1
|
Liu X, Xie X, Wang K, Liu X, Gong J, Yang Z, Li J. Raddeanin A suppresses intracellular 5Methylcytosine DNA modification engaged the metastasis of hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119036. [PMID: 39515681 DOI: 10.1016/j.jep.2024.119036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Anemonoides Raddeana (Rege) Holubhe is commonly employed in clinical practice as a traditional Chinese medicine for the treatment of conditions such as rheumatism and limb numbness. Raddeanin A (RA), an active compound derived from this Traditional Chinese Medicine (TCM), demonstrates specific anticancer properties against many tumorigeneses. However, the molecular mechanism underlying its effects on hepatocellular carcinoma (HCC) remains unexplored. AIM OF THE STUDY The aim of this study is to investigate the inhibitory effects of RA in human HCC stimulated cells and its impact on DNA methylation in tumor cells, as well as to elucidate the molecular mechanisms underlying RA's anti-tumor activity. MATERIALS AND METHODS The inhibitory effects of RA on QGY-7703 and HepG2 cells were evaluated. The IC50 values were determined by employing non-linear sigmoidal curve fitting to analyze the normalized response. The impact of RA was investigated in cells overexpressing DNMT3A and DNMT3B. The effects of RA on cell cycle progression and apoptosis were assessed. Furthermore, the influence of RA on cellular methylation was determined, along with its effects on the expression levels of DNMT3A, DNMT3B, Bcl-2, Bax, and Caspase-3. RESULTS The findings demonstrate that RA induces cell cycle arrest at the G0/G1 phase and promotes apoptosis in hepatocellular carcinoma cells. Furthermore, RA effectively inhibits the invasion and migration of human HCC stimulated cells. The expression of DNMT3A and DNMT3B is downregulated by RA, effectively suppressing the intracellular 5mC DNA modification level. Moreover, the overexpression of these enzymes in RA-treated human HCC stimulated cells significantly impacts the overall 5mC level and hinders tumor metastasis by restricting migration and invasion. CONCLUSION The RA compound acts as an antagonist against HCC by reducing intracellular DNA 5mC levels through mechanisms mediated by methyltransferase. Moreover, RA demonstrates the capacity to induce apoptosis in tumor cells, thereby exerting its anti-tumor effects. The findings of this study provide valuable insights for enhancing the pharmacodynamic efficacy of RA in HCC treatment.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China; Postgraduate School, Jilin Normal University, Siping, 136000, China
| | - Xiaoyan Xie
- Department of Pharmacy, The 3rd Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Kangyu Wang
- Key Laboratory of Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Xiaokang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jiyu Gong
- Key Laboratory of Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Jiannan Li
- Key Laboratory of Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Huang P, Xu M, Han H, Zhao X, Li MD, Yang Z. Integrative Analysis of Epigenome and Transcriptome Data Reveals Aberrantly Methylated Promoters and Enhancers in Hepatocellular Carcinoma. Front Oncol 2021; 11:769390. [PMID: 34858848 PMCID: PMC8631276 DOI: 10.3389/fonc.2021.769390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is a key transcription regulator, whose aberration was ubiquitous and important in most cancers including hepatocellular carcinoma (HCC). Whole-genome bisulfite sequencing (WGBS) was conducted for comparison of DNA methylation in tumor and adjacent tissues from 33 HCC patients, accompanying RNA-seq to determine differentially methylated region-associated, differentially expressed genes (DMR-DEGs), which were independently replicated in the TCGA-LIHC cohort and experimentally validated via 5-aza-2-deoxycytidine (5-azadC) demethylation. A total of 9,867,700 CpG sites showed significantly differential methylation in HCC. Integrations of mRNA-seq, histone ChIP-seq, and WGBS data identified 611 high-confidence DMR-DEGs. Enrichment analysis demonstrated activation of multiple molecular pathways related to cell cycle and DNA repair, accompanying repression of several critical metabolism pathways such as tyrosine and monocarboxylic acid metabolism. In TCGA-LIHC, we replicated about 53% of identified DMR-DEGs and highlighted the prognostic significance of combinations of methylation and expression of nine DMR-DEGs, which were more efficient prognostic biomarkers than considering either type of data alone. Finally, we validated 22/23 (95.7%) DMR-DEGs in 5-azadC-treated LO2 and/or HepG2 cells. In conclusion, integration of epigenome and transcriptome data depicted activation of multiple pivotal cell cycle-related pathways and repression of several metabolic pathways triggered by aberrant DNA methylation of promoters and enhancers in HCC.
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Sun Y, Chen G, He J, Li JX, Gan XY, Ji SF, Huang Y, Chen XH, He ML, Huang ZG. Clinical Significance and Underlying Mechanisms of CELSR3 in Metastatic Prostate Cancer Based on Immunohistochemistry, Data Mining, and In Silico Analysis. Cancer Biother Radiopharm 2021; 37:466-479. [PMID: 34582697 DOI: 10.1089/cbr.2021.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The treatment and survival rate of patients with metastatic prostate cancer (MPCa) remain unsatisfactory. Herein, the authors investigated the clinical value and potential mechanisms of cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) in MPCa to identify novel targets for clinical diagnosis and treatment. Materials and Methods: mRNA microarray and RNA-Seq (n = 1246 samples) data were utilized to estimate CELSR3 expression and to assess its differentiation ability in MPCa. Similar analyses were performed with miRNA-221-3p. Immunohistochemistry performed on clinical samples were used to evaluate the protein expression level of CELSR3 in MPCa. Based on CELSR3 differentially coexpressed genes (DCEGs), enrichment analysis was performed to investigate potential mechanisms of CELSR3 in MPCa. Results: The pooled standard mean difference (SMD) for CELSR3 was 0.80, demonstrating that CELSR3 expression was higher in MPCa than in localized prostate cancer (LPCa). CELSR3 showed moderate potential to distinguish MPCa from LPCa. CELSR3 protein expression was found to be markedly upregulated in MPCa than in LPCa tissues. The authors screened 894 CELSR3 DCEGs, which were notably enriched in the focal adhesion pathway. miRNA-221-3p showed a significantly negative correlation with CELSR3 in MPCa. Besides, miRNA-221-3p expression was downregulated in MPCa than in LPCa (SMD = -1.04), and miRNA-221-3p was moderately capable of distinguishing MPCa from LPCa. Conclusions: CELSR3 seems to play a pivotal role in MPCa by affecting the focal adhesion pathway and/or being targeted by miRNA-221-3p.
Collapse
Affiliation(s)
- Yu Sun
- Division of Spinal Surgery and The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Jing-Xiao Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Xiang-Yu Gan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Shu-Fan Ji
- Division of Spinal Surgery and The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Ying Huang
- Division of Spinal Surgery and The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Xin-Hua Chen
- Division of Spinal Surgery and The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Mao-Lin He
- Division of Spinal Surgery and The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
4
|
He RQ, Li JD, Du XF, Dang YW, Yang LJ, Huang ZG, Liu LM, Liao LF, Yang H, Chen G. LPCAT1 overexpression promotes the progression of hepatocellular carcinoma. Cancer Cell Int 2021; 21:442. [PMID: 34419067 PMCID: PMC8380368 DOI: 10.1186/s12935-021-02130-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/30/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains one of the most common malignant neoplasms. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) plays a key role in the lipid remodelling and is correlated with various neoplasms. Nonetheless, the biological functions and molecular mechanisms of LPCAT1 underlying HCC remain obscure. METHODS In the present study, we investigated the role of LPCAT1 in the progression of HCC. In-house RT-qPCR, tissue microarrays, and immunohistochemistry were performed to detect the expression levels and the clinical value of LPCAT1 in HCC. External datasets were downloaded to confirm the results. Proliferation, migration, invasiveness, cell cycle, and apoptosis assays were conducted to reveal the biological effects LPCAT1 has on SMMC-7721 and Huh7 cells. HCC differentially expressed genes and LPCAT1 co-expressed genes were identified to explore the molecular mechanisms underlying HCC progression. RESULTS LPCAT1 showed upregulated expression in 3715 HCC specimens as opposed to 3105 non-tumour specimens. Additionally, LPCAT1 might be an independent prognostic factor for HCC. LPCAT1-knockout hampered cellular proliferation, migration, and metastasis in SMMC-7721 and Huh7 cells. More importantly, the cell cycle and chemical carcinogenesis were the two most enriched signalling pathways. CONCLUSIONS The present study demonstrated that increased LPCAT1 correlated with poor prognosis in HCC patients and fuelled HCC progression by promoting cellular growth, migration, and metastasis.
Collapse
Affiliation(s)
- Rong-Quan He
- Department of Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Jian-Di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Xiu-Fang Du
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Lin-Jie Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Li-Min Liu
- Department of Toxicology, College of Pharmacy, Guangxi Medical University, No. 22 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Liu-Feng Liao
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, No. 71 Hedi Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Hong Yang
- The Ultrasonics Division of Radiology Department, The First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
| |
Collapse
|
5
|
Zhang Q, Luan J, Song L, Wei X, Xia J, Song N. Malignant Evaluation and Clinical Prognostic Values of M6A RNA Methylation Regulators in Prostate Cancer. J Cancer 2021; 12:3575-3586. [PMID: 33995635 PMCID: PMC8120168 DOI: 10.7150/jca.55140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/09/2021] [Indexed: 01/09/2023] Open
Abstract
Objective: M6A RNA modification is closely associated with tumor genesis and progression of several malignancies; however, its role in prostate cancer (PCa) remains poorly understood. Materials and methods: Expression data and corresponding clinicopathologic information were available freely from the Cancer Genome Atlas (TCGA) dataset. We compared the expression level of m6A RNA methylation regulators in PCa with different clinicopathologic characteristics and identified subgroups based on their expressions with consensus clustering. To build the signature and assess its prognostic value, several methods were used for the analysis, including univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, time-dependent receiver operating curve (ROC), and Kaplan-Meier (KM) survival analysis. Results: Most of the m6A RNA methylation regulators were differentially expressed not only between normal and tumor tissue but also among PCa stratified by different clinicopathologic characteristics. There were obvious differences between two clusters, cluster 1 and 2, regarding clinicopathologic features, and the recurrence-free survival (RFS) in cluster 2 was significantly worse than cluster 1. We developed an eleven-gene signature which exhibited a high prognostic value and was able to independently predict RFS. Moreover, a nomogram which integrated clinical information and the gene signature was capable of distinguishing high-risk recurrent patients. Conclusion: These methylation regulators are correlated to clinicopathologic characteristics in PCa and a prognostic model using m6A methylation-related genes is constructed and of high predictive value for recurrence after RP.
Collapse
Affiliation(s)
- Qijie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lebin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiadong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, Xinjiang, China
| |
Collapse
|
6
|
Zhang R, Li Y, Yu H, Liu L, Zhu C, Zuo S, Chen Z. An aberrant DNA methylation signature for predicting hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1667. [PMID: 33490179 PMCID: PMC7812168 DOI: 10.21037/atm-20-7804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background By the time they are clinically diagnosed, patients with hepatocellular carcinoma (HCC) are often at the advanced stage. DNA methylation has become a useful predictor of prognosis for cancer patients. Research on DNA methylation as a biomarker for assessing the risk of occurrence in HCC patients is limited. The purpose of this study was to develop an efficient methylation site model for predicting survival in patients with HCC. Methods DNA methylation and gene expression profile data were extracted from The Cancer Genome Atlas (TCGA) database. Markers of DNA-methylated site in two subsets (the training subset and the test subset) were identified using a random survival forest algorithm and Cox proportional hazards regression. Then, Gene Ontology annotations were applied to investigate the functions of DNA methylation signatures. Results A total of 37 hub genes containing 713 methylated sites were identified among the differentially methylated genes (DMGs) and differentially expressed genes (DEGs). Finally, seven methylation sites (cg12824782, cg24871714, cg18683774, cg22796509, cg19450025, cg10474350, and cg06511917) were identified. In the training group and the test group, the area under the curve predicting the survival of patients with HCC was 0.750 and 0.742, respectively. The seven methylation sites signature could be used to divide the patients in the training group into high- and low-risk subgroups [overall survival (OS): 2.81 vs. 2.11 years; log-rank test, P<0.05]. Then, the prediction ability of the model was validated in the test dataset through risk stratification (OS: 2.04 vs. 2.88 years; log-rank test, P<0.05). Functional analysis demonstrated that these signature genes were related to the activity of DNA-binding transcription activator, RNA polymerase II distal enhancer sequence-specific DNA binding, and enhancer sequence-specific DNA binding. Conclusions The results of this study showed that the signature is useful for predicting the survival of HCC patients and thus, can facilitate treatment-related decision-making.
Collapse
Affiliation(s)
- Renhua Zhang
- Information Communication Division, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Yafei Li
- Information Communication Division, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Hao Yu
- Information Communication Division, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Lin Liu
- Information Communication Division, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Changhao Zhu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zili Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Dannenfelser R, Allen GM, VanderSluis B, Koegel AK, Levinson S, Stark SR, Yao V, Tadych A, Troyanskaya OG, Lim WA. Discriminatory Power of Combinatorial Antigen Recognition in Cancer T Cell Therapies. Cell Syst 2020; 11:215-228.e5. [PMID: 32916097 DOI: 10.1016/j.cels.2020.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/08/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022]
Abstract
Precise discrimination of tumor from normal tissues remains a major roadblock for therapeutic efficacy of chimeric antigen receptor (CAR) T cells. Here, we perform a comprehensive in silico screen to identify multi-antigen signatures that improve tumor discrimination by CAR T cells engineered to integrate multiple antigen inputs via Boolean logic, e.g., AND and NOT. We screen >2.5 million dual antigens and ∼60 million triple antigens across 33 tumor types and 34 normal tissues. We find that dual antigens significantly outperform the best single clinically investigated CAR targets and confirm key predictions experimentally. Further, we identify antigen triplets that are predicted to show close to ideal tumor-versus-normal tissue discrimination for several tumor types. This work demonstrates the potential of 2- to 3-antigen Boolean logic gates for improving tumor discrimination by CAR T cell therapies. Our predictions are available on an interactive web server resource (antigen.princeton.edu).
Collapse
Affiliation(s)
- Ruth Dannenfelser
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Gregory M Allen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Ashley K Koegel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Pediatric Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah Levinson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sierra R Stark
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vicky Yao
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Rice University, Houston, TX 77005, USA
| | - Alicja Tadych
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Olga G Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA.
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Ouyang X, Wang Z, Yao L, Zhang G. Elevated CELSR3 expression is associated with hepatocarcinogenesis and poor prognosis. Oncol Lett 2020; 20:1083-1092. [PMID: 32724347 PMCID: PMC7377182 DOI: 10.3892/ol.2020.11671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) has been reported to exhibit a cancer-specific pattern. The present study aimed to investigate the clinical value and functional role of CELSR3 in hepatocellular carcinoma (HCC), and determine the underlying molecular mechanism in patients with HCC. CELSR3 expression in tumor and paracancerous HCC tissues was obtained from The Cancer Genome Atlas. Differential expression analysis was performed using the edgeR package. Pearson correlation analysis was used to analyze the correlation between methylation and mRNA levels of CELSR3. Pathways affected by aberrant CELSR3 expression were identified through Gene Set Enrichment Analysis. The results demonstrated that CELSR3 was highly expressed in the early stage of cancer and was present throughout the entire cancer process, which suggested that CELSR3 may serve a key role in the carcinogenesis of HCC. In addition, upregulation of CELSR3 was associated with its methylation level; high CELSR3 expression indicated a shorter overall survival time. Multiple candidate genes were screened by integrating differentially expressed (DE) mRNAs and target genes of DE microRNAs (miRs). Subsequent pathway enrichment analysis demonstrated that the upregulated genes were predominantly enriched in the ‘Neuroactive ligand-receptor interaction’ and ‘Cell cycle’ pathways, whereas the downregulated genes were primarily enriched in ‘Cytokine-cytokine receptor interaction’ and ‘Metabolic pathways’. CELSR3 and its connected nodes and edges were initially removed from the miRNA-mRNA regulatory network in order to prevent bias and compared with the network containing CELSR3 alone. The frequently dysregulated miRNAs were identified as miR-181 family members, and the results suggested that miR-181 and the Wnt/β-catenin signaling pathway influenced CELSR3 expression.
Collapse
Affiliation(s)
- Xiwu Ouyang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Gewen Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|