1
|
Yao H, Liu Y, Wang Y, Xue Y, Jiang S, Sun X, Ji M, Xu Z, Ding J, Hu G, Lu M. Dural Tregs driven by astrocytic IL-33 mitigate depression through the EGFR signals in mPFC neurons. Cell Death Differ 2024:10.1038/s41418-024-01421-3. [PMID: 39592709 DOI: 10.1038/s41418-024-01421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The dura sinus-resident immune cells can influence the process of central neural system (CNS) diseases by communicating with central nerve cells. In clinical, Tregs are also frequently impaired in depression. However, the significance of this relationship remains unknown. In the present study, we found a significant increase in dural Treg populations in mouse models of depression, whereas depleting them by neutralizing antibodies injection could exacerbate depressive phenotypes. Through RNA sequencing, we identified that the antidepressant effects of dural Tregs are at least in part through the production of amphiregulin, increasing the expression of its receptor EGFR in medial prefrontal cortex (mPFC) pyramidal neurons. Furthermore, dural Tregs expressed high levels of ST2, and their expansion in depressed mice depended on astrocyte-derived IL33 secretion. Our study shows that dural Treg signaling can be enhanced by treatment with fluoxetine, highlighting that dural Tregs can be utilized as a potential target cell in major depressive disorder (MDD).
Collapse
Affiliation(s)
- Hang Yao
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- The Second People's Hospital of Changzhou, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueping Wang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - You Xue
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Jiang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xin Sun
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jianhua Ding
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming Lu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
- The Second People's Hospital of Changzhou, Changzhou Medical Center, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Jiang YJ, Ho TL, Chao CC, He XY, Chen PC, Cheng FJ, Huang WC, Huang CL, Liu PI, Tang CH. Particulate matter facilitates amphiregulin-dependent lung cancer proliferation through glutamine metabolism. Int J Biol Sci 2024; 20:3126-3139. [PMID: 38904011 PMCID: PMC11186359 DOI: 10.7150/ijbs.96210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Although many cohort studies have reported that long-term exposure to particulate matter (PM) causes lung cancer, the molecular mechanisms underlying the PM-induced increases in lung cancer progression remain unclear. We applied the lung cancer cell line A549 (Parental; A549.Par) to PM for an extended period to establish a mimic PM-exposed lung cancer cell line, A549.PM. Our results indicate that A549.PM exhibits higher cell growth and proliferation abilities compared to A549.Par cells in vitro and in vivo. The RNA sequencing analysis found amphiregulin (AREG) plays a critical role in PM-induced cell proliferation. We observed that PM increases AREG-dependent lung cancer proliferation through glutamine metabolism. In addition, the EGFR/PI3K/AKT/mTOR signaling pathway is involved in PM-induced solute carrier family A1 member 5 (SLC1A5) expression and glutamine metabolism. Our findings offer important insights into how lung cancer proliferation develops upon exposure to PM.
Collapse
Affiliation(s)
- Ya-Jing Jiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Trung-Loc Ho
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Chia Chao
- Department of Respiratory Therapy, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Xiu-Yuan He
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Po-Chun Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Fang-Ju Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chang-Lun Huang
- Division of General Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-I Liu
- Department of Physical Therapy, Asia University, Taichung, Taiwan
- Department of General Thoracic Surgery, Asia University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Azimi P, Yazdanian T, Ahmadiani A. mRNA markers for survival prediction in glioblastoma multiforme patients: a systematic review with bioinformatic analyses. BMC Cancer 2024; 24:612. [PMID: 38773447 PMCID: PMC11106946 DOI: 10.1186/s12885-024-12345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a type of fast-growing brain glioma associated with a very poor prognosis. This study aims to identify key genes whose expression is associated with the overall survival (OS) in patients with GBM. METHODS A systematic review was performed using PubMed, Scopus, Cochrane, and Web of Science up to Journey 2024. Two researchers independently extracted the data and assessed the study quality according to the New Castle Ottawa scale (NOS). The genes whose expression was found to be associated with survival were identified and considered in a subsequent bioinformatic study. The products of these genes were also analyzed considering protein-protein interaction (PPI) relationship analysis using STRING. Additionally, the most important genes associated with GBM patients' survival were also identified using the Cytoscape 3.9.0 software. For final validation, GEPIA and CGGA (mRNAseq_325 and mRNAseq_693) databases were used to conduct OS analyses. Gene set enrichment analysis was performed with GO Biological Process 2023. RESULTS From an initial search of 4104 articles, 255 studies were included from 24 countries. Studies described 613 unique genes whose mRNAs were significantly associated with OS in GBM patients, of which 107 were described in 2 or more studies. Based on the NOS, 131 studies were of high quality, while 124 were considered as low-quality studies. According to the PPI network, 31 key target genes were identified. Pathway analysis revealed five hub genes (IL6, NOTCH1, TGFB1, EGFR, and KDR). However, in the validation study, only, the FN1 gene was significant in three cohorts. CONCLUSION We successfully identified the most important 31 genes whose products may be considered as potential prognosis biomarkers as well as candidate target genes for innovative therapy of GBM tumors.
Collapse
Affiliation(s)
- Parisa Azimi
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| | | | - Abolhassan Ahmadiani
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| |
Collapse
|
4
|
Su X, Lai T, Tao Y, Zhang Y, Zhao C, Zhou J, Chen E, Zhu M, Zhang S, Wang B, Mao Y, Hu H. miR-33a-3p regulates METTL3-mediated AREG stability and alters EMT to inhibit pancreatic cancer invasion and metastasis. Sci Rep 2023; 13:13587. [PMID: 37604948 PMCID: PMC10442451 DOI: 10.1038/s41598-023-39506-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Recent studies have shown that amphoteric regulatory protein (AREG), a member of the epidermal growth factor (EGF) family, is expressed in many cancers and is an independent prognostic indicator for patients with pancreatic cancer, but whether AREG is regulated at the epigenetic level to promote the development of pancreatic cancer (PC) has not been elucidated. Our results support the notion that AREG is overexpressed in pancreatic cancer tissues and cell lines. Functionally, the deletion of AREG impedes pancreatic cancer (PC) cell proliferation, migration, and invasion. In addition, we identified and validated that methyltransferase-like 3 (METTL3) induced the m6A modification on AREG and facilitated the stability of AREG mRNA after sequencing. Additionally, we obtained experimental evidence that miR-33a-3p targets and inhibits METTL3 from taking action, as predicted by using the miRDB and RNAinter. Remediation experiments showed that miR-33a-3p inhibits PC progression through METTL3. In summary, this research reveals that miR-33a-3p inhibits m6A-induced stabilization of AREG by targeting METTL3, which plays a key role in the aggressive progression of PC. AREG could be a potential target for PC treatment.
Collapse
Affiliation(s)
- Xiaowen Su
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd, Binhu District, Wuxi, 214122, Jiangsu Province, China
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Tiantian Lai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd, Binhu District, Wuxi, 214122, Jiangsu Province, China
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yue Tao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd, Binhu District, Wuxi, 214122, Jiangsu Province, China
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Changyong Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Junjing Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Enhong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Maoqun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Shuo Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Bei Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| | - Yong Mao
- Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| | - Hao Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd, Binhu District, Wuxi, 214122, Jiangsu Province, China.
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
- Hepatobiliary and Pancreatic Surgery, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, China.
- Medical School, Nantong University, Nantong, 226001, China.
- Wuxi Institute of Hepatobiliary Surgery, Wuxi, 214122, China.
| |
Collapse
|
5
|
Identification of Important Genes of Keratoconus and Construction of the Diagnostic Model. Genet Res (Camb) 2022; 2022:5878460. [PMID: 36160033 PMCID: PMC9484959 DOI: 10.1155/2022/5878460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Objective. The aim of the study is to investigate the potential role of keratoconus (KC) in the diagnosis of keratoconus (KC). Methods. GSE151631 and GSE77938 were downloaded from the comprehensive gene expression database (GEO). By using the random forest model (RF), support vector machine model (SVM), and generalized linear model (GLM), important immune-related genes were identified as biomarkers for KC diagnosis. Results. Through the LASSO, RFE, and RF algorithms and comparing the three sets of DEGs, a total of 8 overlapping DEGs were obtained. We took 8 DEGs as the final optimal combination of DEGs: AREG, BBC3, DUSP2, map3k8, Smad7, CDKN1A, JUN, and LIF. Conclusion. Abnormal cell proliferation, apoptosis, and autophagy defects are related to KC, which may be the etiology and potential target of KC.
Collapse
|
6
|
Maille E, Levallet J, Dubois F, Antoine M, Danel C, Creveuil C, Mazieres J, Margery J, Greillier L, Gounant V, Moro‐Sibilot D, Molinier O, Léna H, Monnet I, Bergot E, Langlais A, Morin F, Scherpereel A, Zalcman G, Levallet G. A Defect of Amphiregulin Release Predicted Longer Survival Independently of YAP Expression in Patients with Pleural Mesothelioma in the IFCT-0701 MAPS Phase 3 Trial. Int J Cancer 2022; 150:1889-1904. [PMID: 35262190 PMCID: PMC9545369 DOI: 10.1002/ijc.33997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/07/2022]
Abstract
The Hippo pathway effector YAP is dysregulated in malignant pleural mesothelioma (MPM). YAP's target genes include the secreted growth factor amphiregulin (AREG), which is overexpressed in a wide range of epithelial cancers and plays an elusive role in MPM. We assayed the expression of YAP and AREG in MPM pathology samples and that of AREG additionally in plasma samples of patients from the randomized phase 3 IFCT‐0701 Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS) using immunohistochemistry and ELISA assays, respectively. MPM patients frequently presented high levels of tumor AREG (64.3%), a high cytosolic AREG expression being predictive of a better prognosis with longer median overall and progression‐free survival. Surprisingly, tumor AREG cytosolic expression was not correlated with secreted plasma AREG. By investigating the AREG metabolism and function in MPM cell lines H2452, H2052, MSTO‐211H and H28, in comparison with the T47D ER+ breast cancer cell line used as a positive control, we confirm that AREG is important for cell invasion, growth without anchorage, proliferation and apoptosis in mesothelioma cells. Yet, most of these MPM cell lines failed to correctly execute AREG posttranslational processing by metalloprotease ADAM17/tumor necrosis factor‐alpha‐converting enzyme (TACE) and extracell secretion. The favorable prognostic value of high cytosolic AREG expression in MPM patients could therefore be sustained by default AREG posttranslational processing and release. Thus, the determination of mesothelioma cell AREG content could be further investigated as a prognostic marker for MPM patients and used as a stratification factor in future clinical trials.
Collapse
Affiliation(s)
- Elodie Maille
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
| | - Jérôme Levallet
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
| | - Fatéméh Dubois
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of PathologyCHU de CaenCaenFrance
| | | | - Claire Danel
- Department of PathologyHôpital Bichat‐Claude Bernard, AP‐HP, Université Paris‐DiderotParisFrance
| | - Christian Creveuil
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Biomedical Research UnitCHU de CaenCaenFrance
| | - Julien Mazieres
- Department of PulmonologyHôpital Larrey, CHU de ToulouseToulouseFrance
| | - Jacques Margery
- Department of Medical OncologyInstitut Gustave RoussyVillejuifFrance
| | - Laurent Greillier
- Department of Multidisciplinary Oncology and Therapeutic InnovationsAssistance Publique Hôpitaux de Marseille, Université Aix‐Marseille UM015MarseilleFrance
| | - Valérie Gounant
- Department of PulmonologyHôpital Tenon, AP‐HPParisFrance
- Department of Thoracic Oncology & CIC 1425University Hospital Bichat‐Claude Bernard, AP‐HP, Université de ParisParisFrance
| | - Denis Moro‐Sibilot
- Pôle Thorax et Vaisseaux, University Hospital of Grenoble‐AlpesLa TroncheFrance
| | - Olivier Molinier
- Department of PulmonologyCentre Hospitalier Le MansLe MansFrance
| | - Hervé Léna
- Department of PulmonologyUniversity Hospital PontchaillouRennesFrance
| | - Isabelle Monnet
- Department of PulmonologyCentre Hospitalier Intercommunal de CréteilCréteilFrance
| | - Emmanuel Bergot
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of Pulmonology and Thoracic OncologyUniversity Hospital of CaenCaenFrance
| | | | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique (IFCT)ParisFrance
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic OncologyCentre Hospitalier Universitaire Lille, University of Lille, U1019 INSERM, Center of Infection and Immunity of LilleLilleFrance
| | - Gérard Zalcman
- Department of Thoracic Oncology & CIC 1425University Hospital Bichat‐Claude Bernard, AP‐HP, Université de ParisParisFrance
- U830 INSERM, “Cancer, Hétérogénéité, Instabilité et Plasticité” Centre de Recherche, Institut CurieParisFrance
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of PathologyCHU de CaenCaenFrance
| |
Collapse
|
7
|
Multi-omic characterization of genome-wide abnormal DNA methylation reveals diagnostic and prognostic markers for esophageal squamous-cell carcinoma. Signal Transduct Target Ther 2022; 7:53. [PMID: 35210398 PMCID: PMC8873499 DOI: 10.1038/s41392-022-00873-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
This study investigates aberrant DNA methylations as potential diagnosis and prognosis markers for esophageal squamous-cell carcinoma (ESCC), which if diagnosed at advanced stages has <30% five-year survival rate. Comparing genome-wide methylation sites of 91 ESCC and matched adjacent normal tissues, we identified 35,577 differentially methylated CpG sites (DMCs) and characterized their distribution patterns. Integrating whole-genome DNA and RNA-sequencing data of the same samples, we found multiple dysregulated transcription factors and ESCC-specific genomic correlates of identified DMCs. Using featured DMCs, we developed a 12-marker diagnostic panel with high accuracy in our dataset and the TCGA ESCC dataset, and a 4-marker prognostic panel distinguishing high-risk patients. In-vitro experiments validated the functions of 4 marker host genes. Together these results provide additional evidence for the important roles of aberrant DNA methylations in ESCC development and progression. Our DMC-based diagnostic and prognostic panels have potential values for clinical care of ESCC, laying foundations for developing targeted methylation assays for future non-invasive cancer detection methods.
Collapse
|
8
|
Yang Q, Yan L. Development of gene signature and nomogram for diagnosis and prognosis of oral carcinoma. Arch Oral Biol 2022; 136:105375. [DOI: 10.1016/j.archoralbio.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022]
|
9
|
Guo F, Deng T, Shi L, Wu P, Yan J, Ling G, Chen H, Huang Q, Mu J, Mo L. Identification of an m6A RNA Methylation Regulator Risk Score Model for Prediction of Clinical Prognosis in Astrocytoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7168929. [PMID: 35047056 PMCID: PMC8763512 DOI: 10.1155/2022/7168929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Astrocytoma (AS) is the most ubiquitous primary malignancy of the central nervous system (CNS). The vital involvement of the N6-methyladenosine (m6A) RNA modification in the growth of multiple human tumors is known. This study entailed probing m6A regulators with AS prognosis to construct a risk prediction model (RS) for potential clinical use. A total of 579 AS patients' (of the Chinese Glioma Genome Atlas,CGGA) data and the expression of 12 published m6A-related genes were included in this study. Cox and selection operator (LASSO) regression analyses for independent prognostic factors and multifactor Cox analysis established an R.S. model to predict the AS patient prognosis. This was subject to verification employing 331 samples from the TCGA data set followed by gene ontology and pathway enrichment study with gene set enrichment analysis (GSEA). The R.S. constructed with three m6A genes inclusive of WTAP, RBM15, and YTHDF2 emerged as independent prognostic factors in AS patients with vital involvement in the advancement and development of the malignancy. In a nutshell, this work reported an m6A-related gene risk model to predict the prognosis of AS patients to pave the way for discerning diagnostic and prognostic biomarkers. Further corroboration employing relevant wet-lab assays of this model is warranted.
Collapse
Affiliation(s)
- Fangzhou Guo
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Teng Deng
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liu Shi
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Pinghua Wu
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guoyuan Ling
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hainan Chen
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qianrong Huang
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junbo Mu
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ligen Mo
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Singh SS, Chauhan SB, Kumar A, Kumar S, Engwerda CR, Sundar S, Kumar R. Amphiregulin in cellular physiology, health, and disease: Potential use as a biomarker and therapeutic target. J Cell Physiol 2021; 237:1143-1156. [PMID: 34698381 DOI: 10.1002/jcp.30615] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Amphiregulin (AREG), which acts as one of the ligands for epidermal receptor growth factor receptor (EGFR), plays a crucial role in tissue repair, inflammation, and immunity. AREG is synthesized as membrane-anchored pre-protein, and is excreted after proteolytic cleavage, and serves as an autocrine or paracrine factor. After engagement with the EGFR, AREG triggers a cascade of signaling events required for many cellular physiological processes including metabolism, cell cycle, and proliferation. Under different inflammatory and pathogenic conditions, AREG is expressed by various activated immune cells that orchestrate both tolerance and host resistance mechanisms. Several factors including xenobiotics, cytokines, and inflammatory lipids have been shown to trigger AREG gene expression and release. In this review, we discuss the structure, function, and regulation of AREG, its role in tissue repair, inflammation, and homeostasis as well as the potential of AREG as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Siddharth S Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi B Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Christian R Engwerda
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Ling J, Chang A, Ye H, Zhao H, Zhuo X. TXNIP, CXCL1, and AREG as key genes in formaldehyde-induced head and neck carcinoma: an in silico analysis. Inhal Toxicol 2021; 33:113-120. [PMID: 33821754 DOI: 10.1080/08958378.2021.1908461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Reports have shown that formaldehyde (FA) can induce malignant transformation in cells via complicated mechanisms. Therefore, we aimed to investigate the possible molecules, pathways, and therapeutic agents for FA-induced head and neck cancer (HNC) by using bioinformatics approaches. METHODS High throughput data were analyzed to screen the differentially expressed genes (DEGs) between FA-treated nasal epithelium cells and controls. Then, the functions of the DEGs were annotated and the hub genes, as well as the key genes, were further screened out. Afterwards, potential drugs were predicted by using the connectivity map (CMAP) tool. RESULTS The information of a microarray-based dataset GSE21477 was extracted and analyzed. A total of 210 upregulated and 83 downregulated DEGs were generated, which might be enriched in various pathways, such as Cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, and Toll-like receptor signaling pathway. Among these DEGs, three hub genes including TXNIP, CXCL1, and AREG, were identified as the key genes because they might affect the prognosis of HNC. Finally, a major active ingredient of blister beetles, Cantharidin, was predicted to be one of the potential drugs reversing FA-induced malignant transformation in head and neck epithelium cells. CONCLUSION The present analysis gave us a novel insight into the mechanisms of FA-induced malignant transformation in head and neck epithelium cells, and predicted several small agents for the prevention or treatment of HNC. Future experiment studies are warranted to validate the findings.
Collapse
Affiliation(s)
- Junjun Ling
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huiping Ye
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Zheng Y, Luo Y, Chen X, Li H, Huang B, Zhou B, Zhu L, Kang X, Geng W. The role of mRNA in the development, diagnosis, treatment and prognosis of neural tumors. Mol Cancer 2021; 20:49. [PMID: 33673851 PMCID: PMC7934508 DOI: 10.1186/s12943-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Neural tumors can generally be divided into central nervous system tumors and peripheral nervous tumors. Because this type of tumor is located in the nerve, even benign tumors are often difficult to remove by surgery. In addition, the majority of neural tumors are malignant, and it is particular the same for the central nervous system tumors. Even treated with the means such as chemotherapy and radiotherapy, they are also difficult to completely cure. In recent years, an increasingly number of studies have focused on the use of mRNA to treat tumors, representing an emerging gene therapy. The use of mRNA can use the expression of some functional proteins for the treatment of genetic disorders or tissue repair, and it can also be applied to immunotherapy through the expression of antigens, antibodies or receptors. Therefore, although these therapies are not fully-fledged enough, they have a broad research prospect. In addition, there are many ways to treat tumors using mRNA vaccines and exosomes carrying mRNA, which have drawn much attention. In this study, we reviewed the current research on the role of mRNA in the development, diagnosis, treatment and prognosis of neural tumors, and examine the future research prospects of mRNA in neural tumors and the opportunities and challenges that will arise in the future application of clinical treatment.
Collapse
Affiliation(s)
- Yiyang Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.,School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yanyan Luo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xixi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Huiting Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Baojun Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Baofeng Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Liqing Zhu
- Department of clinical laboratory, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
13
|
Urbanavičiūtė R, Skauminas K, Skiriutė D. The Evaluation of AREG, MMP-2, CHI3L1, GFAP, and OPN Serum Combined Value in Astrocytic Glioma Patients' Diagnosis and Prognosis. Brain Sci 2020; 10:brainsci10110872. [PMID: 33227903 PMCID: PMC7699177 DOI: 10.3390/brainsci10110872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Gliomas account for approximately 70% of primary brain tumors in adults. Of all gliomas, grade IV astrocytoma, also called glioblastoma, has the poorest overall survival, with <5% of patients surviving five years after diagnosis. Due to the aggressiveness, lethal nature, and impaired surgical accessibility of the tumor, early diagnosis of the tumor and, in addition, prediction of the patient's survival time are important. We hypothesize that combining the protein level values of highly recognizable glioblastoma serum biomarkers could help to achieve higher specificity and sensitivity in predicting glioma patient outcome as compared to single markers. The aim of this study was to select the most promising astrocytoma patient overall survival prediction variables from five secretory proteins-glial fibrillary acidic protein (GFAP), matrix metalloproteinase-2 (MMP-2), chitinase 3-like 1 (CHI3L1), osteopontin (OPN), and amphiregulin (AREG)-combining them with routinely used tumor markers to create a Patient Survival Score calculation tool. The study group consisted of 70 astrocytoma patients and 31 healthy controls. We demonstrated that integrating serum CHI3L1 and OPN protein level values and tumor isocitrate dehydrogenase 1 IDH1 mutational status into one parameter could predict low-grade astrocytoma patients' two-year survival with 93.8% accuracy.
Collapse
|
14
|
Combined treatment with CBP and BET inhibitors reverses inadvertent activation of detrimental super enhancer programs in DIPG cells. Cell Death Dis 2020; 11:673. [PMID: 32826850 PMCID: PMC7442654 DOI: 10.1038/s41419-020-02800-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Diffuse intrinsic pontine gliomas (DIPG) are the most aggressive brain tumors in children with 5-year survival rates of only 2%. About 85% of all DIPG are characterized by a lysine-to-methionine substitution in histone 3, which leads to global H3K27 hypomethylation accompanied by H3K27 hyperacetylation. Hyperacetylation in DIPG favors the action of the Bromodomain and Extra-Terminal (BET) protein BRD4, and leads to the reprogramming of the enhancer landscape contributing to the activation of DIPG super enhancer-driven oncogenes. The activity of the acetyltransferase CREB-binding protein (CBP) is enhanced by BRD4 and associated with acetylation of nucleosomes at super enhancers (SE). In addition, CBP contributes to transcriptional activation through its function as a scaffold and protein bridge. Monotherapy with either a CBP (ICG-001) or BET inhibitor (JQ1) led to the reduction of tumor-related characteristics. Interestingly, combined treatment induced strong cytotoxic effects in H3.3K27M-mutated DIPG cell lines. RNA sequencing and chromatin immunoprecipitation revealed that these effects were caused by the inactivation of DIPG SE-controlled tumor-related genes. However, single treatment with ICG-001 or JQ1, respectively, led to activation of a subgroup of detrimental super enhancers. Combinatorial treatment reversed the inadvertent activation of these super enhancers and rescued the effect of ICG-001 and JQ1 single treatment on enhancer-driven oncogenes in H3K27M-mutated DIPG, but not in H3 wild-type pedHGG cells. In conclusion, combinatorial treatment with CBP and BET inhibitors is highly efficient in H3K27M-mutant DIPG due to reversal of inadvertent activation of detrimental SE programs in comparison with monotherapy.
Collapse
|
15
|
Knockdown of Amphiregulin Triggers Doxorubicin-Induced Autophagic and Apoptotic Death by Regulating Endoplasmic Reticulum Stress in Glioblastoma Cells. J Mol Neurosci 2020; 70:1461-1470. [PMID: 32472393 DOI: 10.1007/s12031-020-01598-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant brain tumor. The present standard treatment for GBM has not been effective; therefore, the prognosis remains dramatically poor and prolonged survival after treatment is still limited. The new therapeutic strategies are urgently needed to improve the treatment efficiency. Doxorubicin (Dox) has been widely used in the treatment of many cancers for decades. In recent years, with the advancement of delivery technology, more and more research indicates that Dox has the opportunity to be used in the treatment of GBM. Amphiregulin (AREG), a ligand of the epidermal growth factor receptor (EGFR), has been reported to have oncogenic effects in many cancer cell types and is implicated in drug resistance. However, the biological function and molecular mechanism of AREG in Dox treatment of GBM are still unclear. Here, we demonstrate that knockdown of AREG can boost Dox-induced endoplasmic reticulum (ER) stress to trigger activation in both autophagy and apoptosis in GBM cells, ultimately leading to cell death. To explore the importance of AREG in the clinic, we used available bioinformatics tools and found AREG is highly expressed in GBM tumor tissues that are associated with poor survival. In addition, we also used antibody array analysis to dissect pathways that are likely to be activated by AREG. Taken together, our results revealed AREG can serve as a potential therapeutic target and a promising biomarker in GBM.
Collapse
|
16
|
Huang YW, Lin CY, Tsai HC, Fong YC, Han CK, Huang YL, Wu WT, Cheng SP, Chang HC, Liao KW, Wang SW, Tang CH. Amphiregulin promotes cisplatin chemoresistance by upregulating ABCB1 expression in human chondrosarcoma. Aging (Albany NY) 2020; 12:9475-9488. [PMID: 32428872 PMCID: PMC7288968 DOI: 10.18632/aging.103220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Chondrosarcomas are well known for their resistance to chemotherapeutic agents, including cisplatin, which is commonly used in chondrosarcomas. Amphiregulin (AR), a ligand of epidermal growth factor receptor (EGFR), plays an important role in drug resistance. We therefore sought to determine the role of AR in cisplatin chemoresistance. We found that AR inhibits cisplatin-induced cell apoptosis and promotes ATP-binding cassette subfamily B member 1 (ABCB1) expression, while knockdown of ABCB1 by small interfering RNA (siRNA) reverses these effects. High phosphoinositide 3-kinase (PI3K), Akt and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation levels were observed in cisplatin-resistant cells. Pretreating chondrosarcoma cells with PI3K, Akt and NF-κB inhibitors or transfecting the cells with p85, Akt and p65 siRNAs potentiated cisplatin-induced cytotoxicity. In a mouse xenograft model, knockdown of AR expression in chondrosarcoma cells increased the cytotoxic effects of cisplatin and also decreased tumor volume and weight. These results indicate that AR upregulates ABCB1 expression through the PI3K/Akt/NF-κB signaling pathway and thus contributes to cisplatin resistance in chondrosarcoma.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsiao-Chi Tsai
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Wen-Tung Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Shih-Ping Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hao-Chiun Chang
- Department of Orthopaedics, MacKey Memorial Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuang-Wen Liao
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu City, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Identification of Astrocytoma Blood Serum Protein Profile. Cells 2019; 9:cells9010016. [PMID: 31861636 PMCID: PMC7017117 DOI: 10.3390/cells9010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
High-grade astrocytomas are some of the most common and aggressive brain cancers, whose signs and symptoms are initially non-specific. Up to the present date, there are no diagnostic tools to observe the early onset of the disease. Here, we analyzed the combination of blood serum proteins, which may play key roles in the tumorigenesis and the progression of glial tumors. Fifty-nine astrocytoma patients and 43 control serums were analyzed using Custom Human Protein Antibody Arrays, including ten targets: ANGPT1, AREG, IGF1, IP10, MMP2, NCAM1, OPN, PAI1, TGFβ1, and TIMP1. The decision tree analysis indicates that serums ANGPT1, TIMP1, IP10, and TGFβ1 are promising combinations of targets for glioma diagnostic applications. The accuracy of the decision tree algorithm was 73.5% (75/102), which correctly classified 79.7% (47/59) astrocytomas and 65.1% (28/43) healthy controls. The analysis revealed that the relative value of osteopontin (OPN) protein level alone predicted the 12-month survival of glioblastoma (GBM) patients with the specificity of 84%, while the inclusion of the IP10 protein increased model predictability to 92.3%. In conclusion, the serum protein profiles of ANGPT1, TIMP1, IP10, and TGFβ1 were associated with the presence of astrocytoma independent of its malignancy grade, while OPN and IP10 were associated with GBM patient survival.
Collapse
|
18
|
Oncosuppressive Role of RUNX3 in Human Astrocytomas. JOURNAL OF ONCOLOGY 2019; 2019:1232434. [PMID: 31467531 PMCID: PMC6699290 DOI: 10.1155/2019/1232434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/29/2023]
Abstract
Background Gliomas are the most common and aggressive among primary malignant brain tumours with significant inter- and intratumour heterogeneity in histology, molecular profile, and patient outcome. However, molecular targets that could provide reliable diagnostic and prognostic information on this type of cancer are currently unknown. Recent studies show that certain phenotypes of gliomas such as malignancy, resistance to therapy, and relapses are associated with the epigenetic alterations of tumour-specific genes. Runt-related transcription factor 3 (RUNX3) is feasible tumour suppressor gene since its inactivation was shown to be related to carcinogenesis. Aim The aim of the study was to elucidate RUNX3 changes in different regulation levels of molecular biology starting from epigenetics to function in particular cases of astrocytic origin tumours of different grade evaluating significance of molecular changes of RUNX3 for patient clinical characteristics as well as evaluate RUNX3 reexpression effect to GBM cells. Methods The methylation status and protein expression levels of RUNX3 were measured by methylation-specific PCR and Western blot in 136 and 72 different malignancy grade glioma tissues, respectively. Lipotransfection and MTT were applied for proliferation assessment in U87-MG cells. Results We found that RUNX3 was highly methylated and downregulated in GBM. RUNX3 promoter methylation was detected in 69.4% of GBM (n=49) as compared to 0 to 17.2% in I-III grade astrocytomas (n=87). Weighty lower RUNX3 protein level was observed in GMB specimens compared to grade II-III astrocytomas. Correlation test revealed a weak but significant link among Runx3 methylation and protein level. Kaplan-Meier analysis showed that increased RUNX3 methylation and low protein level were both associated with shorter patient survival (p<0.05). Reexpression of RUNX3 in U87-MG cells significantly reduced glioma cell viability compared to control transfection. Conclusions The results demonstrate that RUNX3 gene methylation and protein expression downregulation are glioma malignancy dependent and contribute to tumour progression.
Collapse
|
19
|
Chen JC, Lee IN, Huang C, Wu YP, Chung CY, Lee MH, Lin MHC, Yang JT. Valproic acid-induced amphiregulin secretion confers resistance to temozolomide treatment in human glioma cells. BMC Cancer 2019; 19:756. [PMID: 31370819 PMCID: PMC6670223 DOI: 10.1186/s12885-019-5843-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/16/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most severe type of primary brain tumor with a high mortality rate. Although extensive treatments for GBM, including resection, irradiation, chemotherapy and immunotherapy, have been tried, the prognosis is still poor. Temozolomide (TMZ), an alkylating agent, is a front-line chemotherapeutic drug for the clinical treatment of GBM; however, its effects are very limited because of the chemoresistance. Valproic acid (VPA), an antiepileptic agent with histone deacetylase inhibitor activity, has been shown to have synergistic effects with TMZ against GBM. The mechanism of action of VPA on TMZ combination therapy is still unclear. Accumulating evidence has shown that secreted proteins are responsible for the cross talking among cells in the tumor microenvironment, which may play a critical role in the regulation of drug responses. METHODS To understand the effect of VPA on secreted proteins in GBM cells, we first used the antibody array to analyze the cell culture supernatant from VPA-treated and untreated GBM cells. The results were further confirmed by lentivirus-mediated knockdown and exogenous recombinant administration. RESULTS Our results showed that amphiregulin (AR) was highly secreted in VPA-treated cells. Knockdown of AR can sensitize GBM cells to TMZ. Furthermore, pretreatment of exogenous recombinant AR significantly increased EGFR activation and conferred resistance to TMZ. To further verify the effect of AR on TMZ resistance, cells pre-treated with AR neutralizing antibody markedly increased sensitivity to TMZ. In addition, we also observed that the expression of AR was positively correlated with the resistance of TMZ in different GBM cell lines. CONCLUSIONS The present study aimed to identify the secreted proteins that contribute to the modulation of drug response. Understanding the full set of secreted proteins present in glial cells might help reveal potential therapeutic opportunities. The results indicated that AR may potentially serve as biomarker and therapeutic approach for chemotherapy regimens in GBM.
Collapse
Affiliation(s)
- Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City, 60004 Taiwan
| | - I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan
| | - Yu-Ping Wu
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Martin Hsiu-Chu Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
- College of Medicine, Chang Gung University, Tao-Yuan, 33302 Taiwan
| |
Collapse
|