dysregulated, compared with in adjacent normal tissues. The miRNA-encoding genes are not uniformly distributed in the region, and they are further divided into two groups (the miR-506-514 and miR-888-892 groups) according to their location on the genome. Most of the miRNAs in the former group are tumor-suppressive miRNAs that are further downregulated in various cancers compared with normal tissues. miR-506-3p in particular is the most well-known miRNA in this cluster, and it has various tumor-suppressive functions associated with the epithelial–mesenchymal transition, proliferation, and drug resistance. Moreover, other miRNAs, such as miR-508-3p and miR-509-3p, have similar tumor-suppressive effects. Hence, the expression of these miRNAs is clinically favorable as prognostic factors in various cancers. However, the functions of the latter group are less understood. In the latter group, miR-888-5p displays oncogenic functions, whereas miR-892b is tumor suppressive. Therefore, the functions of the miR-888–892 group are considered to be cell type- or tissue-specific. In conclusion, the chrXq27.3 miRNA cluster is a critical regulator of cancer progression, and the miRNAs themselves, their regulatory mechanisms, and their target genes might be promising therapeutic targets.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan. .,Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
12
|
Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, Batra SK, Nasser MW. RNA-based therapies: A cog in the wheel of lung cancer defense. Mol Cancer 2021; 20:54. [PMID: 33740988 PMCID: PMC7977189 DOI: 10.1186/s12943-021-01338-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Apar Kishor Ganti
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
- Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
13
|
Liu Z, Gu Y, Cheng X, Jiang H, Huang Y, Zhang Y, Yu G, Cheng Y, Zhou L. Upregulation lnc-NEAT1 contributes to colorectal cancer progression through sponging miR-486-5p and activating NR4A1/Wnt/β-catenin pathway. Cancer Biomark 2021; 30:309-319. [PMID: 33337350 DOI: 10.3233/cbm-201733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer is a major public health problem and fourth guiding cause of cancer-induced mortality worldwide. The five-year survival rate for patients with colorectal cancer remains poor, and almost half of colorectal cancer patients present recurrence and die within five years. The increasing studies showed that long non-coding RNA (lncRNA) was involved in colorectal cancer. Therefore, this study was used to explore molecular mechanisms of nuclear paraspeckle assembly transcript 1 (NEAT1) in colorectal cancer. The real-time quantitative polymerase chain reaction (RT-qPCR) was employed to estimate the expression levels of NEAT1, Nuclear receptor 4 A1 (NR4A1), and miR-486-5p in colorectal cancer tissues and cells. Kaplan-Meier curve was conducted to analyze relationship between survival time of colorectal cancer patients and level of NEAT1. The protein levels of NR4A1, β-catenin, c-Myc, and cyclinD1 were assessed with western blot assay. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) and flow cytometry assays were performed to evaluate proliferation and apoptosis of colorectal cancer cells, respectively. The migration and invasion abilities of cells were examined by transwell assay. The relationship between miR-486-5p and NEAT1 or NR4A1 was confirmed by dual-luciferase reporter assay. We found NEAT1 and NR4A1 were highly expressed in colorectal cancer tissues and cell lines compared with controls. Loss-functional experiments revealed that knockdown of NEAT1 or NR4A1 repressed proliferation and motility, while inducing apoptosis of colorectal cancer cells. The gain of NR4A1 could abolish NEAT1 silencing-induced effects in colorectal cancer cells. In addition, NEAT1 contributed to colorectal cancer progression through mediating NR4A1/Wnt/β-catenin signaling pathway. In conclusion, NEAT1 stimulated colorectal cancer progression via acting as competing endogenous RNA to sponge miR-486-5p and regulate NR4A1/Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhining Liu
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yimei Gu
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaohu Cheng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Heng Jiang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Huang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingfeng Zhang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Gang Yu
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yunsheng Cheng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lianbang Zhou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
14
|
Haque I, Kawsar HI, Motes H, Sharma M, Banerjee S, Banerjee SK, Godwin AK, Huang CH. Downregulation of miR-506-3p Facilitates EGFR-TKI Resistance through Induction of Sonic Hedgehog Signaling in Non-Small-Cell Lung Cancer Cell Lines. Int J Mol Sci 2020; 21:E9307. [PMID: 33291316 PMCID: PMC7729622 DOI: 10.3390/ijms21239307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation eventually develop resistance to EGFR-targeted tyrosine kinase inhibitors (TKIs). Treatment resistance remains the primary obstacle to the successful treatment of NSCLC. Although drug resistance mechanisms have been studied extensively in NSCLC, the regulation of these mechanisms has not been completely understood. Recently, increasing numbers of microRNAs (miRNAs) are implicated in EGFR-TKI resistance, indicating that miRNAs may serve as novel targets and may hold promise as predictive biomarkers for anti-EGFR therapy. MicroRNA-506 (miR-506) has been identified as a tumor suppressor in many cancers, including lung cancer; however, the role of miR-506 in lung cancer chemoresistance has not yet been addressed. Here we report that miR-506-3p expression was markedly reduced in erlotinib-resistant (ER) cells. We identified Sonic Hedgehog (SHH) as a novel target of miR-506-3p, aberrantly activated in ER cells. The ectopic overexpression of miR-506-3p in ER cells downregulates SHH signaling, increases E-cadherin expression, and inhibits the expression of vimentin, thus counteracting the epithelial-mesenchymal transition (EMT)-mediated chemoresistance. Our results advanced our understanding of the molecular mechanisms underlying EGFR-TKI resistance and indicated that the miR-506/SHH axis might represent a novel therapeutic target for future EGFR mutated lung cancer treatment.
Collapse
Affiliation(s)
- Inamul Haque
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (H.M.); (S.B.); (S.K.B.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Hameem I. Kawsar
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Hannah Motes
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (H.M.); (S.B.); (S.K.B.)
- Kirksville College of Osteopathic Medicine, Andrew Taylor Still University, Jefferson St, Kirksville, MO 63501, USA
| | - Mukut Sharma
- Research Service, Veterans Affairs Medical Center, Kansas City, MO 64128, USA;
| | - Snigdha Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (H.M.); (S.B.); (S.K.B.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Sushanta K. Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (H.M.); (S.B.); (S.K.B.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Chao H. Huang
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (H.M.); (S.B.); (S.K.B.)
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
15
|
Zhang J, Kong X, Shi Q, Zhao B. MicroRNA-383-5p acts as a potential prognostic biomarker and an inhibitor of tumor cell proliferation, migration, and invasion in breast cancer. Cancer Biomark 2020; 27:423-432. [PMID: 31903982 DOI: 10.3233/cbm-190704] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been reported to serve as potential biomarkers in various cancer and play important roles in tumor progression. OBJECTIVE The aim of this study was to investigate the prognostic significance and functional role of miR-383-5p in breast cancer. METHODS The expression levels of miR-383-5p in breast cancer tissues and cell lines were measured using quantitative real-time PCR analysis. Kaplan-Meier curve and Cox regression analysis were used to explore the prognostic significance of miR-383-5p in breast cancer. The CCK-8 assay was used to assess cell proliferation ability. Transwell assays were used to assess cell migration and invasion abilities of breast cancer cells. RESULTS The expression of miR-383-5p was significantly downregulated in breast cancer tissues and cell lines, compared with that in normal tissues and normal epithelial MCF-10A cells, respectively. The expression of miR-383-5p was associated with differentiation, lymph node metastasis, and TNM stage. Patients with low miR-383-5p expression had shorter overall survival than those with high miR-383-5p expression. Overexpression of miR-383-5p significantly inhibited cell proliferation, migration, and invasion, while downregulation of miR-383-5p promoted cell proliferation, migration, and invasion in vitro. LDHA was a direct target of miR-383-5p. CONCLUSIONS Taken together, miR-383-5p was downregulated in breast cancer tissues and cell lines, and overexpression of miR-383-5p inhibited cell proliferation, migration, and invasion in breast cancer cells by targeting LDHA. Based on our findings, miR-383-5p may be a prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Vascular and Thyroid and Breast Surgery, Shanxian Central Hospital, Heze, Shandong, China
| | - Xia Kong
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong, China
| | - Qizhu Shi
- Department of Vascular and Thyroid and Breast Surgery, Shanxian Central Hospital, Heze, Shandong, China
| | - Bin Zhao
- Department of Vascular and Thyroid and Breast Surgery, Shanxian Central Hospital, Heze, Shandong, China
| |
Collapse
|
16
|
KCNQ1OT1 contributes to sorafenib resistance and programmed death‑ligand‑1‑mediated immune escape via sponging miR‑506 in hepatocellular carcinoma cells. Int J Mol Med 2020; 46:1794-1804. [PMID: 33000204 PMCID: PMC7521583 DOI: 10.3892/ijmm.2020.4710] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Drug resistance and immune escape of tumor cells severely compromise the treatment efficiency of hepatocellular carcinoma (HCC). Long non-coding RNA KCNQ1 overlapping transcript 1 (lncRNA KCNQ1OT1) has been shown to be involved in drug resistance in several cancers. The aim of the present study was to investigate the role of KCNQ1OT1 in sorafenib resistance and immune escape of HCC cells. Reverse transcription-quantitative PCR analysis, western blotting and immunohistochemistry were performed to detect the expression of KCNQ1OT1, miR-506 and programmed death-ligand-1 (PD-L1). Cell Counting Kit-8 assay, flow cytometry and Transwell assays were used to evaluate IC50 value, cell apoptosis and metastasis. ELISA was performed to detect the secretion of cytokines. Dual-luciferase reporter assay was conducted to verify the targeting relationships between miR-506 and KCNQ1OT1 or PD-L1. KCNQ1OT1 and PD-L1 were found to be upregulated and miR-506 was downregulated in sorafenib-resistant HCC tissues and cells. Furthermore, KCNQ1OT1 knockdown reduced the IC50 value of sorafenib, suppressed cell metastasis and promoted apoptosis in sorafenib-resistant HCC cells. Moreover, KCNQ1OT1 knockdown changed the tumor microenvironment and T-cell apoptosis in a sorafenib-resistant HCC/T-cell co-culture model. In addition, it was demonstrated that KCNQ1OT1 functioned as a competing endogenous RNA of miR-506 and increased PD-L1 expression in sorafenib-resistant HCC cells. miR-506 inhibition abolished the effects of KCNQ1OT1 knockdown on sorafenib sensitivity, tumor growth, the tumor microenvironment and T-cell apoptosis. In conclusion, KCNQ1OT1 knockdown inhibited sorafenib resistance and PD-L1-mediated immune escape by sponging miR-506 in sorafenib-resistant HCC cells.
Collapse
|
17
|
Shang A, Gu C, Wang W, Wang X, Sun J, Zeng B, Chen C, Chang W, Ping Y, Ji P, Wu J, Quan W, Yao Y, Zhou Y, Sun Z, Li D. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis. Mol Cancer 2020; 19:117. [PMID: 32713345 PMCID: PMC7384220 DOI: 10.1186/s12943-020-01235-0] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the leading cause of cancer-related death worldwide. Exosome shave emerged as crucial regulators of intercellular communication and that abundant Circular RNAs (circRNAs) are enriched within exosomes. CircRNAs are novel members of noncoding RNAs regulating cancer proliferation and progression. However, the function and regulatory mechanism of cancer-derived exosomal circRNAs in CRC remains unclear. METHODS CRC cells-derived exosomes were characterized using transmission electron microscopy, nanoparticle tracking analysis (NTA) and western blot. CCK-8, wound healing and transwell assays, and flow cytometry assays were conducted to assess whether exosomes would affect the proliferation, metastasis, and apoptosis of CRC cells, respectively. Moreover, we performed the RNA sequencing and RT-qPCR to identify circRNAs in exosome-stimulated CRC cells. Fluorescence in situ hybridization (FISH) assay was used to detect the cellular distribution of circPACRGL. Bioinformatic analyses (StarBase 2.0) were used to pool the miRNA targets of circPACRGL. Luciferase assays were performed to verify the direct interaction. Finally, flow cytometry was used to detect the differentiation of N1-N2 neutrophils. RESULTS Our study identified a novel CRC-derived exosomal circRNA, circPACRGL. We found circPACRGL was significantly upregulated in CRC cells after tumor-derived exosomes addition. Moreover, circPACRGL serves as a sponge for miR-142-3p/miR-506-3p to facilitate the transforming growth factor-β1 (TGF-β1) expression. As a result, circPACRGL promoted CRC cell proliferation, migration and invasion, as well as differentiation of N1 to N2 neutrophils via miR-142-3p/miR-506-3p-TGF-β1 axis. CONCLUSION Our study, the first to reveal that cancer-derived exosomal circPACRGL plays an oncogenic role in CRC proliferation and metastasis, providing mechanistic insights into the roles of circRNAs in CRC progression and a valuable marker for CRC treatment.
Collapse
Affiliation(s)
- Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China
| | - Chenzheng Gu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China
| | - Weiwei Wang
- Department of Pathology, The Sixth People's Hospital of Yancheng City, Yancheng, 224001, P.R. China
| | - Xuan Wang
- Department of Pharmacy, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, P.R. China
| | - Junjun Sun
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China
| | - Bingjie Zeng
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China
| | - Chen Chen
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China
| | - Wenjing Chang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China
| | - Yili Ping
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China
| | - Ping Ji
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China
| | - Junlu Wu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China
| | - Wenqiang Quan
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424, Homburg, Germany
| | - Yongxin Zhou
- Department of Thoracic-cardiovascular Surgery, Shanghai Tongji Hospital,Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China.
| | - Zujun Sun
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China.
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P.R. China.
| |
Collapse
|
18
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Hashemi F, Samarghandian S, Najafi M. MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sci 2020; 256:117973. [PMID: 32569779 DOI: 10.1016/j.lfs.2020.117973] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
The resistance of cancer cells into chemotherapy has restricted the efficiency of anti-tumor drugs. Oxaliplatin (OX) being an anti-tumor agent/drug is extensively used in the treatment of various cancer diseases. However, its frequent application has led to chemoresistance. As a consequence, studies have focused in finding underlying molecular pathways involved in OX resistance. MicroRNAs (miRs) are short endogenous non-coding RNAs that are able to regulate vital biological mechanisms such as cell proliferation and cell growth. The abnormal expression of miRs occurs in pathological events, particularly cancer. In the present review, we describe the involvement of miRs in OX resistance and sensitivity. The miRs are able to induce the oncogene factors and mechanisms, resulting in stimulation OX chemoresistance. Also, onco-suppressor miRs can enhance the sensitivity of cancer cells into OX chemotherapy and trigger apoptosis and cell cycle arrest, leading to reduced viability and progression of cancer cells. MiRs can also enhance the efficacy of OX chemotherapy. It is worth mentioning that miRs affect various down-stream targets in OX resistance/sensitivity such as STAT3, TGF-β, ATG4B, FOXO1, LATS2, NF-κB and so on. By identification of these miRs and their upstream and down-stream mediators, further studies can focus on targeting them to sensitize cancer cells into OX chemotherapy and induce apoptotic cell death.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | | | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
19
|
Pei FL, Cao MZ, Li YF. Circ_0000218 plays a carcinogenic role in colorectal cancer progression by regulating miR-139-3p/RAB1A axis. J Biochem 2020; 167:55-65. [PMID: 31598673 DOI: 10.1093/jb/mvz078] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
Accumulating researches have confirmed that circRNA abnormal expression plays a prominent role in the progression of colorectal cancer (CRC). The role of circ_0000218 in CRC and its potential mechanism are not clear. In this study, real-time polymerase chain reaction (RT-PCR) was employed to measure the circ_0000218, miR-139-3p and RAB1A mRNA expression in CRC tissues and cells. Immunohistochemistry and western blot were conducted to determine the RAB1A expression in CRC tissues and cells, respectively. Colony formation assay and BrdU method were employed to monitor the effect of circ_0000218 on cell proliferation. Transwell assay was adopted to detect cell migration and invasion. Dual luciferase reporter assay and RNA immunoprecipitation assay were adopted to confirm the targeting relationship between circ_0000218 and miR-139-3p, miR-139-3p and RAB1A. We demonstrated that circ_0000218 was notably upregulated in CRC tissues and cell lines, and its high expression level was markedly linked to the increase of T staging and local lymph node metastasis. Circ_0000218 overexpression enhanced the proliferation and metastasis of CRC cells while knocking down circ_0000218 caused the opposite effects. We also observed that miR-139-3p was negatively regulated by circ_0000218, while RAB1A was positively regulated by it. Collectively, this study suggested that circ_0000218 upregulated RAB1A and promoted CRC proliferation and metastasis via sponging miR-139-3p.
Collapse
Affiliation(s)
- Fu-Lai Pei
- Department of Oncology, Linyi Central Hospital, No. 17 Jiankang Road, Linyi, Shandong, China
| | - Ming-Zheng Cao
- Department of General Surgery, Linyi Central Hospital, No. 17 Jiankang Road, Linyi, Shandong, China
| | - Yue-Feng Li
- Department of Oncology, Linyi Central Hospital, No. 17 Jiankang Road, Linyi, Shandong, China
| |
Collapse
|
20
|
Yang G, Zhang Y, Yang J. A Five-microRNA Signature as Prognostic Biomarker in Colorectal Cancer by Bioinformatics Analysis. Front Oncol 2019; 9:1207. [PMID: 31799184 PMCID: PMC6863365 DOI: 10.3389/fonc.2019.01207] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Mounting evidence has demonstrated that a lot of miRNAs are overexpressed or downregulated in colorectal cancer (CRC) tissues and play a crucial role in tumorigenesis, invasion, and migration. The aim of our study was to screen new biomarkers related to CRC prognosis by bioinformatics analysis. By using the R language edgeR package for the differential analysis and standardization of miRNA expression profiles from The Cancer Genome Atlas (TCGA), 502 differentially expressed miRNAs (343 up-regulated, 159 down-regulated) were screened based on the cut-off criteria of p < 0.05 and |log2FC|>1, then all the patients (421) with differentially expressed miRNAs and complete survival time, status were then randomly divided into train group (212) and the test group (209). Eight miRNAs with p < 0.005 were revealed in univariate cox regression analysis of train group, then stepwise multivariate cox regression was applied for constituting a five-miRNA (hsa-miR-5091, hsa-miR-10b-3p, hsa-miR-9-5p, hsa-miR-187-3p, hsa-miR-32-5p) signature prognostic biomarkers with obviously different overall survival. Test group and entire group shown the same results utilizing the same prescient miRNA signature. The area under curve (AUC) of receiver operating characteristic (ROC) curve for predicting 5 years survival in train group, test group, and whole cohort were 0.79, 0.679, and 0.744, respectively, which demonstrated better predictive power of prognostic model. Furthermore, Univariate cox regression and multivariate cox regression considering other clinical factors displayed that the five-miRNA signature could serve as an independent prognostic factor. In order to predict the potential biological functions of five-miRNA signature, target genes of these five miRNAs were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and Gene Ontology (GO) enrichment analysis. The top 10 hub genes (ESR1, ADCY9, MEF2C, NRXN1, ADCY5, FGF2, KITLG, GATA1, GRIA1, KAT2B) of target genes in protein protein interaction (PPI) network were screened by string database and Cytoscape 3.6.1 (plug-in cytoHubba). In addition, 19 of target genes were associated with survival prognosis. Taken together, the current study showed the model of five-miRNA signature could efficiently function as a novel and independent prognosis biomarker and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Guodong Yang
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Yujiao Zhang
- Respiratory Medicine, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, China
| | - Jiyuan Yang
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
21
|
Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells 2019; 8:cells8111373. [PMID: 31683815 PMCID: PMC6912296 DOI: 10.3390/cells8111373] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
The Nr4a family of nuclear hormone receptors is composed of three members-Nr4a1/Nur77, Nr4a2/Nurr1 and Nr4a3/Nor1. While currently defined as ligandless, these transcription factors have been shown to regulate varied processes across a host of tissues. Of particular interest, the Nr4a family impinge, in a tissue dependent fashion, on cellular proliferation, apoptosis and fuel utilization. The regulation of these processes occurs through both nuclear and non-genomic pathways. The purpose of this review is to provide a balanced perspective of the tissue specific and Nr4a family member specific, effects on cellular proliferation, apoptosis and fuel utilization.
Collapse
|