1
|
Badoiu SC, Greabu M, Miricescu D, Stanescu-Spinu II, Ilinca R, Balan DG, Balcangiu-Stroescu AE, Mihai DA, Vacaroiu IA, Stefani C, Jinga V. PI3K/AKT/mTOR Dysregulation and Reprogramming Metabolic Pathways in Renal Cancer: Crosstalk with the VHL/HIF Axis. Int J Mol Sci 2023; 24:8391. [PMID: 37176098 PMCID: PMC10179314 DOI: 10.3390/ijms24098391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Renal cell carcinoma (RCC) represents 85-95% of kidney cancers and is the most frequent type of renal cancer in adult patients. It accounts for 3% of all cancer cases and is in 7th place among the most frequent histological types of cancer. Clear cell renal cell carcinoma (ccRCC), accounts for 75% of RCCs and has the most kidney cancer-related deaths. One-third of the patients with ccRCC develop metastases. Renal cancer presents cellular alterations in sugars, lipids, amino acids, and nucleic acid metabolism. RCC is characterized by several metabolic dysregulations including oxygen sensing (VHL/HIF pathway), glucose transporters (GLUT 1 and GLUT 4) energy sensing, and energy nutrient sensing cascade. Metabolic reprogramming represents an important characteristic of the cancer cells to survive in nutrient and oxygen-deprived environments, to proliferate and metastasize in different body sites. The phosphoinositide 3-kinase-AKT-mammalian target of the rapamycin (PI3K/AKT/mTOR) signaling pathway is usually dysregulated in various cancer types including renal cancer. This molecular pathway is frequently correlated with tumor growth and survival. The main aim of this review is to present renal cancer types, dysregulation of PI3K/AKT/mTOR signaling pathway members, crosstalk with VHL/HIF axis, and carbohydrates, lipids, and amino acid alterations.
Collapse
Affiliation(s)
- Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Radu Ilinca
- Department of Medical Informatics and Biostatistics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Daniela Gabriela Balan
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Doina-Andrada Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050653 Bucharest, Romania
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
2
|
Cheng L, Zhang S, Wang M, Lopez-Beltran A. Biological and clinical perspectives of TERT promoter mutation detection on bladder cancer diagnosis and management. Hum Pathol 2023; 133:56-75. [PMID: 35700749 DOI: 10.1016/j.humpath.2022.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 02/08/2023]
Abstract
The telomerase reverse transcriptase (TERT) promoter mutations are associated with increased TERT mRNA and TERT protein levels, telomerase activity, and shorter but stable telomere length. TERT promoter mutation is the most common mutation that occurs in approximately 60-80% of patients with bladder cancer. The TERT promoter mutations occur in a wide spectrum of urothelial lesions, including benign urothelial proliferation and tumor-like conditions, benign urothelial tumors, premalignant and putative precursor lesions, urothelial carcinoma and its variants, and nonurothelial malignancies. The prevalence and incidence of TERT promoter mutations in a total of 7259 cases from the urinary tract were systematically reviewed. Different platforms of TERT promoter mutation detection were presented. In this review, we also discussed the significance and clinical implications of TERT promoter mutation detection in urothelial tumorigenesis, surveillance and early detection, diagnosis, differential diagnosis, prognosis, prediction of treatment responses, and clinical outcome. Identification of TERT promoter mutations from urine or plasma cell-free DNA (liquid biopsy) will facilitate bladder cancer screening program and optimal clinical management. A better understanding of TERT promoter mutation and its pathway would open new therapeutic avenues for patients with bladder cancer.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University and Lifespan Academic Medical Center, Providence, RI, 02903, USA.
| | - Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mingsheng Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, University of Cordoba Medical School, Cordoba, E-14004, Spain
| |
Collapse
|
3
|
Jain M, Tivtikyan A, Kamalov D, Avdonin S, Rakhmatullin T, Pisarev E, Zvereva M, Samokhodskaya L, Kamalov A. Development of a Sensitive Digital Droplet PCR Screening Assay for the Detection of GPR126 Non-Coding Mutations in Bladder Cancer Urine Liquid Biopsies. Biomedicines 2023; 11:495. [PMID: 36831030 PMCID: PMC9953558 DOI: 10.3390/biomedicines11020495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Recent whole-genome sequencing studies identified two novel recurrent mutations in the enhancer region of GPR126 in urothelial bladder cancer (UBC) tumor samples. This mutational hotspot is the second most common after the TERT promoter in UBC. The aim of the study was to develop a digital droplet PCR screening assay for the simultaneous detection of GPR126 mutations in a single tube. Its performance combined with TERT promoter mutation analysis was evaluated in urine of healthy volunteers (n = 50) and patients with cystitis (n = 22) and UBC (n = 70). The developed assay was validated using DNA constructs carrying the studied variants. None of the mutations were detected in control and cystitis group samples. GPR126 mutations were observed in the urine of 25/70 UBC patients (area under the ROC curve (AUC) of 0.679; mutant allele fraction (MAF) of 21.61 [8.30-44.52] %); TERT mutations-in 40/70 (AUC of 0.786; MAF = 28.29 [19.03-38.08] %); ≥1 mutation-in 47/70 (AUC of 0.836)). The simultaneous presence of GPR126 and TERT mutations was observed in 18/70 cases, with no difference in MAFs for the paired samples (31.96 [14.78-47.49] % vs. 27.13 [17.00-37.62] %, p = 0.349, respectively). The combined analysis of these common non-coding mutations in urine allows the sensitive and non-invasive detection of UBC.
Collapse
Affiliation(s)
- Mark Jain
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexander Tivtikyan
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - David Kamalov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Savva Avdonin
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tagir Rakhmatullin
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eduard Pisarev
- Department of Bioinformatics and Bioengineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria Zvereva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Larisa Samokhodskaya
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Armais Kamalov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
4
|
Baxter L, Gordon NS, Ott S, Wang J, Patel P, Goel A, Piechocki K, Silcock L, Sale C, Zeegers MP, Cheng KK, James ND, Bryan RT, Ward DG. Properties of non-coding mutation hotspots as urinary biomarkers for bladder cancer detection. Sci Rep 2023; 13:1060. [PMID: 36658180 PMCID: PMC9852567 DOI: 10.1038/s41598-023-27675-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Mutations at specific hotspots in non-coding regions of ADGRG6, PLEKHS1, WDR74, TBC1D12 and LEPROTL1 frequently occur in bladder cancer (BC). These mutations could function as biomarkers for the non-invasive detection of BC but this remains largely unexplored. Massively-parallel sequencing of non-coding hotspots was applied to 884 urine cell pellet DNAs: 591 from haematuria clinic patients (165 BCs, 426 non-BCs) and 293 from non-muscle invasive BC surveillance patients (29 with recurrence). Urine samples from 142 non-BC haematuria clinic patients were used to optimise variant calling. Non-coding mutations are readily detectable in the urine of BC patients and undetectable, or present at much lower frequencies, in the absence of BC. The mutations can be used to detect incident BC with 66% sensitivity (95% CI 58-75) at 92% specificity (95% CI 88-95) and recurrent disease with 55% sensitivity (95% CI 36-74) at 85% specificity (95% CI 80-89%) using a 2% variant allele frequency threshold. In the NMIBC surveillance setting, the detection of non-coding mutations in urine in the absence of clinically detectable disease was associated with an increased relative risk of future recurrence (RR = 4.62 (95% CI 3.75-5.48)). As urinary biomarkers, non-coding hotspot mutations behave similarly to driver mutations in BC-associated genes and could be included in biomarker panels for BC detection.
Collapse
Affiliation(s)
- L Baxter
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - N S Gordon
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - S Ott
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
- University of Warwick Medical School, University of Warwick, Coventry, UK
| | - J Wang
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - P Patel
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - A Goel
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - K Piechocki
- Nonacus Ltd, Birmingham Research Park, Birmingham, UK
| | - L Silcock
- Nonacus Ltd, Birmingham Research Park, Birmingham, UK
| | - C Sale
- Nonacus Ltd, Birmingham Research Park, Birmingham, UK
| | - M P Zeegers
- Department of Epidemiology, Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - K K Cheng
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N D James
- Institute of Cancer Research, London, UK
| | - R T Bryan
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - D G Ward
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
5
|
Liu T, Li S, Xia C, Xu D. TERT promoter mutations and methylation for telomerase activation in urothelial carcinomas: New mechanistic insights and clinical significance. Front Immunol 2023; 13:1071390. [PMID: 36713366 PMCID: PMC9877314 DOI: 10.3389/fimmu.2022.1071390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Telomerase, an RNA-dependent DNA polymerase synthesizing telomeric TTAGGG sequences, is primarily silent in normal human urothelial cells (NHUCs), but widely activated in urothelial cell-derived carcinomas or urothelial carcinomas (UCs) including UC of the bladder (UCB) and upper track UC (UTUC). Telomerase activation for telomere maintenance is required for the UC development and progression, and the key underlying mechanism is the transcriptional de-repression of the telomerase reverse transcriptase (TERT), a gene encoding the rate-limiting, telomerase catalytic component. Recent mechanistic explorations have revealed important roles for TERT promoter mutations and aberrant methylation in activation of TERT transcription and telomerase in UCs. Moreover, these TERT-featured genomic and epigenetic alterations have been evaluated for their usefulness in non-invasive UC diagnostics, recurrence monitoring, outcome prediction and response to treatments such as immunotherapy. Importantly, the detection of the mutated TERT promoter and TERT mRNA as urinary biomarkers holds great promise for urine-based UC liquid biopsy. In the present article, we review recent mechanistic insights into altered TERT promoter-mediated telomerase activation in UCs and discuss potential clinical implications. Specifically, we compare differences in senescence and transformation between NHUCs and other types of epithelial cells, address the interaction between TERT promoter mutations and other factors to affect UC progression and outcomes, evaluate the impact of TERT promoter mutations and TERT-mediated activation of human endogenous retrovirus genes on UC immunotherapy including Bacillus Calmette-Guérin therapy and immune checkpoint inhibitors. Finally, we suggest the standardization of a TERT assay and evaluation system for UC clinical practice.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shihong Li
- Department of Pathology, Maternal and Child Health Hospital of Liaocheng, Liaocheng, China
| | - Chuanyou Xia
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| | - Dawei Xu
- Department of Medicine, Bioclinicum and Center for Molecular Medicine (CMM), Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| |
Collapse
|
6
|
Gao Y, Fu Z, Guan J, Liu X, Zhang Q. The role of Notch signaling pathway in metabolic bone diseases. Biochem Pharmacol 2023; 207:115377. [PMID: 36513140 DOI: 10.1016/j.bcp.2022.115377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Metabolic bone diseases is the third most common endocrine diseases after diabetes and thyroid diseases. More than 500 million people worldwide suffer from metabolic bone diseases. The generation and development of bone metabolic diseases is a complex process regulated by multiple signaling pathways, among which the Notch signaling pathway is one of the most important pathways. The Notch signaling pathway regulates the differentiation and function of osteoblasts and osteoclasts, and affects the process of cartilage formation, bone formation and bone resorption. Genetic mutations in upstream and downstream of Notch signaling genes can lead to a series of metabolic bone diseases, such as Alagille syndrome, Adams-Oliver syndrome and spondylocostal dysostosis. In this review, we analyzed the mechanisms of Notch ligands, Notch receptors and signaling molecules in the process of signal transduction, and summarized the progress on the pathogenesis and clinical manifestations of bone metabolic diseases caused by Notch gene mutation. We hope to draw attention to the role of the Notch signaling pathway in metabolic bone diseases and provide new ideas and approaches for the diagnosis and treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| | - Zhanda Fu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Junxia Guan
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xinhua Liu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Qing Zhang
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| |
Collapse
|
7
|
Harsanyi S, Novakova ZV, Bevizova K, Danisovic L, Ziaran S. Biomarkers of Bladder Cancer: Cell-Free DNA, Epigenetic Modifications and Non-Coding RNAs. Int J Mol Sci 2022; 23:13206. [PMID: 36361996 PMCID: PMC9653602 DOI: 10.3390/ijms232113206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Bladder cancer (BC) is the 10th most frequent cancer in the world. The initial diagnosis and surveillance of BC require a combination of invasive and non-invasive methods, which are costly and suffer from several limitations. Cystoscopy with urine cytology and histological examination presents the standard diagnostic approach. Various biomarkers (e.g., proteins, genes, and RNAs) have been extensively studied in relation to BC. However, the new trend of liquid biopsy slowly proves to be almost equally effective. Cell-free DNA, non-coding RNA, and other subcellular structures are now being tested for the best predictive and diagnostic value. In this review, we focused on published gene mutations, especially in DNA fragments, but also epigenetic modifications, and non-coding RNA (ncRNA) molecules acquired by liquid biopsy. We performed an online search in PubMed/Medline, Scopus, and Web of Science databases using the terms "bladder cancer", in combination with "markers" or "biomarkers" published until August 2022. If applicable, we set the sensitivity and specificity threshold to 80%. In the era of precision medicine, the development of complex laboratory techniques fuels the search and development of more sensitive and specific biomarkers for diagnosis, follow-up, and screening of BC. Future efforts will be focused on the validation of their sensitivity, specificity, predictive value, and their utility in everyday clinical practice.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Zuzana Varchulova Novakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Katarina Bevizova
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- Department of Urology, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 833 05 Bratislava, Slovakia
| |
Collapse
|
8
|
Detection of Microsatellite Instability in Colonoscopic Biopsies and Postal Urine Samples from Lynch Syndrome Cancer Patients Using a Multiplex PCR Assay. Cancers (Basel) 2022; 14:cancers14153838. [PMID: 35954501 PMCID: PMC9367254 DOI: 10.3390/cancers14153838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Identification of mismatch repair (MMR)-deficient colorectal cancers (CRCs) is recommended for Lynch syndrome (LS) screening, and supports targeting of immune checkpoint inhibitors. Microsatellite instability (MSI) analysis is commonly used to test for MMR deficiency. Testing biopsies prior to tumour resection can inform surgical and therapeutic decisions, but can be limited by DNA quantity. MSI analysis of voided urine could also provide much needed surveillance for genitourinary tract cancers in LS. Here, we reconfigure an existing molecular inversion probe-based MSI and BRAF c.1799T > A assay to a multiplex PCR (mPCR) format, and demonstrate that it can sample >140 unique molecules per marker from <1 ng of DNA and classify CRCs with 96−100% sensitivity and specificity. We also show that it can detect increased MSI within individual and composite CRC biopsies from LS patients, and within preoperative urine cell free DNA (cfDNA) from two LS patients, one with an upper tract urothelial cancer, the other an undiagnosed endometrial cancer. Approximately 60−70% of the urine cfDNAs were tumour-derived. Our results suggest that mPCR sequence-based analysis of MSI and mutation hotspots in CRC biopsies could facilitate presurgery decision making, and could enable postal-based screening for urinary tract and endometrial tumours in LS patients.
Collapse
|
9
|
Urine Cellular DNA Point Mutation and Methylation for Identifying Upper Tract Urinary Carcinoma. Cancers (Basel) 2022; 14:cancers14143537. [PMID: 35884598 PMCID: PMC9319988 DOI: 10.3390/cancers14143537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary It’s difficult to detect upper tract urothelial carcinoma at early stage. Invasive testing may increase risk of cancer recurrences in the bladder after radical nephroureterectomy. Thus, in the present study, we incorporated two-gene mutation and methylation biomarkers to conduct the diagnostic tool of upper tract urothelial carcinoma and performed external validation to investigate the utility and stability of the optimal panel. It showed a highly specific and robust performance. It may be used as a replaceable approach for early detection of upper tract urothelial carcinoma, resulting in less extensive examinations in patients at low risk. Abstract Background: To improve the selection of patients for ureteroscopy, avoid excessive testing and reduce costs, we aimed to develop and validate a diagnostic urine assay for upper tract urinary carcinoma (UTUC). Methods: In this cohort study we recruited 402 patients from six Hunan hospitals who underwent ureteroscopy for hematuria, including 95 patients with UTUC and 307 patients with non-UTUC findings. Midstream morning urine samples were collected before ureteroscopy and surgery. DNA was extracted and qPCR was used to analyze mutations in TERT and FGFR3 and the methylation of NRN1. In the training set, the random forest algorithm was used to build an optimal panel. Lastly, the Beijing cohort (n = 76) was used to validate the panel. Results: The panel combining the methylation with mutation markers led to an AUC of 0.958 (95% CI: 0.933–0.975) with a sensitivity of 91.58% and a specificity of 94.79%. The panel presented a favorable diagnostic value for UTUC vs. other malignant tumors (AUC = 0.920) and UTUC vs. benign disease (AUC = 0.975). Furthermore, combining the panel with age revealed satisfactory results, with 93.68% sensitivity, 94.44% specificity, AUC = 0.970 and NPV = 98.6%. In the external validation process, the model showed an AUC of 0.971, a sensitivity of 95.83% and a specificity of 92.31, respectively. Conclusions: A novel diagnostic model for analyzing hematuria patients for the risk of UTUC was developed, which could lead to a reduction in the need for invasive examinations. Combining NRN1 methylation and gene mutation (FGFR3 and TERT) with age resulted in a validated accurate prediction model.
Collapse
|
10
|
Progesterone activates GPR126 to promote breast cancer development via the Gi pathway. Proc Natl Acad Sci U S A 2022; 119:e2117004119. [PMID: 35394864 PMCID: PMC9169622 DOI: 10.1073/pnas.2117004119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The steroid hormone progesterone is highly involved in different physiological–pathophysiological processes, including bone formation and cancer progression. Understanding the working mechanisms, especially identifying the receptors of progesterone hormones, is of great value. In the present study, we identified GPR126 as a membrane receptor for both progesterone and 17-hydroxyprogesterone and triggered its downstream G protein signaling. We further characterized the residues of GPR126 that interact with these two ligands and found that progesterone promoted the progression of a triple-negative breast cancer model through GPR126-dependent Gi-SRC signaling. Therefore, developing antagonists targeting GPR126-Gi may provide an alternative therapeutic option for patients with triple-negative breast cancer. GPR126 is a member of the adhesion G protein-coupled receptors (aGPCRs) that is essential for the normal development of diverse tissues, and its mutations are implicated in various pathological processes. Here, through screening 34 steroid hormones and their derivatives for cAMP production, we found that progesterone (P4) and 17-hydroxyprogesterone (17OHP) could specifically activate GPR126 and trigger its downstream Gi signaling by binding to the ligand pocket in the seven-transmembrane domain of the C-terminal fragment of GPR126. A detailed mutagenesis screening according to a computational simulated structure model indicated that K1001ECL2 and F1012ECL2 are key residues that specifically recognize 17OHP but not progesterone. Finally, functional analysis revealed that progesterone-triggered GPR126 activation promoted cell growth in vitro and tumorigenesis in vivo, which involved Gi-SRC pathways in a triple-negative breast cancer model. Collectively, our work identified a membrane receptor for progesterone/17OHP and delineated the mechanisms by which GPR126 participated in potential tumor progression in triple-negative breast cancer, which will enrich our understanding of the functions and working mechanisms of both the aGPCR member GPR126 and the steroid hormone progesterone.
Collapse
|
11
|
Fan B, Huang Y, Wen S, Teng Q, Yang X, Sun M, Chen T, Huang Y, Wang Y, Liu Z. Predictive Value of Preoperative Positive Urine Cytology for Development of Bladder Cancer After Nephroureterectomy in Patients With Upper Urinary Tract Urothelial Carcinoma: A Prognostic Nomogram Based on a Retrospective Multicenter Cohort Study and Systematic Meta-Analysis. Front Oncol 2021; 11:731318. [PMID: 34660295 PMCID: PMC8519510 DOI: 10.3389/fonc.2021.731318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Upper urinary tract urothelial carcinoma (UUT-UC) is a rare and severe urinary malignancy. Several studies have explored the relationship between preoperative urine cytology and intravesical recurrence (IVR) in patients with UUT-UC. However, the results of these studies are controversial or even contradictory, and investigations with UUT-UC patients in northeast China are rare. Methods We first estimated the prognostic significance of preoperative urine cytology in the outcomes of intravesical recurrence in 231 UUT-UC patients (training cohort = 142, validation cohort = 89) after radical nephroureterectomy (RNU) by the nomogram model. Subsequently, we quantitatively combined our results with the published data after searching several databases to assess whether preoperative positive urine cytology was associated with poor intravesical recurrence-free survival and a high risk of tumor malignant biological behavior. Results Firstly, the multicenter retrospective cohort study demonstrated that preoperative positive urine cytology correlated with poor intravesical recurrence-free survival and can serve as significant independent predictors of IVR by Kaplan-Meier curves and Cox regression analysis. The construction of the nomogram demonstrated that predictive efficacy and accuracy were significantly improved when preoperative urine cytology was combined. Meanwhile, meta-analysis showed that preoperative positive urine cytology was associated with a 49% increased risk of IVR. In the subgroup analysis by region, study type, and sample size, the pooled hazard ratios (HRs) were statistically significant for the Japan subgroup (HR 1.32), China subgroup (HR 1.88), cohort study subgroup (HR 1.45), and the single-arm study subgroup (HR 1.63). Conclusions Preoperative urine cytology was validated as a potential predictor of intravesical recurrence in patients with UUT-UC after RNU, although these results need to be generalized with caution. Large, prospective trials are required to further confirm its significance in prognosis and tumor malignant biological behavior.
Collapse
Affiliation(s)
- Bo Fan
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuanbin Huang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Shuang Wen
- Department of Pathology, Dalian Friendship Hospital, Dalian, China
| | - Qiliang Teng
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinrui Yang
- Department of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Man Sun
- Department of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Tingyu Chen
- Department of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Yan Huang
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yumei Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhiyu Liu
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|