1
|
Chiou C, Wu Y, Huang P, Lan K, Chen Y, Kang Y, Chou L, Hu Y. The potential of integrating stereotactic ablative radiotherapy techniques with hyperfractionation for lung cancer. Thorac Cancer 2024; 15:1679-1687. [PMID: 38881388 PMCID: PMC11293925 DOI: 10.1111/1759-7714.15335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Limited literature exists on the feasibility and effectiveness of integrating stereotactic ablative radiotherapy (SABR) techniques with hyperfractionated regimens for patients with lung cancer. This study aims to assess whether the SABR technique with hyperfractionation can potentially reduce lung toxicity. METHODS We utilized the linear-quadratic model to find the optimal fraction to maximize the tumor biological equivalent dose (BED) to normal-tissue BED ratio. Validation was performed by comparing the SABR plans with 50 Gy/5 fractions and hyperfractionationed plans with 88.8 Gy/74 fractions with the same tumor BED and planning criteria for 10 patients with early-stage lung cancer. Mean lung BED, Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP), critical volume (CV) criteria (volume below BED of 22.92 and 25.65 Gy, and mean BED for lowest 1000 and 1500 cc) and the percentage of the lung receiving 20Gy or more (V20) were compared using the Wilcoxon signed-rank test. RESULTS The transition point occurs when the tumor-to-normal tissue ratio (TNR) of the physical dose equals the TNR of α/β in the BED dose-volume histogram of the lung. Compared with the hypofractionated regimen, the hyperfractionated regimen is superior in the dose range above but inferior below the transition point. The hyperfractionated regimen showed a lower mean lung BED (6.40 Gy vs. 7.73 Gy) and NTCP (3.50% vs. 4.21%), with inferior results concerning CV criteria and higher V20 (7.37% vs. 7.03%) in comparison with the hypofractionated regimen (p < 0.01 for all). CONCLUSIONS The hyperfractionated regimen has an advantage in the high-dose region of the lung but a disadvantage in the low-dose region. Further research is needed to determine the superiority between hypo- and hyperfractionation.
Collapse
Affiliation(s)
- Chi‐Chuan Chiou
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Yuan‐Hung Wu
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
- Therapeutic and Research Center of Pancreatic CancerTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Pin‐I Huang
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| | - Keng‐Li Lan
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- Institute of Traditional Medicine, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| | - Yi‐Wei Chen
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Yu‐Mei Kang
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| | - Lin‐Shan Chou
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Yu‐Wen Hu
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
- Institute of Public Health, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| |
Collapse
|
2
|
Hartford AC, Gill GS, Ravi D, Tosteson TD, Li Z, Russo G, Eskey CJ, Jarvis LA, Simmons NE, Evans LT, Williams BB, Gladstone DJ, Roberts DW, Buckey JC. Sensitizing brain metastases to stereotactic radiosurgery using hyperbaric oxygen: A proof-of-principle study. Radiother Oncol 2022; 177:179-184. [PMID: 36404528 PMCID: PMC10827304 DOI: 10.1016/j.radonc.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Increased oxygen levels may enhance the radiosensitivity of brain metastases treated with stereotactic radiosurgery (SRS). This project administered hyperbaric oxygen (HBO) prior to SRS to assess feasibility, safety, and response. METHODS 38 patients were studied, 19 with 25 brain metastases treated with HBO prior to SRS, and 19 historical controls with 27 metastases, matched for histology, GPA, resection status, and lesion size. Outcomes included time from HBO to SRS, quality-of-life (QOL) measures, local control, distant (brain) metastases, radionecrosis, and overall survival. RESULTS The average time from HBO chamber to SRS beam-on was 8.3 ± 1.7 minutes. Solicited adverse events (AEs) were comparable between HBO and control patients; no grade III or IV serious AEs were observed. Radionecrosis-free survival (RNFS), radionecrosis-free survival before whole-brain radiation therapy (WBRT) (RNBWFS), local recurrence-free survival before WBRT (LRBWFS), distant recurrence-free survival before WBRT (DRBWFS), and overall survival (OS) were not significantly different for HBO patients and controls on Kaplan-Meier analysis, though at 1-year estimated survival rates trended in favor of SRS + HBO: RNFS - 83% vs 60%; RNBWFS - 78% vs 60%; LRBWFS - 95% vs 78%; DRBWFS - 61% vs 57%; and OS - 73% vs 56%. Multivariate Cox models indicated no significant association between HBO treatment and hazards of RN, local or distant recurrence, or mortality; however, these did show statistically significant associations (p < 0.05) for: local recurrence with higher volume, radionecrosis with tumor resection, overall survival with resection, and overall survival with higher GPA. CONCLUSION Addition of HBO to SRS for brain metastases is feasible without evident decrement in radiation necrosis and other clinical outcomes.
Collapse
Affiliation(s)
- Alan C Hartford
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| | - Gobind S Gill
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Divya Ravi
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Tor D Tosteson
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| | - Zhongze Li
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Gregory Russo
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Clifford J Eskey
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Lesley A Jarvis
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Nathan E Simmons
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Linton T Evans
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Benjamin B Williams
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - David J Gladstone
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - David W Roberts
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Jay C Buckey
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
3
|
Roohani S, Ehret F, Kobus M, Flörcken A, Märdian S, Striefler JK, Rau D, Öllinger R, Jarosch A, Budach V, Kaul D. Preoperative hypofractionated radiotherapy for soft tissue sarcomas: a systematic review. Radiat Oncol 2022; 17:159. [PMID: 36104789 PMCID: PMC9472188 DOI: 10.1186/s13014-022-02072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Soft tissue sarcomas (STS) represent a diverse group of rare malignant tumors. Currently, five to six weeks of preoperative radiotherapy (RT) combined with surgery constitute the mainstay of therapy for localized high-grade sarcomas (G2-G3). Growing evidence suggests that shortening preoperative RT courses by hypofractionation neither increases toxicity rates nor impairs oncological outcomes. Instead, shortening RT courses may improve therapy adherence, raise cost-effectiveness, and provide more treatment opportunities for a wider range of patients. Presumed higher rates of adverse effects and worse outcomes are concerns about hypofractionated RT (HFRT) for STS. This systematic review summarizes the current evidence on preoperative HFRT for the treatment of STS and discusses toxicity and oncological outcomes compared to normofractionated RT. METHODS We conducted a systematic review of clinical trials describing outcomes for preoperative HFRT in the management of STS using PubMed, the Cochrane library, the Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, Embase, and Ovid Medline. We followed the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Trials on retroperitoneal sarcomas, postoperative RT, and hyperthermia were excluded. Articles published until November 30th, 2021, were included. RESULTS Initial search yielded 94 articles. After removal of duplicate and ineligible articles, 13 articles qualified for analysis. Eight phase II trials and five retrospective analyses were reviewed. Most trials applied 5 × 5 Gy preoperatively in patients with high-grade STS. HFRT courses did not show increased rates of adverse events compared to historical trials of normofractionated RT. Toxicity rates were mostly comparable or lower than in trials of normofractionated RT. Moreover, HFRT achieved comparable local control rates with shorter duration of therapy. Currently, more than 15 prospective studies on HFRT + / - chemotherapy are ongoing. CONCLUSIONS Retrospective data and phase II trials suggest preoperative HFRT to be a reasonable treatment modality for STS. Oncological outcomes and toxicity profiles were favorable. To date, our knowledge is mostly derived from phase II data. No randomized phase III trial comparing normofractionated and HFRT in STS has been published yet. Multiple ongoing phase II trials applying HFRT to investigate acute and late toxicity will hopefully bring forth valuable findings.
Collapse
Affiliation(s)
- Siyer Roohani
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marta Kobus
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anne Flörcken
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sven Märdian
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jana Käthe Striefler
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Daniel Rau
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Robert Öllinger
- Department of Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Armin Jarosch
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Mangoni M, Borghesi S, Aristei C, Becherini C. Radiobiology of stereotactic radiotherapy. Rep Pract Oncol Radiother 2022; 27:57-62. [PMID: 35402022 PMCID: PMC8989448 DOI: 10.5603/rpor.a2022.0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022] Open
Abstract
This paper focuses on the radiobiological mechanisms underlying the effects of stereotactic radiotherapy (SRT ) which, despite SRT expansion, have not yet been fully elucidated. Some authors postulated that radiobiology principles, as applied to conventional fractionations (5R: reoxygenation, repair, repopulation, redistribution, radioresistence), suffice in themselves to account for the excellent clinical results of SRT; others argued that the role of the 5R was limited. Recent preclinical data showed that hypofractionated ablative treatments altered the microenvironment, thus determining cell death either directly or indirectly. Furthermore, dead tumor cells released quantities of antigens, which stimulated antitumor immunity, thus reducing the risk of relapse and metastasis. Better understanding of the radiobiological mechanisms underlying response to high-dose radiation treatment is essential for predicting its short- and long-term effects on the tumor and surrounding healthy tissues and, consequently, for improving its related therapeutic index.
Collapse
Affiliation(s)
- Monica Mangoni
- Radiotherapy Unit, Oncology Department, Azienda Ospedaliera Universitaria Careggi, University of Florence, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Carlotta Becherini
- Radiotherapy Unit, Oncology Department, Azienda Ospedaliera Universitaria Careggi, University of Florence, Italy
| |
Collapse
|
5
|
Trotovšek B, Djokić M, Čemažar M, Serša G. New era of electrochemotherapy in treatment of liver tumors in conjunction with immunotherapies. World J Gastroenterol 2021; 27:8216-8226. [PMID: 35068866 PMCID: PMC8717013 DOI: 10.3748/wjg.v27.i48.8216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/28/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Electrochemotherapy is a local ablative therapy that increases the cytotoxicity of either bleomycin or cisplatin by applying electric pulses (electroporation) to tumors. It has already been widely used throughout Europe for the treatment of various types of human and veterinary cutaneous tumors, with an objective response rate ranging from 70%-90%, depending on the tumor histotype. Recently, electrochemotherapy was introduced for the treatment of primary liver tumors, such as hepatocellular carcinoma (HCC). The complete response rate was 85% per treated lesion, with a durable response. Therefore, electrochemotherapy could become a treatment of choice for HCC, especially after achieving a transition from an open surgery approach to a percutaneous approach that uses dedicated electrodes. Electrochemotherapy elicits a local immune response and can be considered an in situ vaccination. HCC, among others, is a potentially immunogenic tumor; thus, electrochemotherapy could boost adjuvant immunotherapy to achieve a better and longer-lasting antitumor response. Therefore, therapeutic strategies that combine electrochemotherapy with immune checkpoint inhibitors or adjuvant treatment with cytokines are indicated for HCC. Immunogene therapy using electroporation as a delivery system for plasmid DNA coding for interleukin-12 is a highly promising approach. This electroporation approach has shown efficacy in preclinical settings and veterinary oncology and is awaiting translation for the treatment of liver tumors, i.e., HCC.
Collapse
Affiliation(s)
- Blaž Trotovšek
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Medical Faculty Ljubljana, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Mihajlo Djokić
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Medical Faculty Ljubljana, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology, Ljubljana 1000, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola 6310, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology, Ljubljana 1000, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
6
|
Development of Novel Regimens Combining Immune Checkpoint Inhibitors and Radiation Therapy in Prostate Cancer. Eur Urol 2021; 81:263-265. [PMID: 34895788 DOI: 10.1016/j.eururo.2021.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
|