1
|
Darvish L, Bahreyni-Toossi MT, Aghaee-Bakhtiari SH, Akbari-Naserkiadeh A, Vaziri-Nezamdoust F, Azimian H. Increasing prostate cancer radiosensitivity by miR-7-5p knockdown of anti-apoptotic genes. Gene 2025; 933:148951. [PMID: 39303820 DOI: 10.1016/j.gene.2024.148951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Despite the success of radiotherapy for prostate cancer treatment, the recent discovery of radiation resistance prevents it from reaching its full potential. This study aims to use hsa-miR-7-5p for the expression of anti-apoptotic genes. The search for anti-apoptotic genes was carried out through databases. The selected genes included XIAP, MCL1, REL, and BIRC3. Our selection was based on the best miRNA because it has a greater impact on genes. The second step involved transfecting the miRNA into a prostate cancer cell line. Subsequently, radiosensitivity was tested using real-time PCR, clonogenic assay, and annexin V flow cytometry. The highest apoptosis rate in the transfected cells was at 0 Gy in hsa-miR-7-5p (28.88 ± 0.80), plenti III (18.81 ± 0.59), and the control group (4.10 ± 1.52) (P<0.001). Also, its rate was at 4 Gy in hsa-miR-7-5p (36.11 ± 1.93), plenti III (26.42 ± 0.42), and the control group (8.79 ± 2.29) (P<0.001). This study showed a decreasing trend in survival with increasing doses. Suppression of anti-apoptotic genes, including XIAP, MCL1, Birc3, and REL, enhanced radiosensitivity by increasing the expression of hsa-miR-7-5p in the PC3 and LNCaP cell lines. Hsa-miR-7-5p is a miRNA that can suppress the expression of anti-apoptotic genes and thus plays an essential role in the process of cell apoptosis. Targeting genes that are associated with apoptosis could potentially enhance the efficacy of treatments for patients with prostate cancer.
Collapse
Affiliation(s)
- Leili Darvish
- Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Radiology, Faculty of Paramedicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Akbari-Naserkiadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Vaziri-Nezamdoust
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Elazab IM, El-Feky OA, Khedr EG, El-Ashmawy NE. Prostate cancer and the cell cycle: Focusing on the role of microRNAs. Gene 2024; 928:148785. [PMID: 39053658 DOI: 10.1016/j.gene.2024.148785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Prostate cancer is the most frequent solid tumor in terms of incidence and ranks second only to lung cancer in terms of cancer mortality among men. It has a considerably high mortality rate; around 375,000 deaths occurred worldwide in 2020. In 2024, the American Cancer Society estimated that the number of new prostate cancer cases will be around 299,010 cases, and the estimated deaths will be around 32,250 deaths only in the USA. Cell cycle dysregulation is inevitable in cancer etiology and is targeted by various therapies in cancer treatment. MicroRNAs (miRNAs) are small, endogenous, non-coding regulatory molecules involved in both normal and abnormal cellular events. One of the cellular processes regulated by miRNAs is the cell cycle. Although there are some exceptions, tumor suppressor miRNAs could potentially arrest the cell cycle by downregulating several molecular machineries involved in catalyzing the cell cycle progression. In contrast, oncogenic miRNAs (oncomirs) help the cell cycle to progress by targeting various regulatory proteins such as retinoblastoma (Rb) or cell cycle inhibitors such as p21 or p27, and hence may contribute to prostate cancer progression; however, this is not always the case. In this review, we emphasize how a dysregulated miRNA expression profile is linked to an abnormal cell cycle progression in prostate cancer, which subsequently paves the way to a new therapeutic option for prostate cancer.
Collapse
Affiliation(s)
- Ibrahim M Elazab
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt.
| | - Ola A El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt.
| | - Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, BUE, Cairo, 11837, Egypt.
| |
Collapse
|
3
|
Yuan F, Hu Y, Lei Y, Jin L. Recent progress in microRNA research for prostate cancer. Discov Oncol 2024; 15:480. [PMID: 39331237 PMCID: PMC11436510 DOI: 10.1007/s12672-024-01376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
In recent years, prostate cancer (PCa) has seen an increasing prevalence, particularly among middle-aged and older men, positioning it as a significant health concern. Current PCa screening predominantly utilizes prostate-specific antigen (PSA) testing, digital rectal examination (DRE), and the Gleason scoring system. However, these diagnostic methods can sometimes be imprecise. Research has identified that specific microRNAs (miRNAs) exhibit altered expression levels in PCa patients, suggesting their potential as biomarkers for both diagnosis and prognosis. Furthermore, advancements in integrating miRNAs with traditional Chinese medicine (TCM) have shown promising results in PCa treatment, potentially serving as micro-markers for TCM syndrome differentiation and treatment effectiveness. Recent developments in anti-cancer therapies that target miRNAs have also been implemented in clinical settings, laying the groundwork for personalized and precise treatment strategies for PCa. This review aims to summarize the expression patterns of miRNAs in PCa patients and explore their roles in the diagnosis, treatment, and prognosis of the disease.
Collapse
Affiliation(s)
- Fan Yuan
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China
| | - Yue Hu
- Health Management (Physical Examination) Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China
| | - Yanmei Lei
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China.
| | - Lingna Jin
- Health Management (Physical Examination) Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Al-Hawary SIS, Abdalkareem Jasim S, Altalbawy FMA, Kumar A, Kaur H, Pramanik A, Jawad MA, Alsaad SB, Mohmmed KH, Zwamel AH. miRNAs in radiotherapy resistance of cancer; a comprehensive review. Cell Biochem Biophys 2024; 82:1665-1679. [PMID: 38805114 DOI: 10.1007/s12013-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Salim Basim Alsaad
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Sun Z, Ren M, Niu J, Tang G, Li Y, Kong F, Song X. miR-29b-3p targetedly regulates VEGF to inhibit tumor progression and cisplatin resistance through Nrf2/HO-1 signaling pathway in non-small cell lung cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:3956-3966. [PMID: 38587027 DOI: 10.1002/tox.24253] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUNDS Non-small cell lung carcinoma (NSCLC) is a common type of lung cancer. Prior investigations have elucidated the pivotal role of miR-29b-3p in restraining tumor growth and metastasis. Nonetheless, it remains to be determined whether miR-29b-3p can effectively suppress NSCLC progression and enhance the sensitivity of NSCLC cells to cisplatin. This investigation sought to determine the mechanism by which miR-29b-3p inhibited the advancement of NSCLC and mitigated resistance to cisplatin. METHODS We initially assessed miR-29b-3p and VEGF levels in NSCLC tissues and cell lines. Next, miR-29b-3p expression was elevated in NSCLC cell lines H1975 and A549 by overexpression plasmid transfection. Following this, a sequence of molecular biology experiments was conducted to evaluate the impact of miR-29b-3p on the biological behaviors of NSCLC cells and their resistance to cisplatin. Additionally, we predicted VEGF was a target gene of miR-29b-3p by bioinformatics analysis. We next employed western blot to evaluate the protein expression of Nrf2 and HO-1 in NSCLC cells. Finally, we elucidated the effects of VEGF and Nrf2/HO-1pathway on NSCLC progression and cisplatin resistance by in vitro assays. RESULTS In comparison to paracancerous tissues and human normal lung epithelial cells, the expression of miR-29b-3p was notably reduced and VEGF expression was clearly elevated in NSCLC tissues and cells. Moreover, miR-29b-3p upregulated obviously suppressed the biological activities of NSCLC cells and increased their sensitivity to cisplatin. Furthermore, in NSCLC cells, miR-29b-3p bound to VEGF and negatively regulate its transcription. Additionally, miR-29b-3p overexpression also inhibited the Nrf2/HO-1 signaling pathway. Finally, the overexpression of VEGF and the activation of the Nrf2/HO-1 pathway reversed miR-29b-3p-mediated inhibitory effect on biological behaviors of NSCLC cells and increased the cisplatin resistance. CONCLUSION Our findings indicate that miR-29b-3p impedes NSCLC cells' biological behaviors and augments their sensitivity to cisplatin by targeting VEGF to modulate the Nfr2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Mingming Ren
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Jieting Niu
- Department of Geriatrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Guojie Tang
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanguang Li
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Fanyi Kong
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiang Song
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
6
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
7
|
Konoshenko M, Laktionov P, Bryzgunova O. Prostate cancer therapy outcome prediction: are miRNAs a suitable guide for therapeutic decisions? Andrology 2024; 12:705-718. [PMID: 37750354 DOI: 10.1111/andr.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Radical prostatectomy, radiotherapy, chemotherapy, and androgen-deprivation therapy are among the most common treatment options for different forms of prostate cancer (PCa). However, making therapeutic decisions is difficult due to the lack of reliable prediction markers indicating therapy outcomes in clinical practice. The involvement of miRNAs in all mechanisms of the PCa development and their easy detection characterize them as attractive PCa biomarkers. Although there are extensive data on the role of miRNAs in PCa therapy resistance and sensitivity development, the issues of whether they could be used as a guide for therapy choice and, if so, how we can progress toward this goal, remain unclear. Thus, generalizable reviews and studies which summarize, compare, and analyze data on miRNA involvement in responses to different types of PCa therapies are required. OBJECTIVES Data on the involvement of miRNAs in therapy responses, on the role of cross-miRNA expression in different therapies, and on miRNA targets were analyzed in order to determine the miRNA-related factors which can lend perspective to the future development of personalized predictors of PCa sensitivity/resistance to therapies. MATERIALS AND METHODS The data available on the miRNAs associated with different PCa therapies (resistance and sensitivity therapies) are summarized and analyzed in this study, including analyses using bioinformatics resources. Special attention was dedicated to the mechanisms of the development of therapy resistance. RESULTS AND DISCUSSION A comprehensive combined analysis of the current data revealed a panel of miRNAs that were shown to be most closely associated with the PCa therapy response and were found to regulate the genes involved in PCa development via cell proliferation regulation, epithelial-mesenchymal transition (EMT), apoptosis, cell-cycle progression, angiogenesis, metastasis and invasion regulation, androgen-independent development, and colony formation. CONCLUSION The selected miRNA-based panel has the potential to be a guide for therapeutic decision making in the effective treatment of PCa.
Collapse
Affiliation(s)
- MariaYu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Sarfraz M, Abida, Eltaib L, Asdaq SMB, Guetat A, Alzahrani AK, Alanazi SS, Aaghaz S, Singla N, Imran M. Overcoming chemoresistance and radio resistance in prostate cancer: The emergent role of non-coding RNAs. Pathol Res Pract 2024; 255:155179. [PMID: 38320439 DOI: 10.1016/j.prp.2024.155179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Prostate cancer (PCa) continues to be a major health concern worldwide, with its resistance to chemotherapy and radiation therapy presenting major hurdles in successful treatment. While patients with localized prostate cancer generally have a good survival rate, those with metastatic prostate cancer often face a grim prognosis, even with aggressive treatments using various methods. The high mortality rate in severe cases is largely due to the lack of treatment options that can offer lasting results, especially considering the significant genetic diversity found in tumors at the genomic level. This comprehensive review examines the intricate molecular mechanisms governing resistance in PCa, emphasising the pivotal contributions of non-coding RNAs (ncRNAs). We delve into the diverse roles of microRNAs, long ncRNAs, and other non-coding elements as critical regulators of key cellular processes involved in CR & RR. The review emphasizes the diagnostic potential of ncRNAs as predictive biomarkers for treatment response, offering insights into patient stratification and personalized therapeutic approaches. Additionally, we explore the therapeutic implications of targeting ncRNAs to overcome CR & RR, highlighting innovative strategies to restore treatment sensitivity. By synthesizing current knowledge, this review not only provides a comprehension of the chemical basis of resistance in PCa but also identifies gaps in knowledge, paving the way for future research directions. Ultimately, this exploration of ncRNA perspectives offers a roadmap for advancing precision medicine in PCa, potentially transforming therapeutic paradigms and improving outcomes for patients facing the challenges of treatment resistance.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, United Arab Emirates
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | | | - Arbi Guetat
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar 91431, Saudi Arabia
| | | | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
9
|
Patel D, Thankachan S, Abu Fawaz PP, Venkatesh T, Prasada Kabekkodu S, Suresh PS. Deciphering the role of MitomiRs in cancer: A comprehensive review. Mitochondrion 2023; 70:118-130. [PMID: 37120081 DOI: 10.1016/j.mito.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/01/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate many metabolic and signal transduction pathways. The role of miRNAs, usually found in the cytoplasm, in regulating gene expression and cancer progression has been extensively studied in the last few decades. However, very recently, miRNAs were found to localize in the mitochondria. MiRNAs that specifically localize in the mitochondria and the cytoplasmic miRNAs associated with mitochondria that directly or indirectly modulate specific mitochondrial functions are termed as "mitomiRs". Although it is not clear about the origin of mitomiRs that are situated within mitochondria (nuclear or mitochondrial origin), it is evident that they have specific functions in modulating gene expression and regulating important mitochondrial metabolic pathways. Through this review, we aim to delineate the mechanisms by which mitomiRs alter mitochondrial metabolic pathways and influence the initiation and progression of cancer. We further discuss the functions of particular mitomiRs, which have been widely studied in the context of mitochondrial metabolism and oncogenic signaling pathways. Based on the current knowledge, we can conclude that mitomiRs contribute significantly to mitochondrial function and metabolic regulation, and that dysregulation of mitomiRs can aid the proliferation of cancer cells. Therefore, the less explored area of mitomiRs' biology can be an important topic of research investigation in the future for targeting cancer cells.
Collapse
Affiliation(s)
- Dimple Patel
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India
| | - Sanu Thankachan
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India
| | - P P Abu Fawaz
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipa1-576104, Karnataka, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipa1-576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India.
| |
Collapse
|
10
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Bian C, Zheng Z, Su J, Wang H, Chang S, Xin Y, Jiang X. Targeting Mitochondrial Metabolism to Reverse Radioresistance: An Alternative to Glucose Metabolism. Antioxidants (Basel) 2022; 11:2202. [PMID: 36358574 PMCID: PMC9686736 DOI: 10.3390/antiox11112202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy failure and poor tumor prognosis are primarily attributed to radioresistance. Improving the curative effect of radiotherapy and delaying cancer progression have become difficult problems for clinicians. Glucose metabolism has long been regarded as the main metabolic process by which tumor cells meet their bioenergetic and anabolic needs, with the complex interactions between the mitochondria and tumors being ignored. This misconception was not dispelled until the early 2000s; however, the cellular molecules and signaling pathways involved in radioresistance remain incompletely defined. In addition to being a key metabolic site that regulates tumorigenesis, mitochondria can influence the radiation effects of malignancies by controlling redox reactions, participating in oxidative phosphorylation, producing oncometabolites, and triggering apoptosis. Therefore, the mitochondria are promising targets for the development of novel anticancer drugs. In this review, we summarize the internal relationship and related mechanisms between mitochondrial metabolism and cancer radioresistance, thus exploring the possibility of targeting mitochondrial signaling pathways to reverse radiation insensitivity. We suggest that attention should be paid to the potential value of mitochondria in prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
12
|
Mir-29b in Breast Cancer: A Promising Target for Therapeutic Approaches. Diagnostics (Basel) 2022; 12:diagnostics12092139. [PMID: 36140539 PMCID: PMC9497770 DOI: 10.3390/diagnostics12092139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The miR-29 family comprises miR-29a, miR-29b, and miR-29c, and these molecules play crucial and partially overlapped functions in solid tumors, in which the different isoforms are variously de-regulated and mainly correlated with tumor suppression. miR-29b is the most expressed family member in cancer, in which it is involved in regulating gene expression at both transcriptional and post-transcriptional levels. This review focuses on the role of miR-29b in breast cancer, in which it plays a controversial role as tumor suppressor or onco-miRNA. Here we have highlighted the dual effect of miR-29b on breast tumor features, which depend on the prevailing function of this miRNA, on the mature miR-29b evaluated, and on the breast tumor characteristics. Remarkably, the analyzed miR-29b form emerged as a crucial element in the results obtained by various research groups, as the most abundant miR-29b-3p and the less expressed miR-29b1-5p seem to play distinct roles in breast tumors with different phenotypes. Of particular interest are the data showing that miR-29b1-5p counteracts cell proliferation and migration and reduces stemness in breast tumor cells with a triple negative phenotype. Even if further studies are required to define exactly the role of each miR-29b, our review highlights its possible implication in phenotype-specific management of breast tumors.
Collapse
|
13
|
Zhao J, Ma X, Xu H. miR‑29b‑3p inhibits 22Rv1 prostate cancer cell proliferation through the YWHAE/BCL‑2 regulatory axis. Oncol Lett 2022; 24:289. [PMID: 35928803 PMCID: PMC9344263 DOI: 10.3892/ol.2022.13409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumours in the world and seriously affects health of men. Studies have shown that microRNA (miR)-29b-3p and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) play important roles in influencing the proliferation and apoptosis of PCa cells. However, the molecular mechanism of miR-29b-3p and YWHAE in the proliferation and apoptosis of PCa cells remains unclear. In the present study, bioinformatics as well as in vivo and in vitro experiments were used to predict and verify the targeting relationship between YWHAE and mir-29B-3p and investigate the potential roles of YWHAE and mir-29b-3p in the proliferation and apoptosis of 22RV1 cells. Using bioinformatics and a double luciferase system assay, it was confirmed that miR-29b-3p can target YWHAE 3′untranslated region and affect the expression of YWHAE, suggesting that miR-29b-3p may be a potential miRNA of YWHAE. Reverse transcription-quantitative PCR, Cell Counting Kit-8, Transwell and cell scratch assays showed that miR-29b-3p significantly inhibited the proliferation, invasion and migration of 22Rv1 cells (P<0.01). Rescue experiments demonstrated that YWHAE gene introduction reversed the inhibitory effect of miR-29b-3p on 22Rv1 cells. Western blotting revealed that the upregulation of miR-29b-3p inhibited YWHAE expression, resulting in a very significant decrease in the ratio of p-BAD/BAD and full-length caspase 3/cleaved caspase 3 (P<0.01) and an extremely significant increase in the ratio of BAX/BCL-2 (P<0.01). A tumourigenesis test in nude mice in vivo confirmed that the upregulation of miR-29b-3p inhibited tumour growth by targeting YWHAE. The present experiments confirmed that miR-29b-3p plays a tumour suppressor role in 22Rv1 PCa cells, and the YWHAE/BCL-2 regulatory axis plays a vital role in miR-29b-3p regulating the proliferation and apoptosis of 22Rv1 cells. These results may provide a theoretical basis for the diagnosis and targeted treatment of PCa.
Collapse
Affiliation(s)
- Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Xiaoyan Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
14
|
Koh Y, Bustos MA, Moon J, Gross R, Ramos RI, Ryu S, Choe J, Lin SY, Allen WM, Krasne DL, Wilson TG, Hoon DSB. Urine Cell-Free MicroRNAs in Localized Prostate Cancer Patients. Cancers (Basel) 2022; 14:cancers14102388. [PMID: 35625992 PMCID: PMC9139357 DOI: 10.3390/cancers14102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men. Prostate-specific antigen screening is recommended for the detection of PCa. However, its specificity is limited. Thus, there is a need to find more reliable biomarkers that allow non-invasive screening for early-stage PCa. This study aims to explore urine microRNAs (miRs) as diagnostic biomarkers for PCa. We assessed cell-free miR (cfmiR) profiles of urine and plasma samples from pre- and post-operative PCa patients (n = 11) and normal healthy donors (16 urine and 24 plasma) using HTG EdgeSeq miRNA Whole Transcriptome Assay based on next-generation sequencing. Furthermore, tumor-related miRs were detected in formalin-fixed paraffin-embedded tumor tissues obtained from patients with localized PCa. Specific cfmiRs signatures were found in urine samples of localized PCa patients using differential expression analysis. Forty-two cfmiRs that were detected were common to urine, plasma, and tumor samples. These urine cfmiRs may have potential utility in diagnosing early-stage PCa and complementing or improving currently available PCa screening assays. Future studies may validate the findings.
Collapse
Affiliation(s)
- Yoko Koh
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
- Department of Urology and Urologic Oncology, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (J.C.); (T.G.W.)
| | - Matias A. Bustos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
| | - Jamie Moon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
| | - Rebecca Gross
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
- Department of Urology and Urologic Oncology, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (J.C.); (T.G.W.)
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
| | - Suyeon Ryu
- Genome Sequencing Center, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA;
| | - Jane Choe
- Department of Urology and Urologic Oncology, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (J.C.); (T.G.W.)
| | | | - Warren M. Allen
- Division of Surgical Pathology, Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (W.M.A.); (D.L.K.)
| | - David L. Krasne
- Division of Surgical Pathology, Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (W.M.A.); (D.L.K.)
| | - Timothy G. Wilson
- Department of Urology and Urologic Oncology, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (J.C.); (T.G.W.)
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
- Genome Sequencing Center, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA;
- Correspondence:
| |
Collapse
|
15
|
Du M, Wang Z, Su G, Zhou Y, Luo C. Mammalian Target of Rapamycin (mTOR) Inhibitor Improves Local Immune Microenvironment and Reduces Seizures via Increasing miR-211 Level in Rat Brain. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aims to analyze the role of mTOR inhibitor on the expression of miR-211 in rat brain tissue and the biological effect of miR-211 in attenuating seizure. Rats were randomly divided into four groups, and the number of seizures and the duration of single seizure were observed
within 24 hours after intervention. The level of miR-211 in brain tissue was detected by RT qPCR, the apoptosis of nerve cells was assessed by TUNEL staining, the level of immune cells was detected by flow cytometry, and the level of serum inflammatory factors was determined by ELISA. The
number of seizures and the duration of single seizure in the three groups treated by rapamycin within 24 hours were lower than those in the control group, and the symptom relief in group C was the best. After treatment, the expression level of miR-211 in the brain tissue of epileptic rats
increased. TUNEL staining showed that neuronal apoptosis was obvious in epileptic rats. The anti apoptotic ability of group C was the most significant, followed by group D and group B. Compared with group A, the levels of CD3+ cells, CD8+ cells and CD4+/CD25+
cells in brain tissue of group C were decreased, while the levels of IL-2 and IFN-γ were lower in group C than those in control. In group C (n = 5), the levels of CD3+ cells, CD8+ cells and CD4+/CD25+ cells were elevated, and
the levels of immune related cytokines IL-2 and IFN-γ were higher than those of rats without miR-211 inhibition. mTOR inhibitors can improve the local immune microenvironment, reduce the release of inflammatory factors, and finally decrease the frequency and duration of seizures
by up regulating the level of miR-211 in rat brain tissue.
Collapse
Affiliation(s)
- Meijiao Du
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Zhengmei Wang
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Geng Su
- Department of Medical Administration, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Yunxia Zhou
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Chuan Luo
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| |
Collapse
|
16
|
Kussainova A, Bulgakova O, Aripova A, Khalid Z, Bersimbaev R, Izzotti A. The Role of Mitochondrial miRNAs in the Development of Radon-Induced Lung Cancer. Biomedicines 2022; 10:428. [PMID: 35203638 PMCID: PMC8962319 DOI: 10.3390/biomedicines10020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs are short, non-coding RNA molecules regulating gene expression by inhibiting the translation of messenger RNA (mRNA) or leading to degradation. The miRNAs are encoded in the nuclear genome and exported to the cytosol. However, miRNAs have been found in mitochondria and are probably derived from mitochondrial DNA. These miRNAs are able to directly regulate mitochondrial genes and mitochondrial activity. Mitochondrial dysfunction is the cause of many diseases, including cancer. In this review, we consider the role of mitochondrial miRNAs in the pathogenesis of lung cancer with particular reference to radon exposure.
Collapse
Affiliation(s)
- Assiya Kussainova
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
17
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
18
|
Soares S, Guerreiro SG, Cruz-Martins N, Faria I, Baylina P, Sales MG, Correa-Duarte MA, Fernandes R. The Influence of miRNAs on Radiotherapy Treatment in Prostate Cancer - A Systematic Review. Front Oncol 2021; 11:704664. [PMID: 34414113 PMCID: PMC8369466 DOI: 10.3389/fonc.2021.704664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
In the last years, extensive investigation on miRNomics have shown to have great advantages in cancer personalized medicine regarding diagnosis, treatment and even clinical outcomes. Prostate cancer (PCa) is the second most common male cancer and about 50% of all PCa patients received radiotherapy (RT), despite some of them develop radioresistance. Here, we aim to provide an overview on the mechanisms of miRNA biogenesis and to discuss the functional impact of miRNAs on PCa under radiation response. As main findings, 23 miRNAs were already identified as being involved in genetic regulation of PCa cell response to RT. The mechanisms of radioresistance are still poorly understood, despite it has been suggested that miRNAs play an important role in cell signaling pathways. Identification of miRNAs panel can be thus considered an upcoming and potentially useful strategy in PCa diagnosis, given that radioresistance biomarkers, in both prognosis and therapy still remains a challenge.
Collapse
Affiliation(s)
- Sílvia Soares
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Faculty of Chemistry, University of Vigo, Vigo, Spain.,CEB, Centre of Biological Engineering of Minho University, Braga, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Susana G Guerreiro
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, Porto, Portugal.,Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra, Portugal
| | - Isabel Faria
- School of Health, Polytechnic of Porto, Porto, Portugal
| | - Pilar Baylina
- LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti Sales
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,CEB, Centre of Biological Engineering of Minho University, Braga, Portugal.,Biomark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Miguel A Correa-Duarte
- Faculty of Chemistry, University of Vigo, Vigo, Spain.,CINBIO, University of Vigo, Vigo, Spain.,Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Vigo, Spain
| | - Rúben Fernandes
- LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,School of Health, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
19
|
Konoshenko M, Laktionov P. The miRNAs involved in prostate cancer chemotherapy response as chemoresistance and chemosensitivity predictors. Andrology 2021; 10:51-71. [PMID: 34333834 DOI: 10.1111/andr.13086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reliable molecular markers that allow the rational prescription of an effective chemotherapy type for each prostate cancer patient are still needed. Since microRNAs expression is associated with the response to different types of prostate cancer therapy, microRNAs represent a pool of perspective markers of therapy effectiveness comprising chemotherapy. OBJECTIVES The available data on microRNAs associated with chemotherapy response (resistance and sensitivity) are summarized and analyzed in the article. MATERIALS AND METHODS A review of the published data, as well as their analysis by current bioinformatics resources, was conducted. The molecular targets of microRNAs, as well as the reciprocal relationships between the microRNAs and their targets, were studied using the DIANA, STRING, and TransmiR databases. Special attention was dedicated to the mechanisms of prostate cancer chemoresistance development. RESULTS AND DISCUSSION The combined analysis of bioinformatics resources and the available literature indicated that the expression of eight microRNAs that are associated with different responses to chemotherapy have a high potential for the prediction of the prostate cancer chemotherapy response, as found in the experiments and confirmed by the functions of regulated genes. CONCLUSION An overview on the published data and bioinformatics resources, with respect to predictive microRNA markers of chemotherapy response, is presented in this review. The selected microRNA and gene panel has a high potential for predicting the chemosensitivity or chemoresistance of prostate cancer and could represent a set of markers for subsequent study using samples of cell-free microRNAs from different patient groups.
Collapse
Affiliation(s)
- Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
20
|
MicroRNA-29b regulates the radiosensitivity of esophageal squamous cell carcinoma by regulating the BTG2-mediated cell cycle. Strahlenther Onkol 2021; 197:829-835. [PMID: 34232332 DOI: 10.1007/s00066-021-01790-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Many patients with esophageal squamous cell carcinoma (ESCC) are inoperable due to old age or advanced stage; thus, radio- and chemotherapy are considered the standard treatments for these patients. However, due to the radiation resistance of tumor cells that may arise during radiotherapy, results are still not satisfactory. The authors' previous studies found that microRNA can affect radiosensitivity, and further microRNA research was conducted to improve the radiosensitivity of ESCC. METHODS Cells were treated with silent miR-29b (si-miR-29b). Thereafter,proliferation, colony formation, cell cycle, and apoptosis were determined. The luciferase reporting assay was used to confirm the direct interaction between miR-29b and BTG2. Serum samples and clinical follow-up data of 75 elderly or advanced ESCC patients who could not tolerate surgery were collected. RESULTS The expression level of miR-29 in ESCC serum was closely correlated to radiosensitivity (χ2 =8.36, p < 0.05) and correlated with overall survival (OS; hazard ratio [HR] 0.47, 95% confidence interval [CI] 0.24-0.90). Function assays demonstrated that the number of cell clones increased after radiometry radiation, and the cell cycle was blocked in the G0/G1 phase (from 37.2 to 56.9%) in the si-miR-29b transfection group. Expression of BTG2 was upregulated and expression of cyclin D1 was downregulated (p < 0.05). Transfection of si-BTG2 can reverse this result and restore the expression level of cyclin D1 (p < 0.05). The target gene BTG2 of miR-29b was predicted using a bioinformatics tool and confirmed by dual-luciferase reporter assay. CONCLUSION Silencing of miR-29b in ESCC cells can increase expression of BTG2 and decrease the level of intracellular cyclin D1, resulting in cell cycle arrest and accumulation in the G0/G1 phase. Because G0/G1-phase cells are insensitive to radiotherapy, the sensitivity of radiotherapy is reduced.
Collapse
|