1
|
Niu X, Ma F, Li F, Wei C, Zhang J, Gao Z, Wang J, Da M. Integration of bioinformatics and cellular experiments unveils the role of SYT12 in gastric cancer. BMC Cancer 2024; 24:1331. [PMID: 39472897 PMCID: PMC11520883 DOI: 10.1186/s12885-024-13077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE This study employs integrated bioinformatics analysis and in vitro cellular experiments to elucidate the role of Synaptotagmin-12 (SYT12) in the progression of gastric cancer. METHODS We utilized databases and platforms such as Xiantao Academic Tools, UALCAN, Kaplan-Meier plotter analysis, and The Cancer Genome Atlas (TCGA) to extract datasets on SYT12 in gastric cancer. We analyzed the relationship between SYT12 expression and the clinicopathological features, prognosis, diagnosis, and immune infiltration of stomach adenocarcinoma (STAD) patients. Verification was conducted using samples from 31 gastric cancer patients. Additionally, in vitro cellular experiments were performed to determine the role and potential mechanisms of SYT12 in the malignant behavior of gastric cancer cells. RESULTS Comprehensive bioinformatics analysis indicated that SYT12 is highly expressed in most cancers and is associated with promoter DeoxyriboNucleic Acid (DNA) methylation levels. SYT12 expression correlated with clinicopathological features, immune cell infiltration, immune checkpoint gene expression, and poor prognosis in STAD patients. In vitro experiments suggest that SYT12 may promote the proliferation and migration of gastric cancer cells by inducing epithelial-mesenchymal transition (EMT). CONCLUSIONS This study highlights the significant role of SYT12 in gastric cancer, suggesting its potential as a new target for early diagnosis, treatment, immunological, and prognostic evaluation in gastric cancer, offering new insights for precision medicine in this disease.
Collapse
Affiliation(s)
- Xingdong Niu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fubin Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Fangying Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cunchun Wei
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Junrui Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhenhua Gao
- Department of General Surgery, The First People's Hospital of Baiyin (Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine), Baiyin, China
| | - Junhong Wang
- The First Clinical Medical College, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- Department of General Surgery, The First People's Hospital of Baiyin (Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine), Baiyin, China.
| | - Mingxu Da
- The First Clinical Medical College, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- Department of Surgical Oncology, Gansu Provincial Hospital, Donggang West Road, 204, lanzhou, Lanzhou, China.
| |
Collapse
|
2
|
Li J, Li C, Li X, Chen Y, Li Z, Lin Y, Jing H, Wang Y, Yang H. Establishment and assessment of an oral squamous cell carcinoma N7-methylguanosine methyltransferase associated microRNA prognostic model. J Cancer 2024; 15:6022-6037. [PMID: 39440068 PMCID: PMC11493003 DOI: 10.7150/jca.98350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/30/2024] [Indexed: 10/25/2024] Open
Abstract
Background: N7-methylguanosine (m7G) methyltransferases and microRNAs (miRNAs) are closely associated with tumor progression. However, the role of m7G methyltransferase-related miRNAs as prognostic markers in oral squamous cell carcinoma (OSCC) has not been studied. This study aimed to explore the m7G methyltransferase-related miRNAs in OSCC, establish a prognostic model based on m7G methyltransferase-related miRNAs, investigate their correlation with immune cell infiltration, and assess their potential prognostic value. Methods: Transcriptional and clinical data of patients with OSCC were obtained from The Cancer Genome Atlas (TCGA) database. TargetScan and miRWalk were used to predict m7G methyltransferase-related miRNAs. Subsequently, differentially expressed m7G methyltransferase-related miRNAs in TCGA-OSCC were selected. Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were used to build an m7G methyltransferase-related miRNA risk prognostic model for TCGA-OSCC. Patients were stratified into high- and low-risk groups. The predictive and diagnostic accuracies of the risk prognostic model were further validated using Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curve analysis, independent prognosis analysis, and nomogram plots. Finally, quantitative real-time polymerase chain reaction (qPCR) was used to validate the expression levels of m7G methyltransferase-related miRNAs in postoperative cancer and adjacent normal tissues from 60 patients with OSCC. Results: Through Cox and LASSO regression analysis, six candidate miRNAs (hsa-miR-338-3p, hsa-miR-1251-3p, hsa-miR-3129-5p, hsa-miR-4633-3p, hsa-miR-216a-3p, and hsa-miR-6503-3p) most relevant to the prognosis of patients with OSCC were identified to construct an m7G methyltransferase-related miRNA risk prognostic model. In this model, the overall survival (OS) of the high-risk group was significantly shorter than that of the low-risk group (P < 0.001). The model effectively predicted prognosis and served as an independent prognostic indicator for patients with OSCC. Compared with the low-risk group, the high-risk group exhibited a significantly increased capacity for immune cell infiltration (P < 0.05), while the activation and initiation abilities of immune cells were decreased. Finally, six m7G methyltransferase-related miRNAs were validated in OSCC tissue samples. Conclusion: The risk prognostic model based on six m7G methyltransferase-related miRNAs can predict the OS rate of patients with OSCC and has the potential to guide individualized treatment. This prognostic model is closely associated with immune cell infiltration in patients with OSCC.
Collapse
Affiliation(s)
- Jianrong Li
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Chu Li
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xiaolian Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Yuling Chen
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Zhangfu Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Huan Jing
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Yufan Wang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Hongyu Yang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| |
Collapse
|
3
|
Jing F, Zhu L, Bai J, Zhou X, Sun L, Zhang H, Li T. A prognostic model built on amino acid metabolism patterns in HPV-associated head and neck squamous cell carcinoma. Arch Oral Biol 2024; 163:105975. [PMID: 38626700 DOI: 10.1016/j.archoralbio.2024.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVES To compare amino acid metabolism patterns between HPV-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) patients and identify key genes for a prognostic model. DESIGN Utilizing the Cancer Genome Atlas dataset, we analyzed amino acid metabolism genes, differentiated genes between HPV statuses, and selected key genes via LASSO regression for the prognostic model. The model's gene expression was verified through immunohistochemistry in clinical samples. Functional enrichment and CIBERSORTx analyses explored biological functions, molecular mechanisms, and immune cell correlations. The model's prognostic capability was assessed using nomograms, calibration, and decision curve analysis. RESULTS We identified 1157 key genes associated with amino acid metabolism in HNSCC and HPV status. The prognostic model, featuring genes like IQCN, SLC22A1, SYT12, and TLX3, highlighted functions in development, metabolism, and pathways related to receptors and enzymes. It significantly correlated with immune cell infiltration and outperformed traditional staging in prognosis prediction, despite immunohistochemistry results showing limited clinical identification of HPV-related HNSCC. CONCLUSIONS Distinct amino acid metabolism patterns differentiate HPV-positive from negative HNSCC patients, underscoring the prognostic model's utility in predicting outcomes and guiding therapeutic strategies.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Lisha Sun
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| |
Collapse
|
4
|
Li X, Ding Z, Tong Y. Correlations of m 6A Methylation-Related lncRNAs with the Prognosis of Papillary Thyroid Carcinoma. Int J Gen Med 2024; 17:775-790. [PMID: 38476625 PMCID: PMC10929225 DOI: 10.2147/ijgm.s449827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid cancer. Recurrence makes the prognosis for some patients with PTC worse. Increasing evidence have suggested that N6-methyladenosine (m6A) RNA methylation plays an important role in tumorigenesis. However, the significance of m6A-related lncRNAs in the malignant progression of PTC remains unknown. In this study, we explored the significance of M6A-related lncrnas in the malignant progression of PTC. Patients and Methods Transcriptome and clinical data of PTC were achieved and integrated from The Cancer Genome Atlas (TCGA). Firstly, a Spearman correlation analysis was performed to obtain m6A RNA methylation-associated lncRNAs. Next, We constructed a prognostic signature and assessed the accuracy of the signature by receiver operating characteristic (ROC) curve and Kaplan Meier survival analyses. Furthermore, functional enrichment analysis was performed on the high- and low-risk groups. Finally, we determined prognostic gene expression in clinical samples using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results We identified 56 differentially expressed lncRNAs associated with m6A RNA methylation. Univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses showed that the survival-related lncRNAs associated with m6A RNA methylation were detected, which showed superior calibration and discrimination. Moreover, the biological processes related to energy metabolism were significantly activated in the high-risk group. Finally, the co-expressed genes of lncRNAs in the risk model were significantly enriched in biological processes related to copper ion response. Finally, we validated the expression levels of three prognostic genes in clinical samples using RT-qPCR. Conclusion Our study revealed m6A RNA methylation-associated lncRNAs were significantly associated with disease-free survival in patients with papillary thyroid cancer, which would improve our understanding of the relationship between m6A RNA methylation-associated lncRNAs and PTC.
Collapse
Affiliation(s)
- Xiang Li
- Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, People's Republic of China
| | - Zigang Ding
- Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, People's Republic of China
| | - Yun Tong
- Department of Pain, The Affiliated Hospital of Jiujiang University, Jiujiang, People's Republic of China
| |
Collapse
|
5
|
Zang L, Zhang B, Zhou Y, Zhang F, Tian X, Tian Z, Chen D, Miao Q. Machine learning algorithm integrates bulk and single-cell transcriptome sequencing to reveal immune-related personalized therapy prediction features for pancreatic cancer. Aging (Albany NY) 2023; 15:14109-14140. [PMID: 38095640 PMCID: PMC10756117 DOI: 10.18632/aging.205293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
Pancreatic cancer (PC) is a digestive malignancy with worse overall survival. Tumor immune environment (TIME) alters the progression and proliferation of various solid tumors. Hence, we aimed to detect the TIME-related classifier to facilitate the personalized treatment of PC. Based on the 1612 immune-related genes (IRGs), we classified patients into Immune_rich and Immune_desert subgroups via consensus clustering. Patients in distinct subtypes exhibited a difference in sensitivity to immune checkpoint blockers (ICB). Next, the immune-related signature (IRS) model was established based on 8 IRGs (SYT12, TNNT1, TRIM46, SMPD3, ANLN, AFF3, CXCL9 and RP1L1) and validated its predictive efficiency in multiple cohorts. RT-qPCR experiments demonstrated the differential expression of 8 IRGs between tumor and normal cell lines. Patients who gained lower IRS score tended to be more sensitive to chemotherapy and immunotherapy, and obtained better overall survival compared to those with higher IRS scores. Moreover, scRNA-seq analysis revealed that fibroblast and ductal cells might affect malignant tumor cells via MIF-(CD74+CD44) and SPP1-CD44 axis. Eventually, we identified eight therapeutic targets and one agent for IRS high patients. Our study screened out the specific regulation pattern of TIME in PC, and shed light on the precise treatment of PC.
Collapse
Affiliation(s)
- Longjun Zang
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| | - Baoming Zhang
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| | - Yanling Zhou
- University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Fusheng Zhang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Zhongming Tian
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| | - Dongjie Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Qingwang Miao
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| |
Collapse
|
6
|
Li W, Du J, Yang L, Liang Q, Yang M, Zhou X, Du W. Chromosome-level genome assembly and population genomics of Mongolian racerunner (Eremias argus) provide insights into high-altitude adaptation in lizards. BMC Biol 2023; 21:40. [PMID: 36803146 PMCID: PMC9942394 DOI: 10.1186/s12915-023-01535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Although the extreme environmental adaptation of organisms is a hot topic in evolutionary biology, genetic adaptation to high-altitude environment remains poorly characterized in ectothermic animals. Squamates are among the most diverse terrestrial vertebrates, with tremendous ecological plasticity and karyotype diversity, and are a unique model system to investigate the genetic footprints of adaptation. RESULTS We report the first chromosome-level assembly of the Mongolian racerunner (Eremias argus) and our comparative genomics analyses found that multiple chromosome fissions/fusions events are unique to lizards. We further sequenced the genomes of 61 Mongolian racerunner individuals that were collected from altitudes ranging from ~ 80 to ~ 2600 m above sea level (m.a.s.l.). Population genomic analyses revealed many novel genomic regions under strong selective sweeps in populations endemic to high altitudes. Genes embedded in those genomic regions are mainly associated with energy metabolism and DNA damage repair pathways. Moreover, we identified and validated two substitutions of PHF14 that may enhance the lizards' tolerance to hypoxia at high altitudes. CONCLUSIONS Our study reveals the molecular mechanism of high-altitude adaptation in ectothermic animal using lizard as a research subject and provides a high-quality lizard genomic resource for future research.
Collapse
Affiliation(s)
- Weiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academic of Sciences, Beijing, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academic of Sciences, Beijing, China
| | - Lingyun Yang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Mengyuan Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academic of Sciences, Beijing, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
7
|
Suo H, Xiao N, Wang K. Potential roles of synaptotagmin family members in cancers: Recent advances and prospects. Front Med (Lausanne) 2022; 9:968081. [PMID: 36004367 PMCID: PMC9393329 DOI: 10.3389/fmed.2022.968081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
With the continuous development of bioinformatics and public database, more and more genes that play a role in cancers have been discovered. Synaptotagmins (SYTs) are abundant, evolutionarily conserved integral membrane proteins composed of a short N-terminus, a variable linker domain, a single transmembrane domain, and two C2 domains, and they constitute a family of 17 isoforms. The synaptotagmin family members are known to regulate calcium-dependent membrane fusion events. Some SYTs play roles in hormone secretion or neurotransmitter release or both, and much evidence supports SYTs as Ca2+ sensors of exocytosis. Since 5 years ago, an increasing number of studies have found that SYTs also played important roles in the occurrence and development of lung cancer, gastric cancer, colon cancer, and other cancers. Down-regulation of SYTs inhibited cell proliferation, migration, and invasion of cancer cells, but promoted cell apoptosis. Growth of peritoneal nodules is inhibited and survival is prolonged in mice administrated with siSYTs intraperitoneally. Therefore, most studies have found SYTs serve as an oncogene after overexpression and may become potential prognostic biomarkers for multiple cancers. This article provides an overview of recent studies that focus on SYT family members’ roles in cancers and highlights the advances that have been achieved.
Collapse
Affiliation(s)
- Huandan Suo
- Department of Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Nan Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kewei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Kewei Wang,
| |
Collapse
|
8
|
Tumor Suppressive Circular RNA-102450: Development of a Novel Diagnostic Procedure for Lymph Node Metastasis from Oral Cancer. Cancers (Basel) 2021; 13:cancers13225708. [PMID: 34830863 PMCID: PMC8616294 DOI: 10.3390/cancers13225708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs), which form as covalently closed loop structures, have several biological functions such as regulation of cellular behavior by adsorbing microRNAs. However, there is limited information of circRNAs in oral squamous cell carcinoma (OSCC). Here, we aimed to elucidate the roles of aberrantly expressed circRNAs in OSCC. CircRNA microarray showed that circRNA-102450 was down-regulated in OSCC cells. Clinical validation of circRNA-102450 was performed using highly sensitive droplet digital PCR in preoperative liquid biopsy samples from 30 OSCC patients. Interestingly, none of 16 studied patients with high circRNA-102450 had regional lymph node metastasis (RLNM), whereas 4 of 14 studied patients (28.5%) with low expression had pathologically proven RLNM. Overexpressed circRNA-102450 significantly inhibited the tumor metastatic properties of cell proliferation, migration, and invasion. Furthermore, circRNA-102450 directly bound to, and consequently down-regulated, miR-1178 in OSCC cells. Taken together, circRNA-102450 has a tumor suppressive effect via the circRNA-102450/miR-1178 axis and may be a novel potential marker of RLNM in OSCC patients.
Collapse
|
9
|
Jin L, Zheng D, Chen D, Xia E, Guan Y, Wen J, Bhandari A, Wang O. SYT12 is a novel oncogene that promotes thyroid carcinoma progression and metastasis. J Cancer 2021; 12:6851-6860. [PMID: 34659573 PMCID: PMC8518017 DOI: 10.7150/jca.62555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Thyroid malignancy is the most frequent endocrine malignant tumor whose incidence is still increasing. Mechanisms genomic variations play a major part in the pathogenesis of many types of malignancy. Synaptotagmin 12 (SYT12) is a member gene of the synaptotagmins family and SYT12's variants were shown to be associated with some malignancies. Nevertheless, SYT12's specific function and probable clinical value in papillary cancer were still unknown. Methods: We conducted complete genome sequence of 39 pairs PTC malignant neoplasm and matched non-neoplastic tissues. We found that SYT12 was significantly overexpressed in thyroid malignancy. Next, we investigated the expression level of SYT12 and the relation between clinical information and SYT12 expression in thyroid cancer in the Cancer Genome Atlas (TCGA). QRt-PCR of else 40 pairs local verified cohort was performed to confirm the sequencing data and TCGA cohort. Then, we used small interfering RNA (si-RNA) to knock down the expression of SYT12 in PTC cells. Finally, proliferation, cell colony formation, migration, invasion, and apoptosis assays were done to demonstrate the function of SYT12. Results: SYT12 is significantly overexpressed and higher expression of SYT12 upsurges the risk of lymph node metastatic and incidence rate of primary neoplasm multivariate focus type and classical histological type for PTC patients in TCGA cohort. In vitro experiments, the results of functional assays presented that knock-down of SYT12 inhibited the cell proliferation, cell colony formation, trans-well migration, and trans-well invasion and promoted cell apoptotic in PTC cell lines. Conclusion: SYT12 was a novel oncogene that promotes thyroid carcinoma progression and metastasis potential and a potential biomarker for diagnosis and treatment in PTC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| |
Collapse
|
10
|
He Q, Li Z. The dysregulated expression and functional effect of CaMK2 in cancer. Cancer Cell Int 2021; 21:326. [PMID: 34193145 PMCID: PMC8243487 DOI: 10.1186/s12935-021-02030-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/19/2021] [Indexed: 11/10/2022] Open
Abstract
CaMK2 (calcium/calmodulin-dependent protein kinase 2), a multifunctional serine/threonine-protein kinase involved in diverse cellular processes, is vital for the transduction of the Ca2+ signaling cascade. Recently, research has highlighted the involvement of CaMK2 in cancer development. However, the specific effects of CaMK2 on cancer have not been fully elucidated. In this review, we summarize not only the altered expression of CaMK2 in a range of cancers, as evidenced by bioinformatics analysis, but also the significant role of CaMK2 in regulating cancer progression, such as proliferation and metastasis. In addition, we described the functional influence of CaMK2 on cancer stemness and resistance. Understanding the critical effects and mechanisms of CaMK2 in cancer would facilitate the development of a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Qi He
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhenyu Li
- Department of Pathology, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
11
|
Wan L, Tan N, Zhang N, Xie X. Establishment of an immune microenvironment-based prognostic predictive model for gastric cancer. Life Sci 2020; 261:118402. [DOI: 10.1016/j.lfs.2020.118402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
|